Falcón-Cortés, A., Boyer, D., Giuggioli, L., \& Majumdar, S. N. (2017). Localization Transition Induced by Learning in Random Searches. Physical Review Letters, 119(14), [40603].
https://doi.org/10.1103/PhysRevLett.119.140603

Peer reviewed version

Link to published version (if available):
10.1103/PhysRevLett.119.140603

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online via APS at https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.119.140603. Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research

General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms

Supplemental Material

I. NO-RETURN PROBABILITY FOR LÉVY FLIGHTS: RECURRENT VS. TRANSIENT BEHAVIOR

Consider a d-dimensional Euclidean lattice. A random walker moves on the sites of this lattice with random jumps at each time step. The jump lengths are independent and identically distributed (i.i.d) random variables drawn from a normalized distribution $p(\boldsymbol{\ell})$. The walker starts at some arbitrary site (\boldsymbol{x}_{0} at time $t=0$). Then the probability of no return to the initial site is given by the well known formula

$$
\begin{equation*}
P_{\text {no-return }}=\frac{1}{\int_{\mathcal{B}} \frac{d^{d} \mathbf{k}}{(2 \pi)^{d}} \frac{1}{1-\tilde{p}(\mathbf{k})}} \tag{1}
\end{equation*}
$$

where $\tilde{p}(\mathbf{k})$ is the Fourier transform of the jump distribution

$$
\begin{equation*}
\tilde{p}(\mathbf{k})=\sum_{\ell} p(\ell) e^{-i \mathbf{k} \cdot \ell} \tag{2}
\end{equation*}
$$

Thus $P_{\text {no-return }}$ in Eq. (1) is nonzero or zero depending on whether the integral in the denominator is finite or divergent. The divergence of this integral depends on the small $|\mathbf{k}|$ behavior of $\tilde{p}(\mathbf{k})$. In general, for Lévy flights, the small k behavior is given by

$$
\begin{equation*}
\tilde{p}(\mathbf{k}) \simeq 1-K_{\mu}|\mathbf{k}|^{\mu} \tag{3}
\end{equation*}
$$

where the Lévy index $0<\mu \leq 2$. For $\mu<2$, the second moment of the jump distribution is divergent, while for $\mu=2$, the second moment is finite. Hence, standard Euclidean random walks with nearest neighbour jumps correspond to $\mu=2$, with $\tilde{p}(\mathbf{k})=1-D_{0}|\mathbf{k}|^{2}$. From now on, we will consider the general $0<\mu \leq 2$ case, and it will include the $\mu=2$ case corresponding to standard nearest neighbour random walks. Substituting the small k behavior in the integral in the denominator of Eq. (1), it is evident that this integral diverges if $d<\mu$ and is finite if $d>\mu$. Thus, for $d<\mu$, $P_{\text {no-return }}=0$, while it is non zero for $d>\mu$. Thus, for Lévy flights with index $\mu(0<\mu \leq 2)$, the critical dimension is $d_{c}=\mu$ that separates the recurrent $(d<\mu)$ behavior from the transient $(d>\mu)$ behavior. For ordinary random walks $(\mu=2), d_{c}=2$.

II. CRITICAL BEHAVIOR OF THE ORDER PARAMETER P_{0}

We first consider the critical value q_{c} (for fixed γ) that separates the delocalised phase with $P_{0}=0$ for $q<q_{c}$ and the localised phase with $P_{0}>0$ for $q>q_{c}$. In the main text, we have shown that the value of q_{c} is given by the formula

$$
\begin{equation*}
q_{c}=\frac{(1-\gamma) P_{n o-r e t u r n}}{\gamma+(1-\gamma) P_{\text {no-return }}} \tag{4}
\end{equation*}
$$

where $P_{n o-r e t u r n}$ is given in Eq. (1). So, clearly, for Lévy flights with index $0<\mu \leq 2$ (including standard random walks corresponding to $\mu=2$), using results on $P_{\text {no-retun }}$ from the previous Section I, we have

$$
\begin{align*}
q_{c} & =\frac{(1-\gamma) P_{n o-\text { return }}}{\gamma+(1-\gamma) P_{\text {no-return }}}>0 & & \text { for } \quad d>\mu \tag{5}\\
& =0 & & \text { for } \quad d<\mu \tag{6}
\end{align*}
$$

We now consider how P_{0} increases from its value 0 as q increases above q_{c}. We want to show here that in general, as $q \rightarrow q_{c}^{+}$,

$$
\begin{equation*}
P_{0} \sim\left(q-q_{c}\right)^{\beta} \tag{7}
\end{equation*}
$$

where the exponent β depends continuously on μ and d in the $\mu-d$ plane. We will show below that

$$
\beta= \begin{cases}1 & \text { for } \quad d>2 \mu \tag{8}\\ \frac{\mu}{d-\mu} & \text { for } \quad \mu<d<2 \mu \\ \frac{d}{\mu-d} & \text { for } \quad d<\mu\end{cases}
$$

where, we recall, that in the last case $(d<\mu), q_{c}=0$.
To derive this result for β, we start from the equation in the main text that determines P_{0} for any given q, namely

$$
\begin{equation*}
\frac{1}{(2 \pi)^{d}} \int_{\mathcal{B}} \frac{d^{d} \mathbf{k}}{(1-q)[1-\tilde{p}(\mathbf{k})]+q \gamma P_{0}}=\frac{1-\gamma}{q \gamma\left(1-\gamma P_{0}\right)} . \tag{9}
\end{equation*}
$$

Of course, at $q=q_{c}, P_{0}=0$ and this gives us

$$
\begin{equation*}
\frac{1}{(2 \pi)^{d}} \int_{\mathcal{B}} \frac{d^{d} \mathbf{k}}{\left(1-q_{c}\right)[1-\tilde{p}(\mathbf{k})]}=\frac{1-\gamma}{q_{c} \gamma}, \tag{10}
\end{equation*}
$$

which indeed leads to the expression for q_{c} in Eq. (4).
We are now ready to see how P_{0} increases from 0 as q increases above q_{c}. For this we consider two cases separtaely.
Case I: $\mathbf{q}_{c}>0$. As we have seen before, this corresponds to the transient regime where $P_{\text {no-return }}>0$. For Lévy flights, this means $d>d_{c}=\mu$. To proceed, we first subtract Eq. (9) from Eq. (10) which gives

$$
\begin{equation*}
\int_{\mathcal{B}} \frac{d^{d} \mathbf{k}}{(2 \pi)^{d}} \frac{\left[q \gamma \delta-\left(q-q_{c}\right)(1-\tilde{p}(\mathbf{k}))\right]}{(1-\tilde{p}(\mathbf{k}))\left[(1-q)(1-\tilde{p}(\mathbf{k}))+q \gamma P_{0}\right]}=\frac{\left(1-q_{c}\right)(1-\gamma)\left(q-q_{c}-q \gamma P_{0}\right)}{q q_{c} \gamma\left(1-\gamma P_{0}\right)} . \tag{11}
\end{equation*}
$$

We then set $q=q_{c}+\epsilon$ with $\epsilon \rightarrow 0$ and $P_{0}=\delta$ with $\delta \rightarrow 0$. Our goal is to find how δ scales with ϵ to leading order in small ϵ. In this limit, the leading contribution to the integral on the left hand side (lhs) of Eq. (11) comes from the small k region, where we can replace $\tilde{p}(\mathbf{k})$ by Eq. (3). Keeping only the leading order terms and simplifying, we obtain

$$
\begin{equation*}
\delta I(\delta)+O(\delta)=A \epsilon \tag{12}
\end{equation*}
$$

where $A=(1-\gamma)\left(1-q_{c}\right) K_{\mu}^{2} /\left(\gamma^{2} q_{c}^{3}\right)$ is just a constant and $I(\delta)$ is the integral

$$
\begin{equation*}
I(\delta)=\int_{\mathcal{B}} \frac{d^{d} \mathbf{k}}{(2 \pi)^{d}} \frac{1}{|\mathbf{k}|^{\mu}\left[|\mathbf{k}|^{\mu}+b \delta\right]} \tag{13}
\end{equation*}
$$

where $b=q_{c} \gamma /\left(K_{\mu}\left(1-q_{c}\right)\right)$ is a constant. We now need to analyse the integral $I(\delta)$ as $\delta \rightarrow 0$. There are again two cases: (1) $d>2 \mu$ and (2) $\mu<d<2 \mu$. We consider them separately.

1. $d>2 \mu$: In this case, if we put $\delta=0$ in $I(\delta)$ in Eq. (13), the integral converges as $k \rightarrow 0$, making $I(0)$ finite. Hence, from Eq. (12), we get

$$
\begin{equation*}
\delta \sim \epsilon \text { implying } \beta=1 \quad \text { for } \quad d>2 \mu \tag{14}
\end{equation*}
$$

2. $\mu<d<2 \mu$: In this case, the integral $I(0)$ in Eq. (13) is divergent. Hence, to extract the leading singularity, we rescale $k \rightarrow \delta^{1 / \mu} y$ in Eq. (13).

$$
\begin{equation*}
I(\delta) \sim \delta^{\frac{d}{\mu}-2} \int_{0}^{\infty} \frac{d y y^{d-1-\mu}}{y^{\mu}+b} \tag{15}
\end{equation*}
$$

Note that the integral in Eq. (15) is convergent in both limits $y \rightarrow 0$ and $y \rightarrow \infty$, as long as $\mu<d<2 \mu$. Hence, substituting Eq. (15) in Eq. (12) we get, to leading order

$$
\begin{equation*}
\delta \sim \epsilon^{\frac{\mu}{d-\mu}} \quad \text { implying } \quad \beta=\frac{\mu}{d-\mu} \quad \text { for } \quad \mu<d<2 \mu \tag{16}
\end{equation*}
$$

Case II: $\mathbf{q}_{c}=0$. This case corresponds to the recurrent case when $P_{n o-r e t u r n}=0$, making $q_{c}=0$. As discussed before, for Lévy flights with index $0<\mu \leq 2$, this happens when $d<d_{c}=\mu$. In this case we analyse directly Eq. (9) by substituting $q=\epsilon$ and $P_{0}=\delta$. Again, keeping only the small \mathbf{k} contribution to the integral, we get to leading order

$$
\begin{equation*}
\int_{\mathcal{B}} \frac{d^{d} \mathbf{k}}{(2 \pi)^{d}} \frac{1}{|\mathbf{k}|^{\mu}+\epsilon \delta} \sim \frac{1}{\epsilon} \tag{17}
\end{equation*}
$$

Rescaling $k=(\epsilon \delta)^{1 / \mu} y$ gives

$$
\begin{equation*}
(\epsilon \delta)^{\frac{d}{\mu}-1} \int_{0}^{\infty} \frac{d y y^{d-1}}{y^{\mu}+1} \sim \frac{1}{\epsilon} . \tag{18}
\end{equation*}
$$

Note that the integral in Eq. (18) is convergent in both limit $y \rightarrow 0$ and $y \rightarrow \infty$ for $0<d<\mu$. Hence, Eq. (18) then gives

$$
\begin{equation*}
\delta \sim \epsilon^{\frac{d}{\mu-d}} \quad \text { implying } \quad \beta=\frac{\mu}{\mu-d} \quad \text { for } \quad 0<d<\mu \tag{19}
\end{equation*}
$$

This completes the derivation of the result for the exponent β given in Eqs. (8), (8) and (8).

III. LOCALIZATION OF THE $1 d$ RANDOM WALK WITH NEAREST NEIGHBORS JUMPS

We derive here an analytical expression for the stationary distribution P_{n}. We consider the particular case of the random walk with nearest neighbor jumps in one dimension, where the step distribution is given by $p(l)=\frac{1}{2}\left[\delta_{l, 1}+\delta_{l,-1}\right]$. The Fourier transform of $p(l)$ is $\tilde{p}(k)=\cos k$. In this case, the expression given by Eq. (4) of the main text for the Fourier transform of P_{n} becomes

$$
\begin{equation*}
\tilde{P}(k)=\frac{\gamma P_{0}[1-(1-q) \cos k]}{(1-q)(1-\cos k)+q \gamma P_{0}}=\gamma P_{0}+\frac{q \gamma P_{0}\left(1-\gamma P_{0}\right)}{(1-q)(1-\cos k)+q \gamma P_{0}} . \tag{20}
\end{equation*}
$$

The form of the steady-state probability can be derived by inverse Fourier transforming. Using the fact that for $a^{2}>1$ [1]:

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{-\pi}^{\pi} d k \frac{\cos (k n)}{1+a^{2}-2 a \cos k}=\frac{1}{\left(a^{2}-1\right) a^{|n|}} \tag{21}
\end{equation*}
$$

we write the denominator $(1-q)(1-\cos k)+q \gamma P_{0}$ under the form $b\left(1+a^{2}-2 a \cos k\right)$. By identification, we have:

$$
\begin{align*}
2 a b & =1-q \tag{22}\\
b\left(1+a^{2}\right) & =1-q\left(1-\gamma P_{0}\right) \tag{23}
\end{align*}
$$

which yields

$$
\begin{equation*}
a=1+\frac{\gamma q P_{0}}{1-q}+\sqrt{\frac{\gamma q P_{0}}{1-q}\left(2+\frac{\gamma q P_{0}}{1-q}\right)} . \tag{24}
\end{equation*}
$$

Using Eq. (21) and (22), the inversion of Eq. (20) gives:

$$
\begin{equation*}
P_{n}=\gamma P_{0} \delta_{n, 0}+\frac{q \gamma P_{0}\left(1-\gamma P_{0}\right)}{1-q} \frac{2 a}{\left(a^{2}-1\right) a^{|n|}} . \tag{25}
\end{equation*}
$$

By evaluating Eq. (25) at $n=0$, the above expression can be rewritten in compact form:

$$
\begin{equation*}
P_{n}=\gamma P_{0} \delta_{n, 0}+(1-\gamma) P_{0} a^{-|n|} \tag{26}
\end{equation*}
$$

which is one of the main result of this section. We are only left with the determination of P_{0}, the asymptotic probability of occupying the inhomogeneity. For this purpose, we evaluate once more Eq. (25) at $n=0$, obtaining:

$$
\begin{equation*}
2 q \gamma\left(1-\gamma P_{0}\right)=(1-\gamma)(1-q)\left(a-a^{-1}\right) \tag{27}
\end{equation*}
$$

Inserting the expression of a given by Eq. (24) into Eq. (27) gives a quadratic equation for P_{0} whose only positive root is

$$
\begin{equation*}
P_{0}=\frac{-(1-q)(1-\gamma)^{2}-q \gamma^{2}}{q \gamma(1-2 \gamma)}+\frac{\sqrt{\left[(1-q)(1-\gamma)^{2}+q \gamma^{2}\right]^{2}+(q \gamma)^{2}(1-2 \gamma)}}{q \gamma(1-2 \gamma)}, \tag{28}
\end{equation*}
$$

for $\gamma \neq 1 / 2$. When $\gamma=1 / 2$, the solution is simply $P_{0}=q$.
[1] Gradshteyn, I. S. and Ryzhik, I. M., Table of integrals, series, and products, Eighth ed., (Elsevier/Academic Press, Amsterdam, 2015).

