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Abstract 

The application of biologically and biochemically relevant constraints during the 
optimization of kinetic models reduces the impact of suggested changes in 
processes not included in the scope of the model. This increases the probability 
that the design suggested by model optimization can be carried out by an 
organism after implementation of design in vivo. 

A case study was carried out to determine the impact of total enzyme activity 
and homeostatic constraints on the objective function values and the following 
ranking of adjustable parameter combinations. The application of constraints on 
the model of sugar cane metabolism revealed that a homeostatic constraint 
caused heavier limitations of the objective function than a total enzyme activity 
constraint. Both constraints changed the ranking of adjustable parameter 
combinations: no “universal” constraint-independent top-ranked combinations 
were found. Therefore, when searching for the best subset of adjustable 
parameters, a full scan of their combinations is suggested for a small number of 
adjustable parameters, and evolutionary search strategies are suggested for a 
large number. Simultaneous application of both constraints is suggested. 
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1. Introduction 

The application of mathematical models to achieve biotechnological goals, such 
as providing necessary fuels, chemicals and materials using metabolic 
engineering and synthetic biology approaches (Jullesson et al., 2015; Nielsen et 
al., 2014) is based on engineering principles: new designs are developed based 
on mechanistic understanding and mathematical description of the process of 
interest. Several industrial applications have demonstrated the potential of a 
model-based design approach (Nielsen et al., 2014). At the same time, it is 
important to determine the smallest number of modifications that have the 
largest impact on strain improvement (Mozga and Stalidzans, 2014; Nikolaev, 
2010; Rodrı́guez-Acosta et al., 1999; Sendín et al., 2010; Stalidzans et al., 2017b; 
Stephanopoulos and Simpson, 1997). A small number of manipulated 



parameters is advantageous for reducing risks of both unexpected side-effects 
and costs of model-based design implementation in vivo. 

The optimization of kinetic models is a popular approach for strain design 
development. It can be used alone or in combination with larger scale 
stoichiometric models (Kalnenieks et al., 2014). Kinetic (dynamic) models are 
usually expressed as a set of ordinary differential equations requesting detailed 
knowledge about reaction type and parameters and delivering detailed dynamic 
mechanistic simulations of biochemical networks (Almquist et al., 2014; Stelling, 
2004; Villaverde et al., 2016). At the same time, the kinetic models have a 
drawback, which is their small scale (Almquist et al., 2014), usually up to several 
tens of reactions. This limits their predictive power. Therefore, applicability of 
new designs should be validated in larger scale models, for instance, 
stoichiometric models (Kalnenieks et al., 2014), if possible.  

When looking for improvements mostly in the maximum flux and/or yield of 
product of interest (Sendín et al., 2010; Villaverde et al., 2016) based on a kinetic 
model, different constraints can be applied to the optimization task settings 
depending on peculiarities of particular process and/or organism of interest. 
This can be done in order to reduce the impact of limitations of the organism of 
interest that are not taken into account by the model due to the small size of 
model. Ignoring these constraints may lead to overoptimistic expectations, which 
fail when the proposed changes are implemented by creating modified 
organisms in vivo. In this study we concentrate on two popular constraints that 
are well discussed and are applicable without transformation of the model. 

As first we use constraint mentioned by Waley (Waley, 1964) assuming that the 
total concentrations of enzymes may be required to remain fixed due to possible 
limitations of enzyme production resources (amino acids, transcriptional and 
translational capacity and others).  This idea is developed later (Heinrich and 
Schuster, 1996) and used as total enzyme activity constraint that limits the 
overexpression of enzymes. Two variants of this constraint are common: i) the 
total enzyme quantity is fixed at initial or some other value (Magnus et al., 2009; 
Nikolaev, 2010) or ii) some total quantity can not be exceeded (Klipp et al., 2002; 
Mauch et al., 2001; Schmid et al., 2004; Stalidzans et al., 2017a).  

As second we use the homeostatic constraint (Fell and Thomas, 1995; Kacser and 
Acerenza, 1993): metabolite concentrations in the steady state of an optimized 
model may not differ by more than a defined fraction from the steady state 
metabolite concentrations in the initial model. This constraint limits large 
changes in metabolite concentrations in the model to avoid their potential 
impact on other reactions not included in the kinetic model but present in the 
living organism and to avoid cytotoxicity (Kell and Mendes, 2000). The 
constraint has variations in its application: i) limitation of metabolite pool total 
concentration increase (Magnus et al., 2009; Mauch et al., 2001; Nikolaev, 2010; 
Schmid et al., 2004) without constraining each metabolite individually, ii) 
limitation of changes of individual metabolites (Rodrı́guez-Acosta et al., 1999; 
Stalidzans et al., 2017a; Villaverde et al., 2016) and iii) combination of both 
(Visser et al., 2004). 

In this study, we search for the optimal adjustable parameter sets depending on 
application of the total enzyme activity constraint and/or the homeostatic 



constraint. A high impact of constraints on the best values of objective function 
and the performance of particular adjustable parameter combinations was 
observed. 

2. Material and methods 

2.1. Model, optimization software and task setting 

A sucrose accumulation model in sugar cane culm tissue BIOMD0000000023 
(Rohwer and Botha, 2001) from the Biomodels database was used as a case study 
(Fig.1) because of well defined optimisation task and handy number of 
adjustable parameters (AP) for analysis of all possible combinations of AP (31 
possible combinations for 5 APs). The COPASI software (Hoops et al., 2006) was 
used as the optimization tool and SpaceScanner software (Elsts et al., 2017) was 
used to manage parallel optimization runs of COPASI models. The following 
global stochastic optimization methods implemented in COPASI were used: 
“Particle Swarm”, “Genetic Algorithm”, “Genetic Algorithm SR”, “Evolutionary 
programing” and “Evolutionary Strategy SR”. ConvAn software (Kostromins et al., 
2012) was used for visualization and analysis of convergence dynamics of 
parallel runs. Steady state optimization was used in COPASI settings. 

 

Fig.1 Sucrose accumulation in sugar cane culm tissue (based on Fig.1 (Rohwer and Botha, 
2001)). Reactions : 1, fructose (Fru) uptake ; 2, glucose (Glc) uptake ; 3, hexokinase(Glc) ; 4, 
hexokinase (fructose phosphorylating) ; 5, fructokinase ; 6, sucrose phosphate synthase ; 7, 

sucrose phosphate phosphatase ; 8, sucrose synthase ; 9, invertase ; 10, glycolysis ; 11, 
vacuolar sucrose import. Reaction 6 is defined forward in the direction of sucrose 6-

phosphate (Suc6P) synthesis, and has a stoichiometry of 2 for HexP (fructose 6-phosphate 
and UDP-glucose). Reaction 8 is defined forward in the direction of sucrose (Suc) synthesis. 

The hexose phosphate pool was considered as an equilibrium block comprising UDP-
glucose, glucose 1-phosphate, glucose 6-phosphate and fructose 6-phosphate. HexP, hexose 

phosphates ; subscript ‘ex’, extracellular ; subscript ‘vac’, vacuolar. 

Enzyme amount (concentration) factors (Kc) were introduced into the kinetic 
equations of the model (Bruck et al., 2008). Kc coefficients of reactions 1-5 were 
used as APs. All Kc values in models before optimization were set to Kc=1. This 
enabled the normalized implementation of the adjustability range of the enzyme 



amount. The range of Kc adjustment during all optimization experiments was 
between 0.01 and 10, enabling changes within three orders of magnitude: 

∀𝑗 ∈ [1; 𝑛]: 0.01 ≤ 𝐾𝑐𝑗 ≤ 10 (1) 

where n is the number of adjustable parameters (five in this case) and Kcj is the 
enzyme amount factor Kc for reaction j. 

The optimization task was set as in the study of model authors Rohwer and 
Botha (Rohwer and Botha, 2001) and used later also by Mendes and colleagues 
(Mendes et al., 2009): the objective function (OF) was the maximization of a ratio 
of fluxes  

 𝑂𝐹 = 𝐽𝑣11/𝑗𝑣9  (2) 

where Jv are fluxes of corresponding reactions. 

The enzyme concentration coefficients Kc, in reactions v1, v2, v3, v4 and v5 are 
set as AP. The applied OF represents the optimization of the concentration of 
enzymes to increase the proportion of accumulation in the vacuole (flux Jv11 in 
Fig. 1) relative to sucrose hydrolysis by invertase (flux Jv9 in Fig.1) (Rohwer and 
Botha, 2001). There were 31 possible combinations of five AP analyzed. 

The total optimization potential (TOP) approach (Stalidzans et al., 2017b) is used 
to assess the biotechnological potential of particular AP combination. TOP is OF 
value of full set of AP. OF value of any other AP combination can be expressed as 
a fraction of TOP as all other combinations are just subsets of combination with 
all AP included.  

 

2.2. Additional constraints 

To assess the impact of additional optimization constraints, the total enzyme 
activity constraint was introduced. It was defined as the upper limit of the initial 
sum of all Kc (initial value of each Kc=1):  

∑ K𝑐𝑗 ≤ 𝑛
𝑛

𝑗=1
  (3) 

where n is number of adjustable parameters (equals to 5 in this case). 

Thus, the initial enzyme production capacity cannot be exceeded, and enzyme 
concentration can rise only with the cost of corresponding decreases in other 
enzyme concentration(s) (Klipp et al., 2002; Mauch et al., 2001; Schmid et al., 
2004; Stalidzans et al., 2017a). 

The homeostatic constraint was implemented by limiting the new steady state 
metabolite concentrations to a ±20% corridor around the steady state 
concentrations of each metabolite in the initial model (Rodrı́guez-Acosta et al., 
1999): 

∀𝑚 ∈ [1; 𝑙]: 0.8𝑐𝑜𝑚 ≤ 𝑐𝑚 ≤ 1.2𝑐𝑜𝑚 (4) 

where l is the number of metabolites, cm is steady state concentration of a 
metabolite after optimisation and com is the are the one of original steady state 
(original model before optimization).  



Steady state solutions where any concentration of any metabolite was outside 
the defined corridor were rejected by COPASI automatically. 

To assess the impact of these additional constraints and their combinations, four 
different task settings were implemented (see initial COPASI models with pre-set 
optimization tasks for each task setting (TS) in Supplementary material 1): 

1) without additional constraints (TS1); 
2) total enzyme activity constraint (TS2); 
3) homeostatic constraint (TS3); 
4) both total enzyme activity and homeostatic constraints (TS4). 

3. Results and discussion 

Ranked lists of the best solutions according to the OF for TS1–TS4 are 
summarized in (Table 1). Supplementary material 2 contains the results of 
optimizations generated by SpaceScanner including all Kc values. Columns E-J 
indicate if Kc of reaction is included in particular combination while columns K-O 
indicate the Kc values. 

  



Table 1. Ranked list of combinations depending on the task setting.  

 Rank OF value 

Combination TS1 TS2 TS3 TS4 TS1 TS2 TS3 TS4 

Kc1 28 30 28 30 26.4 3.5 3.81 3.48 

Kc2 27 30 27 30 30.8 3.5 3.89 3.48 
Kc3 16 16 22 21 8 721.2 8 721.2 3.98 3.98 

Kc4 31 28 31 28 3.5 3.5 3.52 3.52 

Kc5 30 27 29 26 4.4 4.4 3.77 3.77 
Kc1;2 22 29 12 29 312.9 3.5 4.41 3.48 

Kc1;3 12 13 16 15 58 506.2 18 740.7 4.10 4.08 

Kc1;4 25 25 26 24 35.2 6.5 3.90 3.81 
Kc1;5 17 24 23 25 376.1 7.1 3.95 3.80 

Kc2;3 10 12 21 20 122 811.0 20 188.8 3.99 3.99 

Kc2;4 26 20 25 22 30.8 11.7 3.93 3.93 
Kc2;5 24 23 14 10 42.7 8.7 4.38 4.38 

Kc3;4 15 15 18 17 13 128.6 13 128.6 4.00 4.00 

Kc3;5 14 14 18 17 14 218.5 14 218.5 4.00 4.00 
Kc4;5 29 26 29 26 4.5 4.5 3.77 3.77 

Kc1;2;3 4 11 6 12 1 381 300.0 24 148.8 4.46 4.20 

Kc1;2;4 21 18 11 8 319.5 58.9 4.43 4.41 
Kc1;2;5 20 22 4 9 324.3 8.9 4.47 4.39 

Kc1;3;4 7 5 13 14 247 027.0 64 552.5 4.40 4.10 

Kc1;3;5 11 9 10 13 60 236.5 29 137.3 4.45 4.11 
Kc1;4;5 18 21 23 23 372.4 10.6 3.95 3.91 

Kc2;3;4 9 8 17 16 131 571.0 39 185.7 4.03 4.03 

Kc2;3;5 8 7 5 4 228 685.0 56 426.9 4.46 4.42 
Kc2;4;5 23 19 14 10 42.8 23.2 4.38 4.38 

Kc3;4;5 13 10 18 17 25 834.0 25 834.0 4.00 4.00 

Kc1;2;3;4 2 4 7 2 2 474 050.0 78 996.2 4.46 4.47 
Kc1;2;3;5 3 6 3 3 1 430 180.0 61 294.9 4.47 4.46 

Kc1;2;4;5 19 17 9 5 331.5 95.5 4.46 4.42 

Kc1;3;4;5 5 2 2 7 259 751.0 102 913.0 4.47 4.42 
Kc2;3;4;5 6 3 8 6 258 968.0 102 767.0 4.46 4.42 

Kc1;2;3;4;5 1 1 1 1 2 600 980.0 160 249.0 4.47 4.47 

3.1. Optimization potential 

The total optimization potential (TOP) in the analyzed sugar cane model was 
heavily dependent on the constraints (Table 1). The TOP (best value of OF for the 
full set of APs) varied in a 106 fold range from 2,600,980 (TS1) to 4.47 (TS3 and 
TS4). Introduction of the homeostatic constraint (TS3) in this model was more 
influential than adding the total enzyme activity constraint (TS2), as TOP=4.47 in 
the case of the homeostatic constraint (TS3), while TOP=160,249 in the case of 
TS2. Application of both constraints (TS4) reduced TOP value by less than 0,1% 
compared to TS3, where only the homeostatic constraint was applied. 

The optimization potential per number of adjustable parameters can be analyzed 
in relative measures as a fraction of TOP (Fig. 2), as well as in absolute values 
(Fig. 3). Two pairs of task settings behave similarly: those without homeostatic 
constraint (TS1 and TS2) and those with it (TS3 and TS4). In the case of TS1 and 
TS2, the optimization potential was utilized gradually when the number of 
adjustable parameters was increasing (Fig. 2). It occurred more quickly in TS1, 
while in TS2, the increase of OF depending on the number of involved AP was 
almost linear (Fig. 2). At the same time, the increase of the OF absolute value for 
TS1 and TS2 was approximately 106-fold (Fig. 3), while in the case of TS3 and 
TS4, the OF raised from 3.7 (initial model) to 4.47 (increase of OF by 22%), but 
the TOP was almost reached by just two adjustable parameters in TS3 and TS4.  

The high TOP values of TS1 and TS2 differed from the relatively small numbers 
for TS3 and TS4, where the homeostatic constraint was implemented, possibly 
because of unfeasibly high levels of fructose and glucose concentrations in the 
optimal solutions of TS1 and TS2 (Table 2), which are not accepted when the 



homeostatic constraint is implemented. The heavy impact of the homeostatic 
constraint could be reduced by setting different constraint values for particular 
metabolites after assessment of their concentration influence on the rest of 
biochemical network. For instance, concentration changes of metabolites that 
are involved in just one metabolic pathway may be constrained less than highly 
interconnected metabolites. 

The impact of homeostatic constraint corridor width (initially ±20%) of all 
internal metabolites on TOP values in TS3 (Fig. 4) demonstrates linear 
dependence. Corridor 0% does not allow any increase of TOP and there is a 
linear growth of OF up to 5-fold OF increase (up to 17.5) at 200% corridor. The 
curve is similar to the OF dependence on deviation from pool concentration in 
the study of Mauch and colleagues (Mauch et al., 2001).  

 

 

Fig. 2. Optimization potential per number of adjustable parameters.  
In all TS, 0%  of OF is 3.7 (OF value of initial model) while 100% of OF (TOP) corresponds to OF 

values of 2,600,980; 160,249; 4.47 and 4.47 for TS1; TS2; TS3 and TS4, respectively. 

 

 



Fig. 3. Optimization potential per number of adjustable parameters in absolute numbers for TS1 (a), 
TS2 (b), TS3 (c) and TS4 (d). 

 

 

Fig.4. TOP dependence on the homeostatic constraint corridor.  

 

  



Table 2. Metabolite steady state concentrations (mmol/l) and their changes compared to the initial 
model in % for the full set of (5 AP) optimizations for TS1–TS4. 

Metabolite Initial TS1 % TS2 % TS3 % TS4 % 
Fru  40.58 47 705 117 455 11 820 29 027 48.70 20 48.70 20 
Glc  30.11 45 674 151 588 11 335 37 545 36.13 20 36.13 20 
HexP  2.99 0.0031 -100 0.0032 -100 3.43 15 3.44 15 
Suc6P (×10-3) 4.78 1.55E-5 -100 1.58E-5 -100 5.72 20 5.73 20 
Suc  10.41 0.1488 -99 0.1489 -99 12.25 18 12.25 18 
Sum of Kc  20.03  5.00  6.60  4.89  

3.2. Impact of particular reactions to the objective function 

In the cases of TS1 and TS2 in all AP combinations, the coefficients Kc5, Kc3 and 
Kc4 had to be reduced, while Kc1 and Kc2 had to be increased to improve the OF 
values. Another feature of the TS1 and TS2 ranked solutions list is the high 
impact of Kc3: all cases with reduced Kc3 had top ranks with 10–100 fold higher 
OF values compared to the other solutions. These kinds of improvements might 
be suggested intuitively without optimization activities. The same suggestions 
were made by model authors (Rohwer and Botha, 2001) using metabolic control 
analysis (MCA) approach (Heinrich and Rapoport, 1974; Kacser and Burns, 
1973). 

However, the situation was different in TS3 and TS4, where the homeostatic 
constraint was implemented, and steady state solutions with metabolite values 
with more than 20% difference from the initial model were rejected. In this case, 
coefficients Kc1–Kc5 had much smaller deviations from their initial values and 
relative changes of Kc3 did not exceed 27%. Simplistic rules like “Kc3 always has 
to be reduced” were not applicable even in the relatively small model used in this 
study. Thus, implementation of homeostatic constraint change the solution space 
the way that MCA predictions that are valid for TS1 and TS2, can not help to 
predict the most influential changes. Evidence for that is the fact that only Kc1 in 
TS3 is upregulated and Kc4 in TS4 is downregulated in all combinations (see 
Supplementary material 2). All other Kc values in TS3 and TS4 are upregulated 
and downregulated depending on the particular combination of AP. This 
complex behavior may evolve when changes of enzyme concentration help to 
neutralize the impact of other enzymes on the concentration changes of an 
internal metabolite. Similar limitations of MCA after implementation of 
homeostatic constraint have been reported also before (Kell and Mendes, 2000; 
Visser et al., 2004). 

 

3.3. Dependence of Kc values on constraints 

Regarding the sum of Kc coefficients (sum of Kc1–Kc5 equals 5 at the beginning), 
it is interesting to observe that the implementation of the homeostatic constraint 
(TS3) led to a heavy reduction in the sum of coefficients in many AP 
combinations (Fig.5b): average sum of Kc from 12.7 in TS1 dropped to 6.8 in TS3 
just because of limitations of metabolite changes. At the same time, there were 
solutions in TS3 with high sums of Kc (up to 14.1) indicating necessity to apply 
homeostatic constraint in combination with the total enzyme activity constraint 
to limit the sum of Kc. 



3.4. Ranking of adjustable parameter combinations depending on constraints 

If the rank of AP combinations was independent of the type of constraints, there 
would be an opportunity to determine the best combinations without 
additionally constraining the optimization task. Our results show that ranking 
according to OF values of particular combinations changed quite radically 
depending on applied constraints (Fig.5a). For example, the combination of Kc1 
and Kc2 in task TS3 reached 94% of TOP, while in other task settings it was 
below 1% of the TOP.  

As reported in section 3.2, Kc3 had a high impact on the objective function in TS1 
and TS2 being in combination with other Kc, while alone it had a very low 
contribution to the optimization potential: less than 1% for TS1 and 5% for TS2 
(Fig.5a). Conversely, for tasks TS3 and TS4 the Kc3 alone reached 51% of the 
TOP (Fig.5a). 

Another notable case is the combination of Kc1, Kc2, Kc4 and Kc5. For TS1 and 
TS2, this combination had low optimization potential (0.01% and 0.06%, 
respectively), while in TS3 and TS4, it resulted correspondingly in 98% and 96% 
of the optimization potential.  

In the case of our test model, we did not find “universal” AP combinations that 
were highly ranked independent on constraints. Thus, examining all 
combinations for all TS was appropriate for finding the best AP combinations. A 
full search could be replaced by an evolutionary algorithm-guided search in the 
case of a combinatorial explosion of the AP combinations. 



 

Fig. 5. Fractions of TOP (a) and sum of K1..Kc5 (b) for optimization results of particular AP 
combinations. 



4. Conclusions 

Adding constraints to the minimal setting of the optimization task improved the 
feasibility probability of the solutions found, by heavily reducing the solution 
space and consequently the objective function value. Implementing constraints is 
a valuable route to the early assessment of small kinetic model-based design 
incompatibilities with the complexity of processes in the organism. As a result 
high-risk designs can be rejected at the modeling level before they have been 
implemented and found to fail in vivo. Still, feasibility of design can be tested just 
in biological experiments. Even heaviest constraints can not guarantee success of 
implementation. 

The high impact of the homeostatic constraint suggests that careful analysis of 
acceptable concentrations of particular metabolites needs to be performed. By 
doing so, opportunities to soften the impact of the homeostatic constraint, 
through more accurate implementation, may be found. A similar implementation 
of protein size and initial concentration related relative costs of overexpression 
would also lead to more accurate implementation of the enzyme activity 
constraint. 

Homeostatic constraint indirectly reduces also the total enzyme activity. Still, 
some optimization results without total enzyme activity constraint request 
increase of enzyme concentration very likely above physiological limitations of 
organism. Therefore application of both constraints is suggested. 

We did not find “universal” adjustable parameter combinations that would be 
highly ranked with examined types of constraints. A full scan of adjustable 
parameter combinations is suggested, with the aim of finding a small and 
efficient set of adjustable parameters. Alternatively, the total optimization 
potential approach (Stalidzans et al., 2017b) or evolutionary search strategies 
may be applied. 

The optimization results presented here should not be used as metabolic 
engineering designs for the improvement of sugar accumulation in sugar canes 
without preliminary analysis of their stability or practical implementability from 
a physiological point of view.  
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