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Modelling and knowledge transfer in complexity science 

 

1.  Introduction 

Since its inception in the late 1980s, complexity science has evolved into a well-established 

and highly popularized area of science (e.g., for a description of the field’s history, Mitchell, 

2009). The exploration of complexity has been connected to a number of foundational claims, 

ranging from a redefinition of the arrow of time (e.g. Davies, 2003) to the often quoted 

slogan, ‘more is different’ by Anderson (1972). Such foundational claims have generated 

much philosophical debate (e.g. Kauffman, 1993; Coveney and Highfield, 1995; Frigg, 2003; 

Bedau and Humphreys, 2008; Hooker, 2011).  

However, a survey of the existing philosophical literature (e.g., for collections of 

philosophical works on complexity science, Gregersen, 2003; Hooker, 2011) shows that there 

are few works that focus on analysing the actual work of practitioners in the field.  

This paper aims to address the lack of philosophical analyses of the methodology of 

complexity science and to provide a detailed account of one crucial aspect of the work of 

complexity scientists, namely the construction and transfer of complex models. The 

philosophical literature on modelling in the natural sciences has traditionally been focussed on 

the construction of these models from both empirical knowledge about a particular target 

system as well as the general theory that governs this system (e.g. Frigg and Hartmann, 2012; 

Toon, 2012). I will call this kind of model construction ‘vertical construction’. In recent years, 

the existence of other kinds of model construction has also been highlighted, including the 

construction of models through the alteration of existing models (Bokulich, 2003), which I 

will henceforth denote as ‘horizontal construction’, and the transfer of models from one target 

system to another (e.g. Hesse, 1966; Bokulich, 2014, 2015). Some studies on the transfer of 

models have been based on case studies of complex models (Bokulich, 2014). However, to 

my knowledge, there exist no studies that provide integrated accounts of the interplay of 
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different modelling activities in complexity science. My study here aims to provide such an 

account.  

The paper has two main theses: (i) I will argue that all three modelling activities 

described above, i.e. vertical construction of models; horizontal construction of models; and 

the transfer of models to new target systems, can be identified in complexity science; and (ii) 

that the interplay of these activities is structured in a particular way. In particular, with respect 

to thesis (ii), I will argue that the modelling activities in complexity science can be divided 

into two categories: the creation of a repository of general models through large-scale 

horizontal modelling; and the transfer of these models to particular target systems, which can 

be combined with an extension of the transferred models through additional vertical 

constructions. This division is not just one between activities but also one between epistemic 

fields: the creation of the repository is mainly undertaken by computational scientists and 

mathematicians while the transfer and extension of models takes place in the natural and 

social sciences. Accordingly, this interplay between different modelling activities provides a 

mechanism through which knowledge is transferred between different scientific communities.  

Furthermore, my identification of this division of the modelling activities in complexity  

science can be used to derive a methodological definition of the field of complexity science 

itself. Namely, the field seems to consist of a core area that can be defined methodologically 

as comprising those activities that contribute to the creating, cataloguing and investigation of 

the repository of models without fixed target systems and of a number of auxiliary areas that 

overlap with other disciplines and that can be methodologically defined as the use of models 

from the repository to investigate phenomena located in these other areas. This definition of 

the field of complexity science based on the crucial methodologies used by scientists that self-

identify as complexity scientists (i) avoids relying on the currently not unequivocally defined 

term ‘complexity’ and (ii) allows for the fact that a large number of complexity scientists also 
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have strong associations to other fields, which has contributed to the difficulties in delineating 

the field.  

The methodological definition offered here is clearly neither the only possible definition 

of the field (e.g., in the context of emergence in complexity science, a division into three 

schools has been offered by Richardson & Cilliers, 2001) nor will it be able to offer a 

demarcation criterion that allows an unequivocal assignation of a given investigation or a 

given scientist as belonging to the field of complexity science or being a complexity scientist. 

Furthermore, by defining complexity science through the structure of its modelling activities, 

important parts of the field that could also be viewed as definitional (e.g. metaphorical 

descriptions, slogans and conceptual definitions) are neglected. However, a delineation of the 

field that includes all of these parts has so far not been possible. The methodological 

definition offered here can therefore be viewed as a preliminary definition: a later 

construction of a more comprehensive definition might find it to be a good starting point.   

Furthermore, I hope to show that the methodological definition identifies a large 

number of activities as being part of complexity science and thereby also provides a clearer 

exposition of the work conducted by researchers in the field. As explained above, it also 

reflects the fact that there seem to be two classes of complexity scientists: those  

who primarily self-identify as such (e.g. Stephen Wolfram, section 4.1) and those who 

profess to work with complex models but to primarily belong to an existing field of science 

(e.g. Michael Batty, section 4.2).  

It should be noted that the transfer of models in the auxiliary regions of complexity 

science is not restricted to the transfer of models from the repository to a particular target 

system. Within these regions, models are also transferred from one target system to another. 

This transfer often crosses disciplinary boundaries and, in doing so, seems to have a preferred 

direction: in many cases, these transfers consist in the adaptation of a natural science model 

for a target system in the social science. Such cross-disciplinary transfers of models – in 
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complexity science and elsewhere – have recently been investigated by several authors (e.g. 

Chettiparamb, 2006; Bokulich, 2014; Thebault et al., 2017). Since the focus of this paper is 

the horizontal construction of models and their subsequent transfer, I will not discuss this 

second transfer mechanism with the same detail. I also maintain that the creation of a 

repository of models and their subsequent transfer is one of the most distinguishing features 

of complexity science, while the transfer of models from one target system to another also 

takes place in other fields (e.g. Thebault et. al., 2017). However, it is clearly an important part 

of the methodology of complexity science and – as I will describe below – also plays a crucial 

role in the structuring of its auxiliary regions.   

I also maintain that it is through this structuring of modelling activities and the resulting 

overlap with other disciplines that complexity science becomes an interdisciplinary field. As 

foreshadowed in the description above, I will argue that the defining methodology of 

complexity science includes the transfer of models into many different areas of the natural 

and social sciences. The adaption and use of these models could be viewed as auxiliary areas 

of complexity science: areas that are methodologically connected to the field as being part of 

the interplay of different modelling activities, but whose phenomena under investigation are 

traditionally part of another area of science. Accordingly, the term ‘interdisciplinary’ can be 

given a more precise meaning in this context: it denotes the fact that the methodological core 

area of complexity science, the stocking, investigation and cataloguing of the repository of 

models, is connected with many different disciplines through the transfer of these models to 

different target systems.  

Furthermore, the cross-disciplinary transfer of models within the auxiliary regions 

further increases the overlap of complexity science with other fields by providing bridges to 

additional parts of the natural and social sciences. Given that the directionally of such cross-

disciplinary transfers generally seems to be from the natural sciences to the social sciences 

(e.g. Thebault et al., 2017), the picture that seems to emerge is one in which areas of the 
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natural sciences are primarily tied to central repository of models through the transfer of 

horizontally generated models, while areas of the social sciences are then added to the 

auxiliary regions of complexity science through the subsequent transfer of such models from 

a natural science target system to a social science target system. This interpretation is 

dependent on the classification of different branches of science as ‘natural’ and ‘social’; in 

some cases, including the field of urban planning, which provides one of my major case 

studies (Section 4), such a classification is not easily performed. Furthermore, there are also 

cases in which a model has been transferred directly from the repository into a social science 

field (e.g., into linguistics, Lansing & Downey, 2011). As explained above, the focus of this 

paper is on the former mechanism; however, the cross-disciplinary transfer of models from 

the natural to the social sciences is clearly another important methodological feature of 

complexity science.   

As far as I am aware, the identification and analysis of this interplay of modelling 

activities is a novel contribution to the philosophical discussion of complexity science.  

In Section 2, I will review some relevant material on different kinds of model 

construction. As outlined above, I will distinguish between vertical (Section 2.1) and 

horizontal (Section 2.2) model construction.  

In Section 3, I will discuss the transfer of models to new target systems. The framework 

for this discussion will be an adaptation of the analogy-based account of model transfer by 

Hesse (1966).  

In Section 4, I will analyse the interplay of different modelling activities in complexity 

science. I will first introduce the kind of models that are prevalent in complexity science. I 

will then show that a division of modelling activities into the two categories mentioned above, 

i.e. the creation of a repository of models (Section 4.1); and the transfer and extension of 

models from this repository (Section 4.2), is supported by an analysis of both the actual 
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interplay of models in complexity science as well as the representations of this interplay by 

practitioners.   

 

2.  Vertical and horizontal model construction 

Models and their uses in science have been the subject of a prolific and ongoing debate in the 

philosophy of science (e.g., for review, Frigg and Hartmann, 2012). Much of the 

philosophical debate on modelling focuses exclusively on one particular kind of modelling 

practiced by natural scientists. According to Bokulich (2003, p. 610), the prototypical model 

ascribed to these scientists is a ‘vertical’ one: a model that has been constructed “either top-

down from theory or bottom up from empirical data”.  

I maintain that the models used in complexity science are not exclusively vertical ones. 

Rather, many complex models are horizontally constructed. Bokulich (2003, p. 611) describes 

horizontal models as models that are not constructed vertically from theory or empirical data 

but are horizontal spin-offs from existing models. I do not wish to claim that horizontal and 

vertical model construction are the only modes of model construction in all fields of sciences. 

However, my analysis of complexity science shows that they seem to be the two modes of 

model construction that exist in this field.  

In Section 2.1, I will discuss the vertical construction of models. Given the large amount 

of literature available on this kind of model construction, this review will be relatively brief. 

In Section 2.2, I will give a general account of the horizontal construction of models. I have 

provided extended reviews of the existing material on the construction of horizontal and 

vertical models in Zuchowski (2017).   

 

2.1  Vertical model construction 

Construction of vertical models  Vertical model construction has been studied extensively 

(e.g. Toon, 2012, Cartwright, 1983). Thereby, the model is constructed from the vast amount 
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of top-level theories that govern the processes underlying the target system by an appropriate 

combination of selections, idealizations and simplifications. This ‘pruning’ process is guided 

by bottom-level empirical knowledge about the target system; such knowledge allows the 

identification of the appropriate selection of laws, of suitable idealizations and of allowed 

simplifications. Accordingly, vertical models are constructed from both top-level theory as 

well as bottom-level empirical knowledge about the target system. The degree to which each 

level is involved in the construction can vary in each individual instance (e.g. ‘bottom-up’ vs 

‘top-down’ construction). However, the resulting vertical model always constitutes a 

mediation between the covering theories and the existing empirical knowledge of the target 

system.  

  

Explanatory function of vertical models   The major epistemic role ascribed to 

vertical models is being informative about their target systems (e.g. Bolinska, 2013). The 

evaluation of a model therefore entails judging how trustworthy information gained from the 

model is in guiding our knowledge of, and expectations about, the target system. 

Bokulich (2014) thereby distinguishes between `how actually’ and `how possibly’ 

explanations. `How possibly’ explanations are thereby defined as:  

“[T]hey show how a particular mechanism could, under certain circumstances which 

may or may not obtain, produce the effect of interest. For many complex phenomena 

this is a significant step forward, which can then be used as a basis from which further 

testable predictions can be made”.  

According to Bokulich (2014, p. 324), practitioners will be willing to accept a ‘how possibly’ 

explanation as a ‘how actually’ explanation if sufficient evidence exits that the proposed 

mechanism actually operates in the model’s target system.  

 

2.2. Horizontal model construction 
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Bokulich (2003, pp. 612) begins her study with a description of how models in the field of 

semi-classical physics are constructed: by discretizing the equations of a particular classical 

model. Thereby, the question of how the original model itself was constructed is unimportant; 

no information about its governing theory and its target system needs to be transmitted. The 

initial model merely provides a set of equations, which are mathematically manipulated to 

provide the new horizontal model. Through this process of construction, horizontal models 

become “part of a lineage of models with their own internal dynamics and justification” 

(Bokulich, 2003, p. 613). Thereby, the alterations to the model should be genuine structural 

changes, i.e. horizontal model construction should go beyond the mere systematic changing of 

a parameter in the model. While there might be cases in which the distinction between the 

exploration of a model’s parameter space and the horizontal construction of a new model 

might become blurred, the cases of horizontal modelling discussed in this paper seem to be 

relatively clear-cut examples of the structural alterations envisioned by Bokulich (2003).   

Zuchowski (2017) identifies similar lineages of horizontal and vertical models in chaos  

theory. It should be noted that the fact that chaos theory and complexity science both feature 

horizontal modelling does not imply that chaos and complexity are conceptually similar 

(Section 4).  

In the examples discussed by Bokulich (2003) and Zuchowski (2017), the construction 

of horizontal models proceeds without reference to any natural target system and no such 

system could be (directly) assigned to these models. I take this lack of reference to a target 

system to be characteristic of horizontal model construction. Therefore, I come to a different 

classification of two further scenarios labelled ‘horizontal model construction’ by Bokulich 

(2014, p. 327) and Bokulich (2015, p. 29). These studies analyse the use of models originally 

developed to model physical and chemical phenomena to represent the development of striped 

vegetation, and the use of hydrodynamic models to represent electrodynamical phenomena, 

respectively. The assignment of these models to their new target systems thereby rests on the 



	 9	

identification of analogies between the phenomena (as originally discussed by Hesse, 1966). 

In this study, I find it useful to distinguish between these scenarios, which I consider forms of 

model transfer (Section 3), and those of purely mathematical construction, which proceed 

without reference to a target system (as discussed above), which I consider examples of 

horizontal model construction. 

I am happy to concede that this distinction has been made for practical reasons. There is 

prima facie no reason to not use ‘horizontal modelling’ as a summary term that includes 

model transfer as an activity of model construction. Both horizontal model construction in the 

sense outlined above and model transfer in the sense of the scenarios described by Bokulich 

(2014, 2015) clearly differ from the vertical construction of models (Section 2.1). However, 

in the context of complexity science, I find it useful to distinguish clearly between these two 

activities since the demarcation between these two modelling activities also appears to be one 

of the natural epistemic fault lines of the field.  

 

Investigative function of horizontal models  Bokulich (2003, p. 613) assigns horizontal 

models an investigative function: e.g., in the case of semi-classical physics, they are a means 

of investigating relationships between classical and quantum theories. I agree with Bokulich 

(2003) that horizontal models have an investigative function rather than one of mediating 

between theory and data. However, I take this function to be both more general, as well as 

more subject-specific, than that of investigating inter-theoretical relationships. Horizontal 

models in chaos theory often appear to be designed with the explicit aim of gaining more 

information about specific other chaotic models, usually with the aim of establishing the 

sufficient conditions under which this model will behave chaotically (Zuchowski, 2017). In 

other words, they can be instrumental in establishing ‘how possibly’ explanations for a given 

phenomenon.  
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3.  Model transfer and reinterpretation 

In this section, I will discuss the process of model transfer. I will apply this label to any 

scenario in which a fully-fledged model is assigned to a new target system. The cases of 

model transfer discussed in the existing literature are usually scenarios of reassignment, i.e. a 

model that was previously used as a representation of a specific target system is now assigned 

to another target system.  

The most influential analysis of model transfer to date is Hesse’s (1966) account of the 

transfer of the model of the propagation of water waves to the propagation of acoustic waves 

and of light waves. Recently, a more historically oriented analysis of this example of model 

transfer has been provided by Bokulich (2015). None of these authors explicitly identifies this 

scenario as a case of model transfer; the focus of these two studies is on the identification of 

analogies between natural phenomena and models. However, I maintain that the derivation of 

the acoustic and electrodynamic wave model from the hydrodynamic wave model is a case of 

model transfer and can be analysed as such.  

Hesse’s (1966) account of the transfer of the wave model to different target systems is 

based on the identification of analogies between these systems. Hesse (1966, p. 11) provides a 

table of such analogies for the transfer of the ‘wave model’ from hydrodynamics (where it 

represents water waves) to acoustics (where it represents sound waves) to electrodynamics 

(where it represents light waves): the crest height of a water wave, the loudness of a sound 

wave and the brightness of a light wave are all represented by the same term in the model’s 

formalism, i.e., the amplitude, and are therefore analogous to each other. A similar 

correspondence can be established between the spatial distance between water waves, the 

pitch of sound waves and the colour of light waves; or between the medium of propagation 

(water, air, ‘ether’).  

The fact that the initial transfer of the ‘wave model’ involves the postulation of ‘ether’ 

as a medium for light waves shows that this mechanism should not be seen as a methodology 
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for picking out ontological features of a phenomenon. Furthermore, Bokulich (2015, pp. 32-

34) shows that the assignment of analogies is not unique: she outlines how Maxwell and 

Helmholtz each constructed different analogies between hydrodynamic and electrodynamic 

waves. The use of analogies in modelling is therefore usually interpreted as an investigative 

tool rather than an absolute assertion about the properties of the natural systems under 

investigation. Nevertheless, both Hesse (1966, e.g. p. 14) and Bokulich (2015, pp. 3-26) stress 

the epistemic usefulness of the transfer of a model through the identification of analogies: 

Hesse (1966) views this reassignment of the model as part of the development of the general 

theory governing the new target system while Bokulich (2015) discusses the fact that the 

assignment of the model allows the positing of ‘how possibly’ explanations for the behaviour 

of the new target system (Section 2.1). 

Interpreting the reassignments of the wave model as a process of model transfer, it is 

important to note that Hesse (1966, p. 12) states that the transfer is initiated by the recognition 

of phenomenological analogies:  

“So far we have two sources of information to aid our construction of theories for sound 

and for light, namely, their observed properties and their observed analogies with water 

waves, and it is important to notice that both of them appeal only to descriptions of 

“observable” events. We may define observation statements as those descriptive 

statements whose truth or falsity in the face of given empirical circumstance would be 

agreed upon by all users of English with or without scientific training”.  

In other words, the process of model transfer and reinterpretation is prompted by the 

recognition of phenomenological similarities between water, sound and light waves. It is 

notable that this initial recognition does not require any ‘scientific training’, i.e., no 

knowledge of the underlying dynamics of either phenomenon is necessary to recognize the 

phenomenological similarities between them. While the subsequent discussion between 

Hesse’s (1966, pp. 12-15) ‘Campbellian’ and ‘Duhemist’ makes it clear that recognizing the 
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analogies between these phenomena requires the existence of at least a rudimentary 

interpretative framework (e.g. that of wave propagation), Hesse (1966) maintains that no 

comprehensive knowledge of the specific dynamics underlying the phenomena is required to 

recognize analogies on an observational level. Bokulich’s (2015) historical analysis of the 

recognition of (different!) analogies by Maxwell and Helmholtz also supports the view that 

model transfer begins with a recognition of analogies between the behaviour of a model (and 

its currently assigned target system) and the behaviour of the target system it will eventually 

be transferred to. The analogies she lists (e.g. Figures 3 and 4 in her paper) are between 

observational properties in the Hessian sense, e.g., between the rotation visible in fluid and 

the lines of magnetic force (which can easily be made visible even to the untrained observer).  

I will call this step in the transfer process ‘phenomenological prompting’. 

Phenomenological prompting is the recognition that the phenomenology of the model under 

consideration can be reinterpreted to provide an analogous description of the phenomenology 

of the intended target system. While Hesse (1966) assumes that the identification of analogies 

will be between the phenomenologies of the models’ target systems, I see no reason to not 

extend this process to the phenomenologies of a model and a new target system. Accordingly, 

phenomenological prompting can also initiate the transfer of a horizontally constructed model 

to a specific target system. 

Both Hesse (1966, pp. 13-14) as well as Bokulich (2015, e.g. pp. 29-20) also make it 

clear that once the transfer has been prompted by the recognition of phenomenological 

analogies, scientists then proceed by finding more analogies on the dynamical level, i.e., by 

reinterpreting the dynamics of the existing model to fit the physics of the new target system. 

In the case of water, sound and light waves, Hesse (1966, p. 13-14) takes this to mean that 

researchers then reinterpret the wave equation, which is known to govern the dynamics of 

water waves, in terms of sound and light properties, i.e., they reinterpret the amplitude of this 

equation as loudness and brightness, respectively. From this follows the recognition that the 
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dynamics of all three phenomena are governed by approximately the same set of laws, namely 

those that have this wave equation as a solution. This step is also stressed by Bokulich (2015, 

pp. 30), who defines the kind of analogy eventually found by Maxwell and Helmholtz as “a 

resemblance in the form of the equations between what are otherwise different sorts of 

phenomena”.  

I will call this step in the transfer process ‘dynamical reinterpretation’. Dynamical 

reinterpretation is the reinterpretation of a model’s equations in terms of the intended new 

target system. The end result of this step in the transfer process is a fully-reinterpreted model, 

i.e., a model for the new target system. The transfer of a model can therefore be seen as a two-

step process of phenomenological prompting followed by dynamical reinterpretation. This 

process can be completed both for a model with pre-assigned target system (e.g., the wave 

model) and for a model without pre-assigned target system (i.e., a horizontally constructed 

model). 

I do not wish to claim that these two steps are the only possible way to break down the 

transfer process. Furthermore, I suspect that this process might also be subject-specific and 

therefore only wish to claim that the two-step interpretation provides a good framework for 

the analysis of model transfer in complexity science. In particular, the strong emphasis by 

both practitioners and philosophers (e.g. Wolfram, 2002; Batty, 2005; but also, Dennett, 

1991) on the recognition and matching of patterns in the phenomenology of complex systems 

makes this distinction a natural one. In other fields of science, a different rational 

reconstruction might be more suitable. However, in Section 4.2, I hope to demonstrate the 

merits of this analytic framework by showing that it allows me to give a clear exposition of 

the transfer of models in complexity science. 

 

Explanatory function of transferred models  Once the process of model transfer is 

completed, the transferred model is treated as a representation of its new target system. 
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Accordingly, the epistemic function of transferred models is the same as those of vertically 

constructed models (Section 2.1): to be informative about their target systems. In Section 2.1, 

I have analysed this function as the provision of ‘how possibly’/‘how actually’ explanations 

(Bokulich, 2014). 

However, I agree with Bokulich (2014) that explanations provided by transferred 

models are – at least initially – more likely to be treated as mere ‘how possibly’ explanations 

than those provided by vertically constructed models. This is primarily due to the fact that the 

transfer process is motivated by phenomenological prompting: while it is therefore guaranteed 

that the model is able to reproduce the desired phenomenological features, there is no 

guarantee that the reinterpreted dynamics of the model are representations of the mechanisms 

actually operating in the target system.  

Accordingly, transforming a ‘how possibly’-explanation into a ‘how 

actually’explanation requires more work for transferred models than for vertically constructed 

ones. Bokulich (2014) maintains that this work consists in the gathering of additional 

empirical evidence. In Section 4.2, I will show that in complexity science there exists another 

method to ensure that the dynamics of a transferred model matches those of its new target 

system (in all relevant aspects): the subsequent vertical construction of additions and 

adaptions to such a model. 

 

4.  Modelling in complexity science 

In this section, I will discuss the interplay of different modelling activities in complexity 

science. In particular, I will argue that these activities can be divided into two distinct 

categories: (i) the creation of a repository of models without fixed target systems through 

large-scale horizontal model construction; and (ii) the transfer of these models to specific 

target systems and their subsequent extension through vertical modelling. In Sections 4.1 and 

4.2, respectively, these two aspects of modelling in complexity science will be discussed in 
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detail. A third mechanism, which is the transfer of models from one target-system to another, 

also operates in the auxiliary regions of complexity science but will not be discussed in detail 

in this paper (Section 1).  

This structure of the interplay of different modelling activities in complexity science 

will be demonstrated during the detailed discussions of each category. However, it is can also 

be discerned in the representations of modelling in complexity science by practitioners. In 

particular, textbook-type works aiming at given an overview of the field are usually divided 

into two parts: (i) one that discusses the construction and evaluation of a large number of 

models without fixed target systems (e.g., Wolfram, 2002, Chapter 2–5; Casti, 1992a); and 

(ii) one that discusses the assignment of these models to different specific target systems (e.g., 

Wolfram, 2002, Chapter 8–1; Casti, 1992b). Part (i) is occasionally described as introducing 

the ‘methodology’ or ‘technology’ of complexity science. While there is no reason to object 

to this labelling, a closer look at such works shows that a significant part of the 

methodological tools presented are actually particular models, which have been constructed 

by the methodologies discussed in Section 4.1.  

 

Models in complexity science  Due to the currently unresolved question of how 

‘complexity’ should be defined, the kind of models that are seen as part of complexity science 

differ between different authors. In particular, some authors (e.g., Casti, 1992a) view chaos 

theory as a subfield of complexity science and included chaotic models in this set. In 

Zuchowski (2012), I argue that chaos is conceptually different from complexity theory and 

that chaos theory is based on different methodologies than complexity science. Furthermore, 

in Section 4.1, I will argue that not all models that are used by practitioners in complexity 

science - defined methodologically as being constituted by the characteristic interplay of 

modelling activities (Section 1) - also carry the label ‘complex’ since this label is primarily 

used as a phenomenological descriptor. 
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My methodological definition of complexity science (Section 1) leads to a 

straightforward formal identification of the class of complex models: this class can be defined 

as all models being part of the modelling activities analysed in this section. However, once 

the characteristic modelling activities have been analysed, it becomes clear that the models 

involved usually share a similar dynamical set-up, namely they tend to be many-component 

models with relatively simple deterministic or probabilistic dynamics. This definition includes 

cellular automata (CAs), agent-based models (ABMs) and network models, which also appear 

to be the types of models that are most robustly classified as being part of complexity science 

(e.g., Casti, 1992a; Wolfram, 2002; Ladyman et al., 2013; Zuchowski, 2012). For the purpose 

of this paper, it is not necessary to define the class of complex models more precisely. 

However, it should be stressed that the label ‘complex’ here (and within the canon of 

literature on complexity science) does not have the colloquial connotation of 

‘complicatedness’, i.e., the models involved in complexity science are not models with a 

complicated formal structure or ones for which many parameters or variables need to be 

specified. In fact, it appears to be precisely the relative simplicity of these models that renders 

them ideal for the large-scale horizontal construction and the transfer to different target 

systems, i.e., for the modelling activities that constitute complexity science.  

Since the dynamics of complex models are relatively simple, they can be taken to be 

highly explanatory (Batterman and Rice, 2014). In the framework of analysis introduced in 

Section 2.1, it will therefore be possible to consider the whole dynamics of a model as an 

explanation for a given behaviour or, framed in terms of a conditional to be transferred, to see 

the full dynamics as a sufficient condition for the occurrence of the phenomenon under 

investigation. A study focused on analysing the explanatory role of complex models would 

clearly need to adopt a more nuanced view. However, for the purpose of this study, which 

aims to be comprehensive rather than detailed, this simplified view of the explanatory 

function of complex models is fully sufficient.  
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The two case studies (Wolfram, 2002; Batty, 2005) I will use to illustrate the two 

modelling activities in complexity science, i.e., the creation of a repository of models, and the 

transfer and extension of these models, both extensively use CAs. I will therefore briefly 

outline this type of complex model in more detail.  

CAs are discrete-time, multi-component models that operate on a grid. Each cell on the 

grid can assume two or more states: in a binary cellular automaton these are usually given the 

values 0 and 1, or ‘dead’ and ‘alive’. At each time step, the state of a cell is updated according 

to a set of transition rules. These rules usually depend on the states of the neighbouring cells 

during the previous time step. The cells that influence the behaviour of a given cell are called 

the ‘neighbourhood’ of that cell. The number of possible rule sets to govern the behaviour of 

the cells depends on the size and shape of the neighbourhood and on the number of states a 

cell can assume.  

The dynamics of CAs are therefore their rule sets. Their behaviour can be visualized 

through a coloration of cells according to their state, e.g., by representing ‘alive’ cells as black 

and ‘dead’ cells as white. Such representations allow the visual display of patterns in the 

phenomenologies of CAs. In the case of two-dimensional CAs, the patterns identified are 

two-dimensional patterns, which may change with each time step. In the case of one-

dimensional CAs, the models’ outputs are usually plotted on a two-dimensional spatio-

temporal space. In this mode of representation, two-dimensional static patterns can be visually 

identified.  

Modified versions of CAs can be obtained by adding ‘agents’, i.e., entities that occupy 

and can move between cells on the grid, leading to agent-based models, or allowing 

connections between non-adjacent cells, leading to network models. These models are not the 

only ones in complexity science: in fact, extensions and adaptions of these models can lead to 

much more complicated models and can also include combinations of these classes of models 

with elements from different classes of models (Section 4.2). However, I maintain that these 
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are the classes of models which are most often involved in the large-scale horizontal 

construction (Section 4.1), and subsequent transfer to a target system (Section 4.1), of models 

that I have identified as constituting the most defining methodological mechanism of 

complexity science.   

 

4.1 Creation of a repository of models 

In this section, I will argue that a significant part of the modelling activities in complexity 

science is directed towards the creation of a repository of models without fixed target 

systems. This activity is best interpreted as the large-scale horizontal construction of models, 

i.e., the generation of many models with slightly different dynamics without reference to 

specific target systems. It should be noted that the ancestor model from which such 

constructions originate could be a model that has previously been used to model a given target 

system. In fact, the history of each class of models will likely be complicated (e.g., for an 

outline of the history of CAs, Batty, 2005, pp. 67-77). In this paper, I am only concerned with 

the large-scale horizontal construction of models as a methodology that is prevalent in 

complexity science (Section 1). I will identify two particular methodologies for this large-

scale horizontal model construction in complexity science: rule space parsing and the use of 

genetic algorithms.  

 

Rule space parsing   One of the clearest examples of rule space parsing is the work 

by Stephen Wolfram (e.g., Wolfram, 1983a, 1984, 2002). Wolfram (2002), entitled, A New 

Kind of Science, is a particularly good illustration of the methodology of rule space parsing 

and the large-scale horizontal construction of models in complexity science.  

The book contains an in-depth investigation of the dynamics and behaviour of CAs, 

AMs and network models. For example, Wolfram (2002, pp. 54-56) presents the output of all 

256 of possible one-dimensional, binary, nearest-neighbours CAs. These models are 



	 19	

constructed through the systematic generation and implementation of all possible rule sets,  

for which Wolfram (2002, p. 53) also develops a binary naming convention so that this 

process can be automated. I will call such a comprehensive construction of models ‘rule space 

parsing’. Rule space parsing is a particular kind of horizontal model construction (Section 

2.2): spin-offs from a given model are generated through systematic variation of its dynamics. 

In contrast to the cases of horizontal modelling found in semi-classical physics (Bokulich, 

2003) and chaos theory (Zuchowski, 2016), rule space parsing can be automated and therefore 

leads to the construction of long lineages of models with slightly different dynamics. The 

parsing of the binary, one-dimensional, nearest-neighbours CAs’ rule space is described as the 

“crucial experiment” by Wolfram (2002, e.g., p. 23); this large-scale horizontal construction 

of models clearly constitutes the heart of the book. In later chapters, Wolfram (2002) also 

constructs lineages of CAs with larger numbers of states and of agent-based models (Chapter 

3; Chapter 4); of models with rules that do depend on more complicated mathematical 

operations in the Moore neighbourhood of a cell (Chapter 4); and of multi-dimensional CAs, 

including network models, whose rule sets link cells that are not spatially adjacent (Chapter 

5).  

Each of these lineages of models is constructed through rule space parsing, i.e., through 

the process of labelling all possible rules constituting the dynamics of these models, followed 

by an automatic generation of these dynamics on the computer. It is particularly apparent in 

Wolfram (2002, Chapters 2–5) that the construction of these models is accomplished without 

any reference to possible target systems: as a matter of fact, it is prima facie not obvious that 

any of the dynamics generated in this manner have any relation to particular natural 

phenomena. Other parts of Wolfram (2002) discuss possible target systems to which these 

models could be transferred (Chapter 8–11). However, no knowledge about these target 

systems or the general theories governing them is needed for the construction of these models 

through rule space parsing.  
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While Wolfram (2002) is a particularly comprehensive exercise in model construction, 

rule space parsing is a prevalent methodology in complexity science. For example, another 

long-lineage of horizontally constructed models has been spun-off from the Game of Life, a 

two-dimensional CA initially envisioned as a mathematical game (e.g. Gardner, 1970; 

Dewdney, 2008).  

Accordingly, I maintain that (i) rule space parsing is a form of horizontal modelling and 

(ii) the use of this methodology constitutes a significant part of the modelling activity in 

complexity science. The result of the use of this methodology is the generation of a large 

number of models without specific target systems, which form part of a repository of complex 

models.  

 

Using genetic algorithms   In complexity science, genetic algorithms are usually 

discrete-time models on a discrete spatial grid whose rule sets can change according to a set 

of meta-rules. In particular, the meta-rule set is often one that forces the model to evolve 

towards a rule set that produces a particular phenomenology. Accordingly, genetic algorithms 

are models whose dynamics are adjusted algorithmically until the behaviour of the model fits 

a pre-set set of phenomenological criteria (e.g. Chambers, 1995).  

A prominent example of genetic modelling in complexity science is the work by 

Packard and Wolfram (1985) and Langton (1990). These authors also work with the one-

dimensional CAs studied by Wolfram (1983a, 1984, 2002).  

In contrast to rule space parsing, genetic modelling therefore constructs a model through 

a targeted process of dynamical adjustments. Langton (1990) introduces the concept while 

working on the so-called λ-parameterization of the CA rule space. Thereby, rules which 

heavily favour transitions to one particular phenomenological state (called the quiescent state) 

sc are assigned low λ values, while high values of λ indicate that very few configurations of 

the CA will lead to sc. By employing a set of meta-rules that updates the rule set of the model 
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at each time step with the aim of achieving particular λ values, Packard and Wolfram (1985) 

and Langton (1990) are able to associate specific dynamics with specific phenomenologies.  

More recent studies in genetic modelling do not just use meta-rule sets that evolve the 

dynamics of a model towards certain phenomenologies but also update the rule sets according 

to meta-rules that are based on the maximization of different features, e.g., Mori et al. (1998), 

use a meta-rule set that relies on a parameterization of the frequency with which changes in 

the state of a cell lead to changes in its nearest-neighbours’ states.  

I maintain that genetic modelling can also be interpreted as horizontal model 

construction. The model eventually constructed is the final evolution of the genetic algorithm. 

As in the case of rule space parsing, the use of genetic algorithms is an automated way of 

horizontally constructing models. In contrast to rule space parsing, which generates 

comprehensive lineages of models that include all possible models with a given type of rule 

set, genetic algorithms provide a way of targeting this construction towards the generation of 

models that have particular phenomenologies. The lineages constructed in this way are 

usually not permanent: the end result of a run with a genetic algorithm is a single model, 

which best fulfils the criteria specified by the meta-rule set.  

The generation of a model through the use of a genetic algorithm is clearly not based on 

the use of governing theory and empirical knowledge about a target system. This is also 

evident in the works cited in this section (e.g., Packard and Wolfram, 1985; Langton, 1990; 

Chambers, 1995; Mori et al., 1998), which do not mention any specific target systems for the 

models they obtain. Accordingly, I maintain (i) that the use of genetic algorithms is a way of 

horizontal model construction and (ii) that, like rule space parsing, it constitutes a significant 

part of the modelling activity in complexity science. Both the genetic algorithms and the 

models they create then become part of the repository.  
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Cataloguing and analysing the repository   The methodologies used for the 

horizontal construction of models, rule space parsing and genetic algorithms, necessarily lead 

to the generation of a very large number of models. Not all of these models have 

phenomenologies that are judged to be interesting. Models with particularly interesting 

phenomenologies are usually given the label ‘complex’. However, this should not indicate 

that only these models are used in complexity science: CAs creating random or ordered 

patterns (e.g., the Sierpinski triangle) have also been of interest to complexity scientists (e.g., 

Wolfram, 2002) and have also been transferred to specific target systems (Batty, 2005, 

Section 4.2). Accordingly, I maintain that the activity of bestowing different labels on the 

models generated through large-scale horizontal modelling is best interpreted as a cataloguing 

of models in the repository. 

Such cataloguing is usually based on phenomenological criteria. For example, Wolfram 

(1983b) introduces a classification scheme for CAs, which sorts these models into four classes 

based on their behaviour: homogeneous (class I), periodic (class II), chaotic (class III), and 

complex (class IV). The scheme has been used in later works by the same author (e.g., 

Wolfram, 1984, 2002) and has also been widely adopted in the complexity science 

community (e.g., Langton, 1990; Packard and Wolfram, 1985; Mori et al., 1998).  

The question of how the term ‘complex’ should be defined is currently unresolved (e.g., 

for recent philosophical reviews of this debate, Ladyman et al., 2013; Zuchowski, 2012). 

However, in practice, the classification has been performed with relative ease. In fact, many 

practitioners assume that the identification of models with complex behaviour can be 

performed intuitively through visual inspection (e.g., Gershenson, 2008, p. 131).  

Despite the fact that the cataloguing of models in the repository appears to be mostly 

based on intuition, the phenomenologies of complex models have been investigated 

extensively. Such investigations include the computation of entropy measures (e.g., Wolfram, 
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1984, 2002) as well as the development and application of new statistical measures to capture 

the characteristics of differently classified models (e.g.,  Shalizi, 2001).   

 

4.2.  Transfer and extension of models 

In this section, I will discuss the transfer of complex models from the repository to a given 

target system. My framework for the analysis of the transfer of models is the one developed in 

Section 3, i.e., I conceptualize the transfer process as consisting of the two steps of 

phenomenological prompting and dynamical reinterpretation.  Furthermore, I will maintain 

that the transfer of models is often followed by the vertical construction of additions and 

adaptions to these models.  

 

Transfer of models  As described above, the division of modelling work into the 

large-scale horizontal construction of models and the transfer of these models to particular 

target systems is clearly illustrated in the structure of Wolfram (2002): the first part of the 

book (Chapters 1–5) presents a multitude of generic models constructed through rule space 

parsing, then there is an interlude in which these models are catalogued and analysed 

(Chapters 6–7), and in the second part of the book (Chapters 8–11) areas of application for 

these models are then sketched out.  

The transfer of complex models into other scientific fields appears to have been most 

successful in those cases, in which a direct analogy can be constructed between the 

phenomenology of the model and the phenomenology of the systems investigated in these 

fields. This highlights the importance of the first step of the transfer process, 

phenomenological prompting: without completion of this step, the second step, a 

reinterpretation of the models dynamics, will not take place. The areas in which the 

recognition of such phenomenological similarities has been possible are fields like population 

dynamics, including the morphology of genetic traits, urban development, sociology, and 
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physical morphology. In all of these areas, a reinterpretation of the discrete-time, grid-based 

dynamics of the relevant models has also been possible.  

The adaption and use of CAs, i.e., the transfer of models from the repository of models 

provided by e.g., Wolfram (2002), to represent urban development can be illustrated in the 

cases presented by Batty (2005). The book begins with a general introduction of the models to 

be used in later chapters, which leaves no doubt that the use of models from complexity 

science, and of CAs in particular, was prompted by the recognition of similarities in the 

patterns visible in the phenomenologies of CAs and in the spatial pattering of cities (p. 9, pp. 

108-110, p. 141, p. 90). In particular, Batty (2005, pp. 1-6) argues that the localized pattering 

displayed by complex (class IV) CAs (Section 4.1) can be interpreted as analogous to the 

localized clustering seen in the ‘urban sprawl’ of modern cities. It is stressed that CAs will be 

better able to generate these forms of urban development than models relying on the 

assumption of centralized planning and zoning (Chapter 1).  

Batty (2005, Chapter 2) introduces a number of different CAs. Batty (2005, e.g., p. 7, p. 

72) thereby extensively refers to Wolfram (2002) and the Game of Life. The models are then 

assigned to specific target systems according to their phenomenologies: deterministic CAs 

that create regular patterns are assigned to planned cities with a regular development (pp. 90), 

while complex CAs with probabilistic dynamics are assigned to organically grown cities (pp. 

90-96). Thereby, the states of the CA are interpreted as various states of the 

development/residing population of a given spatial unit (e.g., p. 24, p. 69).  

Once these target systems have been assigned, the dynamics of the models are then 

reinterpreted to fit the given scenario, i.e., the analogy is extended to the dynamics and the 

second step of the transfer process is concluded. In the case of regular CA development, the 

rule set is seen as an implementation of the rules of town layouts that govern planned cities (p. 

90). In the case of probabilistic CAs, the probabilistic transition rule is interpreted as 
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reflecting “uncertainty about the decision in question or variety in preference”, i.e., the fact 

that in non-planned cities no deterministic rule for their development is strictly upheld.  

Throughout the book, this process is repeated for various, increasingly complicated rule 

sets. It is important to note that these rule variations are seen as being chosen from an existing 

set of rules and not as being developed from the natural process through vertical modelling. 

This also becomes apparent in Batty (2005, pp. 110-116), where four general types of rules 

are listed (pattern rules, counting rules, statistic rules, voting rules). The various models in the 

book are then obtained – at least initially – through the reinterpretation of particular examples 

of these basic rule sets. This can be rephrased in the terminology of this paper as the transfer 

of a model from the general repository of models (Section 4.1).  

 

Vertical construction of extensions   The transfer of complex models is not the 

only modelling activity discernible in Batty (2005). Rather, the part of the book devoted to 

modelling with CAs is divided into two subparts: in the first three chapters, any models 

assigned to specific urban development scenarios are virtually exclusively obtained through 

the reinterpretation of well-known cellular automata, i.e., through the transfer of models from 

the repository. However, in chapter 4, these models are then developed further. For example, 

Batty (2005, pp. 156-162) constructs a model of urban development that is based on the 

interaction between the potential for development and the actual development of a given area. 

This construction starts with a consideration of how these two parameters interact in actual 

cities (pp. 156-157; Figure 41), and then proceeds to the design of a set of rules for a 

probabilistic CA. Batty (2005, p. 156) calls this example of model construction “modelling 

with extended cellular automata”, which seems to be an apt description: we can interpret this 

process of model construction as the extension of a model, which has previously been 

obtained through transfer from the general repository. The construction of these extensions 

appears to be an example of vertical model construction rather than of mere reinterpretation. 
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A similar combination of model transfer followed by extension of the transferred model 

through vertical construction can also be seen in the second part of Batty (2005): this part 

begins with a general review of ABMs, including their use in other fields of science, e.g., in 

geography for the modelling of river systems (pp. 222-223). Similarities between the 

phenomenologies of the ABMs and the morphology of cities are then identified (pp. 223-

240). The ABMs introduced before are then reinterpreted as settlement models, by 

interpreting the agents as populations (p. 241). Lastly, the existing models are extended by 

additions to their dynamics.  

The adaption and extension of ABMs in Batty (2005) also illustrates that these 

extensions can be extensive and combine elements from different classes of models (Section 

4): the dynamics of the ABMs is eventually extended to include an underlying morphology of 

resources which can be altered through the agent’s actions (pp. 252-257). The interaction 

between the resources and the agents is governed through a feedback loop (p. 255) that 

includes elements from game-theoretical models.  

Due to the textbook character of Batty (2005), this interplay between different 

modelling activities is clearly displayed in the book. A recent collection of articles in which 

the transfer, adaption and use of complex models in different areas of the natural and social 

sciences are discussed is Hooker (2011). The examples discussed in this collection range from 

the use of ABMs to model the natural selection of biological traits (Harms, 2011), to the use 

of network models to model interactions in economic exchange systems (Foster, 2011), to the 

use of network models to study the development of linguistic categories (Lansing and 

Downey, 2011). The prevalence of the transfer and adaption of complex models,  as well as 

the interplay between such transfers and the horizontal construction of models (Section 4.1), 

is also evident in the research areas listed by institutes like the Santa Fe Institute or The 

Bristol Centre for Complexity Science, which include the use of complex models in several of 

the natural and social sciences. Shorter research papers often focus on either one of these 
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activities, i.e., they either discuss the vertical construction of novel extensions to models that 

have already been transferred to a specific target system or they focus on identifying specific 

models that could be used to represent a given phenomenon (e.g., for a collection of such 

studies, Bandini et al., 2010). Nevertheless, the general interplay of modelling activities is still 

discernible in such studies. It is also apparent from a survey of such papers that the transfer 

and extension of models in complexity science is mostly undertaken by natural and social 

scientists that are interested in the exploration of particular target systems in other fields of 

science and would therefore profess allegiance to these fields as well.  

 

Cross-disciplinary transfer  Batty (2005) also contains examples of the second 

transfer mechanism operating within the auxiliary regions of complexity science, e.g., the 

transfer of a model with a given target system to another target system, often located in a 

different discipline. One such example is the use of sugarscape models, i.e., the extension of 

an ABM to include an underlying morphology of resources that the agents interact with in 

complicated ways: this class of ABMs was initially added to the repository of models at the 

core of complexity science by Langton (1989); it was inspired by a simple resource 

distribution models in biology, subsequently used to investigate the behaviour of artificial 

life-forms, and eventually transferred on to represent social phenomena (Batty, p. 252). This 

chain of transfers and adaptions also illustrates the often complicated history of models in 

complexity science.  

 

Explanatory role of transferred models   As outlined in Section 3, the transfer and 

reinterpretation of a model leads to the provision of a ‘how possibly’ explanation for the 

occurrence of the phenomenon under question. Accordingly, modelling in complexity science 

often begins with a ‘how possible’ explanation. However, this explanation is then further 

scaffolded by additional evidence gained during the extension of the model through vertical 
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construction, i.e., it is shown that an extended version of the model can be constructed from 

direct considerations of the natural processes in questions. This provides support for a 

transformation of a ‘how possible’ explanation into a ‘how actually’ explanation.  

The explanatory power of complex models is therefore difficult to capture: at heart, 

these models provide ‘how possible’ explanations, since their initial transfer is 

phenomenologically prompted. However, in the course of further modelling studies, adaptions 

and extensions are added that have been constructed from a-priori dynamical considerations. 

The more such extensions have been added to a model, the more evidence for the 

consideration of a model’s dynamics as an ‘how actually’ explanation appears to exist. 

Accordingly, my view of modelling in complexity science is very well compatible with an 

account that locates the explanatory powers of models on a continuum spectrum between 

‘how possible’ and ‘how actually’ explanations (e.g., Bokulich, 2014).  

As described in Section 1, I view the transfer of models as part of complexity science. 

However, compared to the creation and maintenance of the repository (Section 4.1), these 

activities are best visualized as delineating auxiliary areas of the field, which overlap with 

other scientific fields and form the interdisciplinary part of complexity science. Similarly, 

practitioners engaged in this activity often view themselves as being part of both complexity 

science and another, primary field (e.g., Batty, 2005).  

 

5.  Conclusion  

In this paper, I analysed the construction and transfer of models in complexity science. 

Thereby, I introduced a distinction between vertical and horizontal model construction 

(Section 2). Vertical models (Section 2.1) are constructed top-down or bottom-up from 

empirical knowledge about the target system and from general governing theory. Therefore, 

the existence of a specific target system is a prerequisite of vertical model construction. In 

contrast, horizontal model construction (Section 2.2) is the construction of a model without 
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reference to a specific target system. It usually involves the generation of a variation of an 

existing model through changes of the mathematical formalism, which are usually motivated 

by investigative reasons. 

My framework for the discussion of model transfer in complexity science is based on 

the account of the identification of analogies between different models by Hesse (1966). I 

maintained (Section 3) that the transfer of models in complexity science is prompted by a 

recognition of similarities between the phenomenology of a model and the phenomenology of 

a new target system. I named his step in the transfer process ‘phenomenological prompting’. 

Once these similarities have been recognized the dynamics of the model are also reinterpreted 

to suit the new target system. I named this step in the transfer process ‘dynamical 

reinterpretation’. Accordingly, my analysis is based on the assumption that the transfer of a 

model to a new target system can be conceptualized as a two-step process. 

I then argued that all three types of modelling activity are part of the defining 

methodology of complexity science: vertical construction, horizontal construction and model 

transfer (Section 4). In particular, I argued that these modelling activities can be divided into 

two general categories: (i) the creation of a repository of models without specific target 

systems, which have been created by large-scale horizontal construction (Section 4.1), and (ii) 

the transfer of these models to particular target systems in the natural and (to a lesser degree) 

the social sciences, which can also be followed by an extension of the transferred model 

through vertical construction of adaptions and additions to its dynamics (Section 4.2). 

Additional transfers of such models to new target systems, often in the social sciences, are 

also frequent in complexity science but have not been the focussed on in this paper.  

In category (i), I identified two prevalent methodologies of horizontal model 

construction: rule-space parsing and the use genetic algorithm. Rule space parsing is the 

systematic creation of models by an automated generation of all possible sets of dynamics for 
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a class of models; the use of genetic algorithms is the automated optimization of the dynamics 

of a class of models towards the display of particular phenomenological features. 

The use of these methodologies for large-scale horizontal model construction appears to 

be a distinguishing feature of complexity science. Their automated nature means that large 

numbers of models without specific target system can be constructed and evaluated, i.e., a 

repository of models with well analysed dynamics and phenomenologies is created through 

this mode of modelling.  

I also analysed category (ii), the transfer of models from the repository to specific target 

systems and the further development of these models through vertical construction. I argued 

that transfer of complex models is phenomenologically prompted, i.e., that the transfer of 

models in complexity science follows the two-step conceptualization developed in Section 3. 

Furthermore, once a model’s transfer is completed, i.e., once both the model’s 

phenomenology and its dynamics have been reinterpreted, the model is often extended 

through the construction of additions and adaptions. The construction of such extensions is 

usually based on empirical knowledge about the model’s new target system and on the 

general theory that governs its dynamics: they are therefore vertically constructed. 

Accordingly, the modelling of a specific target system in complexity science often involves 

both model transfer as well as the vertical construction of models. In addition, these models 

can also be transferred to new target systems in different disciplines.  

The division between the two categories of modelling activities also marks an epistemic 

division of labour: the creation of the repository of models appears to be mostly undertaken 

by mathematicians and computer scientists while the transfer and extension of models is 

undertaken by natural and social scientists. In Section 1, Section 4.1 and Section 4.2, I have 

argued that this interplay of modelling activities can be seen as providing a methodological 

definition of complexity science, namely it delineates a methodological core area of the field 

– the stocking, investigation and cataloguing of the repository – and a number of auxiliary 
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areas characterized by the transfer of models from the repository to target system in different 

areas of the natural and social sciences. In these areas, complexity science overlaps both 

methodologically and in the self-identification of the practitioners with other scientific fields. 

Additional auxiliary areas can also be added to complexity science through the onward 

transfer of models from one target system to another. This mechanism seems to be the 

primary way in which areas in the social sciences are methodologically connected to the core 

area of complexity science, while the direct transfer from the repository, which this paper has 

been focussed on, tends to tie in areas in the natural sciences.    

Accordingly, the specific interaction of the different modelling activities in complexity 

science provides a mechanism for the transfer of knowledge between these different fields. In 

addition to the formal structure of a model, the transfer also involves gaining a ‘how possibly’ 

explanation for the new target system’s phenomenology. The explanatory power of the model 

can be increased if additional vertical adaptions and alterations are made: the certainty of the 

knowledge gained through a transfer, as measured on a spectrum between ‘how possible’ and 

‘how actually’ explanation, therefore depends on the given models similarity to the target 

system and on the possible further alterations to the model.  
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