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Abstract: Nitrogen-rich conjugated microporous polymers (NCMPs) have attracted great 

attention in recent years owing to their polarity, basicity, and ability to coordinate metal ions. 

Herein three NCMPs, structurally close to polyaniline, were facilely synthesized via chemical 

oxidative polymerization between multi-connected aniline precursors. The NCMPs with high N 

content (11.84 wt%), intrinsic ultramicroporosity (<1 nm) and moderate surface area (485 m2 g-1), 

show wide-ranging adsorption functionality, e.g. CO2 uptake (11 wt%) and CO2-selectivity over 

N2 (360, 1 bar), 1.0 wt% H2 storage as well as 215 wt% iodine vapor uptake at ambient pressure. 

Moreover, these NCMPs act as support for palladium catalysts and can maintain >94% activity in 

Suzuki–Miyaura coupling reactions after six continuous runs.  
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Introduction 

Conjugated microporous polymers (CMPs) with small pores (<2 nm), large surface areas, high 

chemical stability, low density and reversible redox properties, are of great interest for a variety of 

applications.1-3 These porous materials have been widely investigated since discovery in 2007, 

both for fundamental reasons and because of their potentials for application in areas of gas 

adsorption,4 heterogeneous catalysis,5 and electrochemical energy storage.6 Over the past decade, 

various aromatic functional building blocks have been incorporated into CMPs for extended 

applications such as sensors,7,8 light harvesting,9 organic light-emitting diodes,10,11 and 
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photocatalysis.12-14 

The porosity of CMPs is largely determined by their backbone structure, although 

solvent-templating effects can also contribute.15,16 Generally, CMPs are synthesized via 

well-developed transition-metal-catalyzed coupling reactions such as the Suzuki,9 Yamamoto,17 

Sonogashira,18,19 and Buchwald-Hartwig reactions.20,21 Expensive (noble) metal-based catalysts or 

mediators are however needed for their synthesis. Recently, chemical oxidative polymerizations of 

carbazole,22-24 thiophene,25-27 and pyrrole-based precursors28,29 have been utilized to generate 

CMPs, using commonly available iron (III) chloride as the oxidant. Electrochemical 

polymerization of these precursors has also been used to yield CMP thin films on electrodes.10,11,26 

While oxidative polymerization for CMP generation has mainly focused on carbazole and 

thiophene-based polymers, to the best of our knowledge, the synthesis of highly cross-linked 3D 

polyaniline networks with intrinsic microporosity and high N content has rarely been reported, and 

only performed through the addition of cross-linkers.30 

Polyaniline, a prototypical nitrogen-rich conjugated polymer, has emerged as a very important 

semiconductor that is particularly attractive for electronics and energy storage devices.31-33 

Microporosity introduced to such organic semiconductors may provide desired interface properties, 

such as interpenetration with a second material, enabling better gas or charge separation, and 

sensing properties via interactions with the electron pool.34-36 For example, the incorporation of 

polyaniline into the porous metal-organic framework MIL-101 could dramatically increase the 

CO2-selective uptake ability owing to the functionality of the nitrogen centers.36  

Nitrogen-rich conjugated microporous polymers (NCMPs) could furthermore be of interest owing 

to their polarity, basicity, and ability to coordinate metal ions. Herein we report three NCMPs 

structurally close to conventional polyaniline, which are synthesized via simple chemical 

oxidative polymerization of multi-connected aniline precursors. Using this simple technique, we 

are, for the first time, able to prepare polyaniline-like microporous materials with high nitrogen 

contents. As-prepared porous materials benefit from the high nitrogen density to obtain materials 

with good CO2/N2 selectivities, and moderate CO2, H2, and iodine uptake capacities at ambient 

pressure. The materials also act as excellent supports for Suzuki-Miyaura reaction catalysts, 

showing high stability and recyclability. Beyond these areas, such NCMPs might furthermore 
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open new avenues and enable new possibilities for advanced optoelectronic applications.  

Results and discussion 

Three multi-connected aniline precursors (P1, P2, and P3) were synthesized via 

Buchwald-Hartwig coupling between aniline and the tribromoaryl monomers M1, M2, and M3, 

respectively (Scheme 1, see a detailed characterization of monomers and polymers, and related 

discussions in supporting information). Chemical oxidative polymerization of these precursors in 

chloroform (CHCl3) was carried out using stoichiometric amounts of FeCl3 dissolved in 

nitromethane (CH3NO2) as the reaction medium. The reactions started immediately, as seen from 

the rapid formation of black precipitates. After filtration and extensive purification using CHCl3, 

concentrated HCl (35 wt%), and hot water (75 oC), NCMP1, NCMP2, NCMP3 products were 

obtained as brown to dark grey powders (Figure 1a) in nearly quantitative yields, indicating a high 

degree of polymerization.  

 

Scheme 1 Synthetic route to nitrogen-rich CMP networks (NCMP1, NCMP2, NCMP3). 

 

It is well known that oxidative polymerization of aniline and its N-substituted derivatives such as 

N-methylaniline occurs generally via head-to-tail coupling of the most negatively-charged N 
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atoms and unsubstituted C4 atoms.37 On the basis of atomic electron populations and spin-density 

simulations of precursors at a B3LYP/6-31G (d) level using Gaussian 09 software38 (Figs. S1-6 

and Tables S1-6, see detailed discussions in supporting information), chemical oxidative 

polymerization of P1, P2, and P3 most probably yielded polymer networks NCMP1, NCMP2 and 

NCMP3, respectively, as shown in Scheme 1 and Figure S7. The Fourier transform infrared 

(FT-IR) spectra of NCMPs showed that the peaks at ~3380 cm-1 owing to the stretching vibration 

of the secondary amine (PhNHPh) became much less intensive, indicating that most of these 

groups are converted into tertiary amines (Ph3N) (Figure S8). Three distinct peaks at 1598, 1498, 

and 820 cm−1 originated from the precursors owing to C–N, C=C, and aryl C–H bands,31-33 

respectively, present in all the NCMPs, further suggesting a successful coupling. Further 

characterization of the chemical composition of the formed NCMPs was confirmed by inductively 

coupled plasma-atomic emission spectrometry (ICP-AES), energy dispersive X-ray spectroscopy 

(EDX), solid-state 13C cross-polarization magic angle spinning nuclear magnetic resonance (13C 

CP/MAS NMR), and ultraviolet-visible/near infrared (UV-Vis/NIR) spectroscopies. ICP-AES and 

EDX measurements confirmed negligible Fe (0.05-0.07 wt%) and high N contents (7.39-11.84 

wt%) in the products after extensive purification. Solid-state 13C CP/MAS NMR spectra of 

polymers show two main resonances at ∼141 and ∼128 ppm, originating from N- and 

H-substituted benzene rings,20,21 respectively (Figure 1b). Note that the spectrum of NCMP3 

shows an additional resonance at ~113 ppm, due to the C-substituted benzene rings. Solid-state 

UV–Vis/NIR spectra of the polymers show a narrow peak at ~320 nm and a broad peak in the 

range 700-1300 nm (Figure 1c). The observed absorption spectra of NCMP1 and NCMP2 are 

comparable to that of traditional polyaniline, owing to the close resemblance to the molecular 

structure of polyaniline.31-33 Compared to NCMP3, NCMP1 and NCMP2 show much more 

intensive broad peaks in the 700-1300 nm range, indicating a higher doping level. The Cl atom 

content of as-synthesized polymers was tested to understand the doping level of the materials. As 

determined by EDX measurements, NCMP1, NCMP2, and NCMP3 still contain 5.6, 4.2, and 1.2 

wt% of Cl, respectively. It can be reasoned that the higher Cl content found in NCMP1 and 

NCMP2 are due to the more basic triphenylamine units present. The byproduct of HCl resulted 

from the chemical oxidative polymerization more readily doped with NCMP1 and NCMP2 rather 
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than NCMP3. 
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Figure 1 (a) Chemical structures/photographs, (b) solid-state 13C CP/MAS NMR spectra, (c) 

UV-Vis/NIR spectra, (d) N2 adsorption/desorption isotherms, and (e) pore widths of NCMPs. The 

symbol # in Figure 1b represents spinning side band.  

 

Scanning electron microscope (SEM) and transmission electron microscope (TEM) images show 

that the NCMPs consist of aggregated nanoparticles (Figure 2) resulting in some large meso and 

macropores due to the presence of interstitial voids. High-resolution TEM images also indicate 

microporous structures. As indicated by thermogravimetric analyses (TGA) carried out in nitrogen 

(Figure S9), the weight-loss of three polymers at the beginning (0-200 oC) of the analysis follows 

the order: NCMP1 > NCMP2 > NCMP3, which is well consistent with the amount of residual 

HCl. When heated to 900 oC, the highly cross-linked NCMPs maintained 55-69 wt% 

carbonaceous residues, which is in contrast to conventional polyaniline yielding no carbonaceous 

residue.  
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Figure 2 (a-c) SEM and (d-i) TEM images of (a,d,g) NCMP1, (b,e,h) NCMP2 and (c,f,i) NCMP3 

networks at low (d-f) and high (g-i) magnifications. 

 
Microporosity of the NCMPs was confirmed by N2 adsorption measurements. NCMP1, NCMP2, 

and NCMP3 (Figure 1d) reveal Brunauer−Emmett−Teller (BET) surface areas of 58, 280, and 485 

m2 g-1, total pore volumes of 0.15, 0.30, and 0.57 cm3 g-1 at a relative pressure of p/p0 = 0.994, and 

micropore volumes of 0.06, 0.09, and 0.13 cm3 g-1, respectively (Table 1). On the basis of the N2 

adsorption isotherms, the NCMPs possess small micropores with sizes below 1 nm as determined 

by the nonlocal density functional theory (NLDFT) method (Figure 1e). 

As discussed above, the NCMP networks mainly consist of the triphenylamine (NPh3) moiety, 

known as a hole-transporting material for organic electroluminescent devices,39 as well as an 

important tecton yielding high surface area CMPs.21,40,41 Applying our NCMPs for gas storage and 

as catalytic support is therefore worthy of exploration. All NMCPs exhibit CO2 storage capability 

(Figure 3a,b and Table 1), with NCMP3 showing the highest CO2 uptake capacity (11 wt%, 2.50 

mmol g-1) at 1 bar and 273 K. The CO2 uptake capacity obtained is comparable or even superior to 

that of many porous materials including polyaniline@MIL-101 (<2.26 mmol g-1),36 covalent 

organic frameworks (COF-1, 5, 8, 10, 102, 103 and TpBa, 1.38-2.37 mmol g-1),42 and CMPs 

(CMP-0, 5, TCMP-5, TFM-1, CMP-1-NH2, CMP-1-COOH, 1.1-2.1 mmol g-1),43-45 although it is 
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lower than that of the optimal CTFs i.e. CTF-0 (4.22 mmol g-1)46 and CTF-P6M (4.17 mmol g-1)47 

with a much higher N content. Besides the CO2 uptake capacity, high CO2 selectivity over N2 is 

also a critical factor for real carbon capture applications. Therefore, we measured the N2 

adsorption of the NCMPs at 273 K to examine their potential ability to separate gases. On the 

basis of ideal adsorbed solution theory (IAST) calculations (Figure S10, Tables S7,8, see details in 

supporting information), we found that CO2-selectivities over N2 are controlled by the molecular 

architecture (Figure 3c,d). Two compositions of CO2/N2 gas mixtures (15/85 and 25/75) were 

applied for calculation. The results show that the selectivity largely depends on the type of NCMP: 

NCMP1, synthesized from smallest precursor P1 with the highest nitrogen content (11.84 wt%), 

shows the highest selectivities with values up to 188 and 360 at 1 bar for the two tested gas 

mixtures, respectively. The selectivity obtained from NCMP1 is higher than that of recently 

reported porous materials such as porous organic polymers (40-78),48 nitrogen-rich carbons 

(11-76),49 and MOFs (93)50. 

0 100 200 300 400 500 600 700 800
0

10

20

30

40

50

60  NCMP1
 NCMP2
 NCMP3

V ad
s /

cm
3  g

-1
 S

TP

Pressure /mmHg

@273 K

0 100 200 300 400 500 600 700 800
0

10

20

30
 NCMP1
 NCMP2
 NCMP3

@298 K

V ad
s /

cm
3  g

-1
 S

TP

Pressure /mmHg

0 100 200 300 400 500 600 700 800
10

100

CO2/N2 (15/85) @273K

 NCMP1
 NCMP2
 NCMP3

(c)

C
O

2/N
2 
se

le
ct

iv
ity

Pressure /mmHg
0 100 200 300 400 500 600 700 800

10

100

1000

C
O

2/N
2 
se

le
ct

iv
ity

C
O

2/N
2 
se

le
ct

iv
ity

C
O

2/N
2 
se

le
ct

iv
ity

CO2/N2 (25/75) @273K

 NCMP1
 NCMP2
 NCMP3

(d)

(b)

Pressure /mmHg

(a)

	

Figure 3 (a,b) CO2 adsorption isotherms of NCMPs at 273 and 298 K; (c,d) CO2-selectivities  of 

NCMPs over N2 using 15/85 and 25/75 compositions of CO2/N2 gas phases for calculations. 
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To explore the interaction between CO2 and the pore surfaces of the NCMP networks, the isosteric 

heat of adsorption (Qst) was calculated based on the Clausius-Clapeyron equation using single gas 

adsorption isotherms51 (Figure S11). Initial Qst values for CO2 adsorption were found as high as 

33.6, 31.6, and 31.0 kJ mol-1 for NCMP1, NCMP2, and NCMP3, respectively, which are higher 

than those values reported for many other porous organic/inorganic adsorbents such as 

microporous polymer networks (15.6-29.8 kJ mol-1),52 MOFs (15-30 kJ mol-1),53 and carbons (20 

kJ mol-1)54. However, the values remain below the typical energy of chemisorption (Qst >40 kJ 

mol-1),55 implying strong physical interactions between adsorbed CO2 and the functional pore 

surface. Moreover, the NCMPs show H2 storage capacities up to 1.02 wt% at 77 K and 1.0 bar (for 

example, NCMP3) (Figure S12), which is higher than the values obtained for most porous 

polymer networks,56,57 for example, a recent report on porous hypercrosslinked polymers showed 

H2 storage capacities of 1.01 wt% (77 K and 1.13 bar).57 Again, on the basis of the 

Clausius-Clapeyron equation,58 initial Qst values for H2 adsorption in NCMP1 is calculated as high 

as 8.3 kJ mol-1 (Figure S13). This value is higher than that of other porous organic polymers such 

as of PAF-1 (4.6 kJ mol-1),59 PIs (5.3-7.0 kJ mol-1),60 COFs (6.0-7.0 kJ mol-1),61-63 further 

suggesting a favorable physical interaction between adsorbed H2 and the porous surface.64 

 
Table 1 Summaries of physiochemical properties of NCMPs. 

acalculated using a multi-point BET method; bcalculated based on N2 adsorption at p/p0 = 0.994; 

ccalculated using a MP method; drelative content measured by EDX. 

 
In addition to CO2 and H2 storage, we also explored the NCMP networks for their potential 

application in iodine adsorption. Iodine vapor adsorption is of particular interest, since the 

long-lived radioactive iodine isotopes (e.g. 129I or 131I) need to be removed from exhaust fumes of 

Polymer SBET
a  

 

(m2/g) 

VT
b 

 

(cm3/g) 

Vmicro
c 

 

(cm3/g) 

N%d  

 

(wt%) 

CO2 uptake 

at 1 bar (wt%) 

H2 uptake 

at 1 bar (wt%) 

273 K 298 K 77 K 87 K 

NCMP1 58 0.15 0.06 11.84 6.1 3.5 0.68 0.49 

NCMP2 280 0.30 0.09 10.14 8.2 4.4 0.79 0.54 

NCMP3 485 0.57 0.13 7.39 11.0 6.5 1.02 0.68 
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nuclear power plants regularly.65 Previous studies showed that nitrogen-containing CMPs are 

promising to address this issue.20 Upon exposure to iodine vapor at 1 bar and 358 K, porous 

NCMPs became gradually darker as iodine molecules diffused into the porous networks. 

Equilibrium adsorption is found to be 215, 186, and 161 wt% for NCMP1, NCMP2, and NCMP3, 

respectively. It is well known that electron-deficient iodine (acceptor) interacts with electron-rich 

adsorbents (donor), giving rise to charge transfer from the HOMO of the donor to the LUMO of 

the acceptor. Previous studies suggest that the charge-transfer interactions are responsible for the 

high iodine adsorption capacity of aniline-linked hexaphenylbenzene-based conjugated 

microporous polymer (HCMP) adsorbents.20 The NCMPs showed a slightly smaller main pore 

size than the molecular diameter of iodine (0.57 vs. 0.60 nm), as determined by the nitrogen 

adsorption isotherms at 77 K. We believe that the combination of nitrogen content and HOMO 

energy of the NCMPs (both which influence the electron-donor ability) may preferentially direct 

the iodine adsorption capacity rather than surface area and pore size (determined by nitrogen 

adsorption at 77 K).66 We used P1, P2, and P3 as model compounds to monitor the HOMO energy 

of corresponding polymers on the basis of calculations at the B3LYP/6-31G (d) level with 

Gaussian 09 software.38 NCMP1, with the highest nitrogen content, shows the highest HOMO 

energy (Table S9), which fits very well with the highest iodine adsorption capacity observed. 

Actual measurements of HOMO-LUMO band gaps for polymers were carried out using cyclic 

voltammetry (Figure S14) and UV-vis absorption	 scans (Figure 1c). The HOMO-LUMO band 

gaps (Eg) of NCMP1, NCMP2, and NCMP3 were calculated on the basis of the wavelengths at 

maximal UV-vis absorption (λmax) according to the equation: Eg = 1240/λmax, giving values for Eg = 

1.22, 1.17, and 1.54 eV, respectively. The results indicate that the electron-donating ability 

follows the order: NMCP2 > NCMP1 >> NCMP3, which is also seen in the strongest redox 

activity of NCMP2 according to cyclic voltammetry measurements (Figure S14).  

Previous studies showed that reduction and oxidization of secondary amine-linked HCMPs 

resulted in better iodine and CO2 uptake capacities,20 respectively. Owing to the similar molecular 

architectures of HCMPs and NCMPs, this conclusion should be also applicable to the NCMPs if 

the residual secondary amine moieties are mostly preserved. However, in stark contrast to the 

HCMP behavior reported before, the FT-IR spectra of NCMP2 showed negligible changes except 
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for a weak peak at 1630 cm-1 which is slightly increased when oxidized by H2O2 or iodine and 

reduced by anhydrous hydrazine (Figure S15), respectively. This peak may be attributed to the 

small fraction of quinones existing in the conjugated polymer, which are sensitive to oxidation and 

reduction. The results indicate that a more stable structure is obtained for NCMPs compared to 

HCMPs. This is also supported by the negligible changes observed in the 13C NMR spectra of 

NCMP2 upon oxidization and reduction (Figure S16). The treated porous polymers showed very 

small deviations in CO2 and iodine uptake capacities (Figs. S17 and Table S9). Meanwhile, 

five-point N2 adsorption measurements indicated that only a small decrease of surface area 

observed in NCMP2 upon oxidization (256 vs. 280 m2/g) is observed. These results prove that the 

small fraction of residual secondary amines, inevitably left in the polymers due to incomplete 

polymerization during network formation, are not sufficient to enable a polyaniline-like switching 

behavior. It can thus be concluded that the majority of secondary amines of the precursors has 

been converted into tertiary amines after polymerization. This is further confirmed by the finding 

that no methylene groups are detectable in NCMPs upon further reaction using diiodomethane as a 

cross-linker (note that such a cross-linking method has been well-developed for the 

leucoemeraldine base state of polyaniline30). Considering the polymers were purified using 

concentrated acid (35 wt% HCl) and hot water (75 oC) overnight, the results further indicate their 

high physicochemical stability.  

Furthermore, NCMP networks with abundant tertiary nitrogen moieties possess the potential to 

coordinate metal ions and act as catalyst support. In an initial, proof-of-concept study, palladium 

dichloride (PdCl2) was coordinated to NCMP2 (as NCMP1 and NCMP3 have either a lower 

specific surface area or lower nitrogen content, and were therefore not considered for this initial 

study). After PdCl2 was introduced, NCMP2 showed a significant decrease in surface area from 

280 to 26 m2/g due to the weight gained by introducing Pd species and mainly pore blocking or so. 

Successful coordination was confirmed by ICP-AES, XRD, and XPS analyses as well as SEM and 

TEM observations. ICP-AES results showed that 11.8 wt% Pd (theoretical content: 21.3 wt%) and 

no Fe were present in the network structure. The XRD pattern of NCMP2-PdCl2 shows four 

additional crystal reflections at 2θ = 39.9, 46.5, 68.2, and 82.0o (Figure 4a) owing to palladium 

particles,67 indicating that the PdCl2 introduced was partially reduced to Pd(0). It has been reported 
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that electron-rich conjugated polymers with high N-content are able to reduce noble metal ions 

into metallic particles,68 which seem to be the case also here. The XPS spectra confirm that C, N, 

Cl, Pd, and O are present in the NCMP2-PdCl2 (Figure 4b). The O peak is possibly indicative of 

readily adsorbed oxygen or water, which is normally found in porous materials.69 The Pd3d 

core-level XPS spectrum in Figure 5b shows two broad peaks at 337.2 and 342.4 eV, suggesting 

the existence of both Pd(0) and Pd(II) in the catalyst.70,71 The result is consistent with that of 

recently reported Pd, N, P, and O-doped porous polymer catalysts.71 The N1s core-level XPS 

spectrum of pristine NCMP2 shows one binding energy at 399.7 eV owing to C-N bond of the 

NPh3 moiety (Figure 5c). After PdCl2 loading, it becomes less intense and a new signal at a 

binding energy of 400.1 eV appears (Figure 5d). This signal can be attributed to the 

PdCl2-coordinated NPh3 moiety. SEM and TEM images indicate that the catalyst maintain the 

morphology of sphere-like nanoparticles after PdCl2 impregnation (Figure 2b,e,h and Figure 7a,c), 

with some dark dots that show the additionally formed Pd nanoparticles.  
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Figure 4 (a) Powder XRD patterns and (b) XPS survey spectra of NCMP2 and NCMP2-PdCl2; 

PdCl2 is showed for comparison.  
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Figure 5 Pd3d (a,b) and N1s (c,d) core-level XPS spectra of (a) PdCl2, (c) NCMP2, and (b,d) 

NCMP2-PdCl2 catalyst. 

 

Applying NCMP2-PdCl2 as a catalyst enables fast Suzuki–Miyaura coupling reactions in a 60% 

ethanol aqueous solution under mild conditions (80 oC). With a series of aryl bromides and 

benzeneboronic acid used, biaryl products were obtained consistently in high yields (Table 2). The 

presence of additional Pd(0) nanoparticles within our NMCP materials could play a role and 

influence the catalytic performance of these materials, and would be valid grounds for further 

detailed studies into the catalytic behaviour of these complex systems. The NCMP2-PdCl2 

catalyst can be readily recycled by filtration and solvents washes. Applying phenyl bromide and 

benzeneboronic acid as substrates, the recyclability tests show that the yields of the cross-coupling 

products remain >94% after six repeat reactions with the recycled catalysts (Figure 6, see 

supporting information for details of the procedure followed). Control experiments using pristine 

PdCl2 as catalyst indicated no recyclability (although they showed catalytic activity close to that of 

the catalyst in presence of NCMP2 in the first cycle). 

 

 



13 

Table 2 Suzuki–Miyaura coupling reaction catalyzed by NCMP2-PdCl2. 

	

Entry Substrate 1 Substrate 2 Reaction time Yield 

1a 
  

<0.5 h 99.9% 

2 
  

<0.5 h 99.9% 

3 
  

<0.5 h 99.4% 

4 
	  

<0.5h 99.9% 

5 

	
	

<0.5h 95.1% 

6 
  

1 h 81.5% 

7 

 
 

1 h 65.3% 

a Entry 1: control experiments were done using pristine PdCl2 as the catalyst; Entries 2-7: 

experiments were done using NCMP2-PdCl2 as the catalyst. 
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Figure 6 Product yields of Suzuki–Miyaura coupling reaction between phenyl bromide and 

benzeneboronic acid (Entry 2) using NCMP2-PdCl2 as a catalyst upon six continuous runs. 
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The recycled catalyst was also characterized using FT-IR, SEM, TEM, and TGA analyses. The 

SEM and TEM results showed that the catalyst maintained comparable chemical bonds and 

morphologies upon using 5 times, suggesting good stability (Figure 7a-d). Note that a strong and 

broad peak around 3435 cm-1 due to water absorption is observed in both catalysts used before and 

after, as the measurements were carried out in a KBr pellet. TGA scans (under air) showed that the 

catalyst used before and after maintained a residue of ~10.5 wt% when heated from 540 to 900 oC, 

indicating no substantial Pd species leaching occurred from the catalysts during long-term use.  
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Figure 7 (a,b) SEM and (c,d) TEM images, (e) FT-IR spectra, and (f) TGA scans (under air) of 

NMCP2-PdCl2 catalyst before (a,c) and (b,d) after used five times. 

 

The catalytic activity and recyclability of NCMP2-PdCl2 are competitive with the results recently 

reported for porous polymers supporting Pd catalysts.71 Owing to the facile synthesis route, the 

cheap FeCl3 oxidant involved in polymer synthesis and the high N-content, the here presented 
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NCMP2 is a convenient and attractive support for metal species.  

Conclusions 

In summary, three nitrogen-rich conjugated microporous polymers (NCMPs), structurally close to 

well-known polyaniline, have been prepared at low cost using oxidative coupling of 

multi-connected aniline precursors. Optimizing molecular architectures of the NCMPs enables 

moderate CO2, H2 and iodine storage abilities as well as good CO2-selectivity over N2 at ambient 

pressure. Owing to their high nitrogen content and porosity, NCMPs can act as a suitable support 

for PdCl2 coordination and, as a result, such supported catalysts show high activity and 

recyclability under mild conditions and aqueous reaction media for a model Suzuki–Miyaura 

coupling reaction. Following on from our investigations and results, we envisage that this 

functional and versatile family of materials will find future application in catalysis and related 

uses in the fields of gas and energy storage and conversion. 
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