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Abstract: 

This paper presents measured fluorescence enhancement results for ~250 x 250 element aluminium 

nanoantenna arrays fabricated using electron beam lithography. The arrays have been designed to use 

diffractive coupling to enhance and control the direction of fluorescent emission. Highly directional 

emission is obtained at the designed angles with beamwidths simulated to be in the range of 4-6°. Angle 

resolved spectroscopy measurements of dye-coated nanoantenna arrays were in good agreement with 

FDTD modelling. Critically, these results were obtained for near UV wavelengths (~360nm) which is 

relevant to a number of biosensing applications. 

 

Fluorescent emission from molecules is a widely used phenomenon in numerous applications ranging 

from bio-imaging[1] to DNA sequencing[2]. There has been much work on the fundamental science of 

nanoantennas to enhance and control the emission from light emitters such as fluorphores and quantum 

dots [3-5].  Much less work has been done to engineer the wavelength, magnitude and directionality of 

fluorescence emission from nanoantennas arrays for integration into real biosensing devices, especially 

in the UV spectrum where several important bio-indicators auto-fluoresce. This paper aims to establish 

benchmark performance of aluminium nanoantenna arrays using measurement scenarios that could be 

developed into a multiwavelength, low cost sensor platform.   

Fluorescent emission coupled to nanoantenna arrays has been widely studied to understand strong and 

weak coupling between the molecules and array modes[4,6], however, again less emphasis is placed on 

the strongly directional effects obtained from large arrays. In this paper we use 2D nanoantenna arrays 

that are more than 100 x 100 wavelengths in area to study both enhancement and directional focusing 

effects. Directional effects in antenna arrays are well known in the RF domain where very large phased 
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array antennas are commonly used to form multiple, steerable beams [7]. In that case the 

electromagnetic energy is coherent and beam forming effects are to be expected. In the case of 

fluorescent emission, which is a spontaneous process, it is not immediately obvious that such coherent 

effects will occur. The coherence of the emission can be affected by whether the molecule-antenna array 

system is strongly or weakly coupled [8]. Literature has shown that [6,8,9] it is possible to enter the 

strong coupling regime when the number of emitters within the mode volume is relatively large. 

However, in the context of fluorescence sensing applications, the emitters tend to be spectrally broad 

and their concentrations relatively low, hence encouraging weak coupling. In addition, any fluorescence 

enhancement is contingent on the array-emitter system remaining weakly coupled [10], in this case we 

believe the array resonance enforces a certain level of coherence which enables beamforming effects to 

occur. The large number of elements used in our arrays results in very strong directional focusing effects 

which will be beneficial in numerous sensing applications. 

Previous work in UV fluorescence enhancement [11] has shown up to 80x emission enhancement from 

an aluminium nanoparticle array, measured using a similar scanning photoluminescence technique to 

our recent work [12]. There a relatively modest 1.9x enhancement in an aluminium nanoantenna array 

was demonstrated for a near UV dye with a high intrinsic quantum yield (QY). This highlights a key 

drawback to enhancement as a figure of merit (FOM) for nanoantenna/nanoparticle efficacy, which is 

that the finally observed emission enhancement is a function of the intrinsic QY of the fluorophore and 

directivity of the array[13]. This means that, where intrinsically efficient fluorophores are used with 

low Purcell enhancement factors, there is still opportunity to observe an overall enhanced emission 

through improvements to collection due to the directivity of the array.  

This paper builds on the work around diffractive coupling [8,17] to engineer the angular response of an 

array for applications in biosensing in the UV spectrum. The paper begins with a discussion of 

diffractive coupling as a method for beam control, including Finite Difference Time Domain (FDTD) 

modelling of the fabricated arrays. It then shows results for combined enhancement and beam control 

using angle resolved enhancement measurements of a near ultra-violet (NUV) dye coated nanoantenna 

array.  

1. Emission Control by Diffractive Coupling 

It can be shown that the output steering angle or emission angle (𝜃𝑜𝑢𝑡) for a linear array of antennas is 

governed by the grating equation [18] which for normal incidence  is given by :  

𝑎 =
𝑚𝜆

sin(𝜃𝑜𝑢𝑡)
            (1.1) 

Where a is the array pitch, m is the diffracted order and  is the wavelength. In our design we also want 

to maximise emission enhancement as well as control the emission angle and thus we must also consider 

individual nanoantenna resonances and array resonances, often termed surface lattice resonances where 
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this enhancement occurs. To account for these effects simultaneously is difficult analytically and thus 

here we have employed electromagnetic modelling to determine the optimum nanoantenna geometry 

and spacing to optimise fluorescence enhancement at given emission angles. 

The other important aspect to the design is the collection optics being used. In real sensors there are 

numerous potential configurations that could be explored, but here we have taken a very general 

approach using a goniometer mounted photodetector to characterise the magnitude and angular 

emission from the samples. In general, in a 2D array, a uniform pitch in both directions generates a 2D 

diffraction pattern and as a result, spreads emission in both planes. This may not be ideal for all 

applications and by making the pitch sufficiently small, i.e., subwavelength, in one direction,  forces 

diffraction to occur along a single axis, simplifying collection in the far field and further enhances 

emission by concentrating the fluorescence into a smaller number of diffracted orders.  In principle, any 

emission angle over the range of 0°-90° (0° = Normal emission) can be achieved by varying the array 

pitch. However, steering into the range 0-30° permits additional diffraction orders to exist, which 

reduces the intensity of each emission lobe. It is also worth noting that when using non-goniometer 

collection with a single lens, emission at angles in the range 50°-90° demand a lens with a relatively 

high NA, upwards of 0.8, which are practically difficult. Thus, we have chosen steering angles between 

30° and 50°. 

1.1 Array Design 

A series of aluminium nanoantenna arrays were fabricated which targeted a higher order antenna 

resonance near to 350 nm, since operating in the fundamental mode demands very small antennas which 

are very difficult to fabricate [12]. The emission was designed to be within the 30°-50° range and details 

of the design parameters are shown in Table 1. The arrays were fabricated using electron beam 

lithography and metal lift-off on a 1 mm thick fused silica substrate with a 5 nm titanium (Ti) adhesion 

layer. The fused silica substrate is UV transparent which is critical for any transmission based 

measurements. Arrays were coated by a thin layer of silicon nitride (𝑆𝑖3𝑁4), refractive index of (n=2) 

[19] which acted as a passivation layer to add robustness against harsh sensing conditions within which 

such nanoantenna arrays could be placed.  

Name 
Arm length 

(nm) 

Arm Width 

(nm) 

Long-axis 

pitch/𝑎𝑥 

(nm) 

Short axis 

pitch/𝑎𝑦  (nm) 

Steering Angle 

(°) 

Array 1 158 50 544 250 40 

Array 2 158 50 457 250 50 

Table 1: Antenna array design table 



4 
 

Figure 1 shows a SEM image of array 1. In the inset, a representative measurement revealed that the 

element dimensions were 137 nm x 37 nm (l x w) compared to the designed dimensions of 158 nm x 

50 nm. The array occupied a physical footprint of 0.1 mm x 0.1 mm and contained about 57,200 

individual nanoantenna elements.  

 

Figure 1: SEM images of nanoantenna array and in the inset a magnified view of the array elements 

Figure  2 shows the FDTD model of the fabricated structures. A single aluminium nanoantenna of arm 

length, l, arm width, w, and arm height, h, on a  substrate with , ng=1.5, with a titanium (Ti) adhesion 

layer, thickness, la=5 nm. The entire nanoantenna was covered by a uniform passivation layer (index, 

n=2), thickness, lp. The simulation was bordered by periodic boundaries in the x and y directions and 

PML in the z direction, this effectively represented an infinite array of horizontal pitch, ax and vertical 

pitch ay. The nanoantenna was excited by an electric dipole source (350 nm - 550 nm) positioned at the 

centre of the long axis, at a distance, d=15 nm from the passivation layer and polarised along the 

nanoantenna short axis (Ey). The data monitor was placed above the nanoantenna, in air (n= 1). 

Enhancement was defined as the net power through the monitor normalised to the power emitted by the 

source in free space. 
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Figure 2: FDTD simulation layout; a single aluminium nanoantenna of arm length, l, arm width, w, and arm 

height, h, attached to substrate with RI ng =1.5, via a titanium (Ti) adhesion layer, thickness, la = 5 nm. The entire 

nanoantenna was covered by a uniform passivation layer (index, np=2), thickness lp =10 nm. The passivated 

structure was coated in a 50 nm layer of water, index, ns=1.33. The simulation was bordered by periodic 

boundaries in the x and y directions and PML in the z direction, this effectively represented an infinite array of 

horizontal pitch, ax and vertical pitch ay=250 nm. The data monitor was placed above the layer of water, in air, 

RI of 1. 

 

Figure 3(a) and (b) show the enhancement and far field emission patterns, respectively, predicted by 

FDTD modelling of the arrays, using both the design and fabricated dimensions. It can be seen that the 

shorter fabricated nanoantennas, result in blueshifted resonances compared to the design case, as might 

be expected. Far field projections were generated at the array resonant wavelength. In Figure 3(a) we 

observe higher enhancement (~1.9x) for Array 2 but lower enhancement (~1.46x) for Array 1. It is 

worth noting that the enhancement shown here from FDTD is effectively spatially averaged over the 

entire collection plane and does not fully account for the directivity and as such will impact later 

comparisons with measurements. Figure 3(b) shows that at resonance, based on the design dimensions; 

Array 1 and Array 2 are expected to steer the emission to ±47° and ±60°, respectively. However, using 

the representative fabricated dimensions, the emission angles for Array 1 and Array 2, become ±42° 

and ±52°, respectively, due to the blueshifted resonance. The FWHM beamwidth of Array 1, using 

representative fabricated dimensions was noticeably smaller (4°) than that of Array 2 (6°). This 

relationship which was also preserved with the designed dimensions; 5° for Array 1 and 8° for Array 2.  
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                                         (a)                                                                                  (b) 

Figure 3 : (a) FDTD simulated enhancement spectra for Arrays 1 and 2 using design dimensions and 

representative fabricated dimensions, 137 nm x 37 nm (l x w) (b) FDTD simulated far field patterns for Array 1 

(𝜆𝑓𝑎𝑏𝑟𝑖𝑐𝑎𝑡𝑒𝑑 = 366 𝑛𝑚, 𝜆𝑑𝑒𝑠𝑖𝑔𝑛 = 398𝑛𝑚) and Array 2 (𝜆𝑓𝑎𝑏𝑟𝑖𝑐𝑎𝑡𝑒𝑑 = 366 𝑛𝑚, 𝜆𝑑𝑒𝑠𝑖𝑔𝑛 = 402𝑛𝑚)  

using design and representative fabricated dimensions. 

 

2. Angle Resolved Nanoantenna Enhancement Measurements  

This section presents angle resolved photoluminescence (PL) measurements (enhancement) of Arrays 

1 and 2, shown schematically in Fig 4. Each array was illuminated from below the substrate by a 325 

nm LED at normal incidence with an intensity of approximately 3mW/cm2 at the array and emission 

collected at varying angles. Measurements were performed over the nanoantenna array and an area of 

bare substrate all coated in UV dye (Exalite 392E). A 1.73 mM solution of the dye in 80:20 %vol 

H2O/EtOH was prepared then deposited on the sample by drop-casting. The sample was placed on a 

hotplate at 70°C for 5 minutes, after which, 400 µL of the dye solution was pipetted on the sample such 

that the entire array area was immersed. The dye coated sample was left on the hotplate until visibly 

dry.  Heating caused the solvent to evaporate rapidly, leaving behind a thin, uniform layer of dye. 

Enhancement spectra were generated by a normalisation of the intensity spectra measured from the dye 

over the nanoantenna array to the dye emission intensity measured over the substrate. An integration 

time of 5s was used to maximise collected intensity and multiple spectra averaging was used to 

minimise noise effects. 

(a) 
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Figure 4: Goniometer based optical setup for measuring angle resolved photoluminescence measurement. The 

nanoantenna array was illuminated from the substrate side and emission was collected above the arrays at 

angles between 0° and 55°. 

Figure 5 shows the enhancement spectra for Arrays 1 and 2. Figure 5(a) shows the results for Array 1 

and the enhancement peak of 6x can be seen at 360 nm, which is very close to the predicted wavelength 

from FDTD modelling. The peak enhancement was measured at 40° collection angle again in good 

agreement with the FDTD modelling, it is also evident that emission was suppressed at other collection 

angles. Figure 5(b) shows results for Array 2 with maximum enhancement of 2.5x measured at 360 nm 

and at 50°, again wavelength and angle are close to that predicted by FDTD modelling. These results 

show that wavelength and angle can be predicted well using FDTD modelling from actual measured 

dimensions of the arrays, but absolute enhancement is not in good agreement. It can be seen that in 

general, larger enhancement was measured than predicted by FDTD. In the FDTD model, the emission 

was collected at all angles simultaneously and then averaged, whilst in the measurement, each angle 

was considered separately, which exploits the directivity of the array and more closely represents a 

practical sensor approach. The difference in absolute levels of enhancement is due to the very simplified 

nature of the FDTD model which contains only single, aligned dipoles as emitters, which due to periodic 

boundaries are periodically distributed. In reality there will be many more dipoles with random 

orientation and alignment. This model assumes identical arrays of nanoantennas, which will also not be 

the case. Future work will use measured SEM image data to model real nanoantenna arrays and this 

combined with random distributions of dipole sources will allow better estimates of absolute 

enhancement to be obtained. 

 

 

Nanoantenna 

Array 

Glass slide 
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(a)                                                                                  (b) 

Figure 5: Enhancement Spectra at collection angles over the 20°-50° range for  (a) Array 1 (b) Array 2. 

At each angle, emission spectrum collected from nanoantennas was normalised to emission spectrum from 

nearby glass area. 

 

3. Conclusions 

This paper shows the design, fabrication and testing of aluminium nanoantenna arrays for plasmonic, 

fluorescence based sensing. A series of nanoantenna arrays were fabricated based on the design 

principles presented. Angle resolved PL measurements of Exalite 392E coated nanoantenna arrays 

showed up to 6x enhancement of NUV fluorescence at 360 nm; collection angles were in good 

agreement with FDTD modelling and the novel approach to beam steering presented in this paper. In 

future, low cost fabrication techniques such as nanoimprint lithography will be explored to enable the 

design of low cost fluorescence based sensors. 
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