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SUMMARY

Remodeling of the tricarboxylic acid (TCA) cycle
is a metabolic adaptation accompanying inflam-
matory macrophage activation. During this pro-
cess, endogenous metabolites can adopt regu-
latory roles that govern specific aspects of
inflammatory response, as recently shown for
succinate, which regulates the pro-inflammatory
IL-1b-HIF-1a axis. Itaconate is one of the most
highly induced metabolites in activated macro-
phages, yet its functional significance remains un-
known. Here, we show that itaconate modulates
macrophage metabolism and effector functions
by inhibiting succinate dehydrogenase-mediated
oxidation of succinate. Through this action, itaco-
nate exerts anti-inflammatory effects when admin-
istered in vitro and in vivo during macrophage
activation and ischemia-reperfusion injury. Using
newly generated Irg1�/� mice, which lack the
ability to produce itaconate, we show that endoge-
nous itaconate regulates succinate levels and
function, mitochondrial respiration, and inflamma-
tory cytokine production during macrophage
activation. These studies highlight itaconate as a
major physiological regulator of the global meta-
bolic rewiring and effector functions of inflamma-
tory macrophages.
158 Cell Metabolism 24, 158–166, July 12, 2016 ª 2016 Elsevier Inc.
INTRODUCTION

Macrophage activation by lipopolysaccharide (LPS) is accompa-

nied by marked metabolic changes including upregulation of aer-

obic glycolysis (Everts et al., 2014), impaired mitochondrial respi-

ration, disruption of the TCA cycle (Jha et al., 2015), and

accumulation of succinate (Kelly andO’Neill, 2015).While a signif-

icant portion of this metabolic adaptation is transcriptionally

controlled (e.g., via modulation ofNos2 andCox2), succinate rep-

resentsanexampleofametabolite thataffectsmajor inflammatory

pathways in both immune and non-immune cells by controlling

IL-1b expression, HIF-1a activity, and ROS production (Kelly and

O’Neill, 2015). However, the mechanism(s) regulating succinate

levels in inflammatory macrophages have remained unknown.

Itaconate has been recently shown to be made by macro-

phages in response to LPS (Strelko et al., 2011) and certain in-

fections (Michelucci et al., 2013) and is generated by the

mitochondria-associated enzyme (Degrandi et al., 2009) immune

responsive gene 1 (Irg1). Itaconate is believed to have anti-bac-

terial function due to its ability to inhibit isocitrate lyase, a bacte-

rial glyoxylate shunt enzyme and due to its bactericidal effect

when added at supraphysiological concentrations to macro-

phage-free S. enterica, M. tuberculosis, and L. pneumonophilia

cultures (Michelucci et al., 2013) (Naujoks et al., 2016). An effect

of itaconate on mammalian enzymes also was reported in

the context of Sdh inhibition (Ackermann and Potter, 1949)

(Németh et al., 2016). It is unknown, however, whether this

biochemical effect of itaconate translates into macrophage

metabolism and function. Here, using exogenous itaconate as

well as newly generated Irg1�/� mice, we report that itaconate

mailto:martyomov@pathology.wustl.edu
http://dx.doi.org/10.1016/j.cmet.2016.06.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cmet.2016.06.004&domain=pdf
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Figure 1. Itaconate Has Anti-inflammatory Effects on Macrophage Activation

(A) Volcano plots showing transcripts (left) and metabolites (right) that are differentially expressed between resting and activated BMDM (LPS + IFN-g, 24 hr).

(B) Relative expression of intracellular and secreted itaconate by BMDM at indicated time points after activation (LPS + IFN-g).

(C) Histogram of intracellular iNOS expression determined by flow cytometry in BMDMuntreated or DI-pretreated (0.25mM, 12 hr) and then stimulated with LPS +

IFN-g (24 hr).

(D) IL-12 levels in BMDM culture supernatants from (C).

(E) IL-6 and TNF-a secreted by untreated or DI-pretreated BMDM and stimulated with LPS (24 hr).

(F) Heatmap of selected inflammatory marker genes unstimulated (Uns), LPS-stimulated (LPS), DI-pretreated (DI + Uns), DI-pretreated and then LPS-stimulated

BMDM (4 hr).

(G) Mature IL-1b and IL-18 secreted by BMDM untreated or DI-pretreated, then stimulated with LPS (4 hr) and ATP (45 min).

(H) Mature IL-1b levels secreted by BMDM untreated or DI-pretreated and stimulated with LPS and nigericin (Nig.) or monosodium urate crystals (MSU).

(I) Western blot analysis of NLRP3, pro-IL-1b, and ASC in lysates of BMDM untreated or DI-pretreated and stimulated as in (G). a-tubulin was used as loading

control. Blot shown is representative of two independent experiments.

For (B), (E), (G), and (H), data are shown asmean ± SEM (n = 3). p values were calculated using two-tailed Student’s t test (B and E) or one-way ANOVA compared

to untreated stimulated cells (G and H). *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. See also Figure S1.
potently modulates macrophage activation and inflammatory re-

sponses by controlling TCA cycle remodeling.

RESULTS AND DISCUSSION

Itaconate Treatment Has Anti-inflammatory Effects
during Macrophage Activation
Itaconate production is one of the hallmarks of macrophage acti-

vation onboth the transcriptional andmetabolic levels: Irg1 is one
of the most highly induced enzymes in activated macrophages,

and itaconate accumulates at high levels within cells (Figure 1A).

Metabolomic profiling of culture supernatants from activated

bone marrow-derived macrophages (BMDMs) revealed that

itaconate was also secreted, as suggested previously (Strelko

et al., 2011) (Figure 1B). The magnitude of itaconate production

prompted us to investigate its potential regulatory role.

We first tested the effect of exogenously added itaconate on

the inflammatory response induced after LPS or LPS + IFN-g
Cell Metabolism 24, 158–166, July 12, 2016 159



stimulation. We treated mouse BMDM with physiologically rele-

vant doses of dimethyl itaconate (DI) (Figure S1A), a membrane-

permeable non-ionic form of itaconate. Pretreatment with DI

suppressed iNOS protein expression (Figure 1C) and IL-12p70

and IL-6 secretion (Figures 1D and 1E), thereby interfering

with activation of pro-inflammatory macrophages. In contrast,

TNF-a levels remained unchanged (Figure 1E), indicating that

the effects of DI-treatment were not due to global inhibition of

NF-kB-dependent gene expression. To determine the specific

pathways affected by itaconate, we performed global transcrip-

tional profiling by RNA-seq on BMDM pretreated with DI or

vehicle and then stimulated with LPS. Differential gene expres-

sion confirmed that DI-treatment led to downregulation of a

spectrum of pro-inflammatory transcripts (Figures 1F and

S1B), including Nos2, Il6, and Il12b.

The RNA-seq analysis also revealed that DI-pretreatment

modulated the expression of several LPS-regulated genes

involved in inflammasome activation and function (Figure 1F),

including Il1b, Il18, P2rx7, Casp1, and Pycard (ASC). Indeed,

DI potently inhibited production of mature IL-1b and IL-18 in-

duced under prototypical NLRP3-activating conditions, namely

LPS-driven priming (signal 1) followed by signal 2 inducers

ATP, nigericin, and monosodium urate crystals (Figures 1G and

1H), whereas it affected inflammasome-induced cytotoxicity

only moderately (Figure S1C). DI-treated BMDM also had

impaired IL-1b production upon AIM-2-dependent inflamma-

some activation (Figure S1D), suggesting a broader regulatory

effect on the inflammasome. The decreased protein expression

of pro-IL-1b, ASC, and NLRP3 in DI-treated cells (Figure 1I) indi-

cated that itaconate-mediated inhibition of inflammasome func-

tion was due primarily to a defective priming phase.

In view of this anti-inflammatory action of itaconate, and given

its known cidal ability on extracellular bacteria, we next deter-

mined its effect on intracellular bacteria during macrophage

infection. To this end, we infected BMDMswithSalmonella typhi-

murium, an intracellular Gram-negative bacterium that triggers

TLR4 signaling and NLRP3 inflammasome activation (Broz

et al., 2010) in the presence or absence of DI pretreatment.

Consistent with our previous findings, infection-induced IL-1b,

IL-6, and nitric oxide (NO), but not TNF-a, were abrogated in

DI-treated cells (Figure S1E), whereas the number of intracellular

bacteria was comparable between DI-treated and control

BMDM (Figure S1F), indicating that the anti-inflammatory effects

of itaconate at non-cytotoxic concentrations did not result from

direct bactericidal activity. Rather, itaconate likely has a regula-

tory role, as supported by Irg1 induction in the viral infection

context (Cho et al., 2013) (Figure S1G), indicating it has regula-

tory functions that are not specific to anti-bacterial response.

Exogenous Itaconate Inhibits Succinate Dehydrogenase
In Vitro and In Vivo
As perturbations in cellular metabolism can lead to transcrip-

tional defects in IL-1b production and inflammasome activation

(Moon et al., 2015), we hypothesized that itaconate exerts its

anti-inflammatory action, in part, by interfering with cellular

metabolism. Using computational analysis of transcriptional

data (Becker and Palsson, 2008), we investigated the possible

rewiring of the metabolic flux triggered by itaconate in the

absence of LPS. Using a flux balance analysis framework, we
160 Cell Metabolism 24, 158–166, July 12, 2016
extended the metabolic model originally formulated for RAW

264.7 macrophage cell line (Bordbar et al., 2012) by including

several reactions and enzymes that were absent in the original

model (e.g., Irg1 and itaconate, see Experimental Procedures

for details). We searched for fluxes in untreated and itaconate-

treated conditions that were most consistent with the RNA-seq

data (see Experimental Procedures). A comparative network

highlights three types of metabolic flux change in response to

itaconate treatment (Figures 2A and S2A): decreased metabolic

flux (blue edges), increased metabolic flux (red), and reactions

insensitive to itaconate addition (gray).

Two features of the computational analysis were apparent.

First, itaconate addition was predicted to increase lactate dehy-

drogenase (Ldh) production. We confirmed this experimentally

using Seahorse technology on unstimulated BMDM with and

without DI treatment. We observed that extracellular acidifica-

tion rate (ECAR), which occurs as a consequence of lactate

accumulation in the medium, was increased in the presence of

itaconate (Figure 2B). The second prediction was that itaconate

addition should decrease the metabolic flux through Sdh. This

suggested that itaconate might inhibit Sdh competitively,

conceivably due the structural similarity between itaconate, suc-

cinate, andmalonate, the latter a knownSdh inhibitor (Figure 2C).

Indeed, 67 years ago, an inhibitory effect of itaconate on Sdh

was postulated based on similar effects of malonate and itaco-

nate on mitochondria function (Ackermann and Potter, 1949).

To evaluate this hypothesis, we compared the activity of purified

Sdh in the presence or absence of itaconate. Notably, itaconate

dose-dependently blocked the activity of Sdh when succinate

was used near physiological concentration 1 mM (Bennett

et al., 2009) (Figure S2B), and itaconate treatment of resting

BMDM led to increased succinate levels (Figure 2D). Kinetic

analysis confirmed the competitive mode of inhibition of Sdh

by itaconate (Figure 2E, left), and Dixon plot analysis showed

Ki for itaconate 0.22 mM (Figure 2E, right). The calculated Km

value for succinate was 0.29 ± 0.8 mM. These results are in

line with the molar amounts of intracellular succinate and itaco-

nate present in LPS-activated macrophages at 24 hr (Fig-

ure S2C). These data suggest that the anti-inflammatory effects

of itaconate in BMDM were likely due to inhibition of Sdh.

Supporting this notion, pretreatment with dimethyl malonate

also inhibited IL-1b production after LPS + ATP stimulation

(Figure S2D).

We next evaluated whether itaconate inhibits Sdh activity

in vivo. A recent study (Chouchani et al., 2014) highlighted the

proinflammatory role of succinate oxidation in the context of car-

diac ischemia-reperfusion (IR) injury. mROS generation during IR

injury was proposed to occur in the mitochondria as a result of

reverse electron transport (RET), whereby Sdh was fueled by

the succinate that accumulated during ischemia. Accordingly,

inhibition of Sdh by dimethyl malonate limited IR injury and

mROS levels (Chouchani et al., 2014). We used this model to

test whether itaconate would inhibit Sdh-mediated oxidation

in vivo. Intravenous infusion of DI during ischemia markedly

reduced myocardial infarct size (Figures 2F and 2G). While the

area-at-risk was similar between the two groups (Figure 2H),

the 42% reduction in infarct size with DI treatment was compa-

rable to that seen after dimethyl malonate administration (Chou-

chani et al., 2014), suggesting a common mechanism of action.



Figure 2. Itaconate Inhibits Sdh Activity In Vitro and In Vivo and Modulates ROS-Mediated Tissue Damage during Ischemia-Reperfusion

Injury

(A) Comparative network showing changes in the magnitude of predicted fluxes between unstimulated macrophages with and without itaconate treatment.

(B) Extracellular acidification rate (ECAR) measured in DI-treated or untreated BMDM. Data are shown as mean ± SEM of 10–15 replicates from one of two

representative experiments.

(C) Chemical structure of succinate, malonate, and itaconate.

(D) Relative succinate levels in resting BMDM treated or not with DI. Data are shown as mean ± SEM (n = 3). p values were calculated using two-tailed Student’s

t test.

(E) Lineweaver-Burk plot (left), Dixon plot (right), and calculated Km and Ki values. Data shown are mean ± SD (L-B plot, n = 3) and mean (Dixon plot, n = 3).

(F) Representative Evans Blue and TTC stained sections of hearts subjected to IR injury, after DI or saline treatment.

(G and H) Quantitation of area-at-risk (AAR) and infarct area (IA) as percent of AAR (G) and left ventricular (LV) myocardium (H) (saline, n = 8; DI, n = 7). p values

were calculated using two-tailed Student’s t test.

(I) Percentage change in ROS (over respective normoxic controls) in neonatal rat cardiacmyocytes (NRCMs) subjected to hypoxia for 24 hr in the presence of DI or

diluent.

(J) Percentage of cell death in NRCMs treated as in (H). For (I) and (J), p values were calculated using post hoc test after one-way ANOVA (n = 8/ condition).

(K) Histograms of mROS expression detected using MitoSox dye in BMDM pretreated or not with DI and activated with LPS (3 hr).

(L) Fold change in mROS mean fluorescence intensity (relative to medium) measured in (K).

Data are shown as mean ± SEM (n = 3, each in duplicates). p value was calculated using two-tailed Student’s t test. *p < 0.05; **p < 0.01; ***p < 0.001. See also

Figure S2.
To evaluate this hypothesis, we used an in vitro assay that

mimics myocardial infarction injury by subjecting neonatal cardi-

omyocytes to hypoxic insult (Ma et al., 2012). Pretreatment with

DI attenuated the hypoxia-induced increase in ROS generation
(Figure 2I) and conferred dose-dependent protection from hyp-

oxia-induced cell death (Figure 2J).

Therefore, we assessed whether itaconate-mediated Sdh

inhibition influenced mROS generation. Pretreatment with DI
Cell Metabolism 24, 158–166, July 12, 2016 161
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Figure 3. Endogenous Itaconate Controls

TCA Cycle Remodeling and Succinate Levels

(A) Relative expression of secreted and intracellular

itaconate by WT and Irg1�/� BMDM after activation

with LPS + IFN-g.

(B) Relative expression of succinate, fumarate, and

malate in cell extracts from (A).

(C) Scheme showing how itaconate regulates TCA

flow in LPS-activated macrophages.

(D) Basal oxygen consumption rate by resting (me-

dium) and LPS-activated BMDM (24 hr) fromWT and

Irg1�/� mice.

Data are shown as mean ± SEM (A and B, n = 3;

D, n = 2 total technical replicates 13–55). p values

were calculated using two-tailed Student’s t test.

*p < 0.05; ***p < 0.001; ****p < 0.0001. See also

Figure S3.
impaired the ability of BMDM to upregulate mROS in response to

LPS (Figures 2K and 2L). As interfering with mROS can affect in-

flammasome priming (Bauernfeind et al., 2011), the blunted

mROS response mechanistically links Sdh inhibition and the

anti-inflammatory effects of itaconate on IL-1b and IL-18 pro-

duction (Figure 1G). Furthermore, it suggests that succinate

processing rather than accumulation is important for the inflam-

matory rewiring of macrophages.

Endogenous Itaconate Regulates Metabolic
Remodeling, Succinate Levels, and Mitochondrial
Respiration in Inflammatory Macrophages
To test the physiological relevance of endogenous itaconate, we

generated mice with a targeted disruption of the Irg1 gene (Fig-

ure S3). As BMDMs from Irg1�/� mice failed to produce or

secrete itaconate (Figure 3A) after stimulation with LPS and

IFN-g, we conclude that Irg1 is the only enzyme carrying out itac-

onate synthesis under these conditions. LPS-activatedWTmac-

rophages show increased concentration of fumarate and malate
162 Cell Metabolism 24, 158–166, July 12, 2016
due to an active aspartate-argininosucci-

nate shunt (Jha et al., 2015), as well as

accumulation of succinate, presumably

due to itaconate inhibition. To confirm

this, we metabolically profiled Irg1�/�

BMDMs and observed marked changes

indicative of altered Sdh activity. Lack

of Irg1 expression led to abrogation of suc-

cinate accumulation, whereas fumarate

and malate concentrations were yet in-

creased (Figure 3B). Thus, in the absence

of endogenous itaconate, Sdh remained

active and oxidized succinate to fumarate,

which was rapidly converted to malate

(Figure 3C).

Besides its role in the TCA cycle, Sdh is

also part (as complex II) of the mitochon-

drial electron transport system. In LPS-

activated macrophages, mitochondrial

respiration decreases significantly (Kelly

andO’Neill, 2015). Thus, we testedwhether

itaconate-mediated inhibition of Sdh influ-
enced mitochondrial function by measuring oxygen consump-

tion rates (OCR). Remarkably, contrary to WT cells, Irg1�/�

BMDMs showed increased OCR at 24 hr post activation

(Figure 3D), demonstrating that, by inhibiting Sdh, endogenous

itaconate modulates mitochondrial respiration, as recently pro-

posed for exogenous itaconate (Németh et al., 2016).

Endogenous Itaconate Regulates Macrophage
Inflammatory Responses
We next assessed macrophage activation in the absence of

endogenous itaconate. We used RNA-seq to profile differences

in gene expression of LPS-activated wild-type (WT) and Irg1�/�

BMDMs. Notably, the transcriptional signature in Irg1�/� cells

was essentially inversely correlated with itaconate-treated WT

cells: genes upregulated in Irg1�/� cells were downregulated in

itaconate-treated WT BMDMs (Figure 4A), providing additional

evidence that endogenous itaconate functions in a manner

similar to exogenously added DI. Consistent with these observa-

tions, LPS-activated Irg1�/� BMDM produced more IL-12, NO,
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Figure 4. LPS-Activated Irg1–/– Macrophages, which Lack Itaconate, Show Augmented Inflammatory Responses

(A) Transcriptional signatures of activated Irg1�/� and DI-treated activated WT BMDM are inversely related.

(B) IL-12 and NO levels in supernatants of WT and Irg1�/� BMDM stimulated with LPS + IFN-g (24 hr).

(C) IL-6 and TNF-a levels in supernatants of LPS-activated (24 hr) WT and Irg1�/� BMDM.

(D) Mature IL-1b and IL-18 levels in supernatants of WT and Irg1�/� BMDM stimulated with LPS (4 hr) and ATP.

(E) Relative hif1a mRNA expression in LPS-activated WT and Irg1�/� BMDM (4 hr).

(F) Western blot analysis of HIF-1a in lysates of WT and Irg1�/� BMDM activated as in (E); a-tubulin was used as a loading control. Blot shown is representative of

two independent experiments.

(G)Western blot analysis of HIF-1a in lysates ofWTBMDMuntreated or DI-treated and activatedwith LPS (24 hr). Blot shown is representative of two independent

experiments.

Data in (B)–(E) are shown as mean ± SEM (n = 3/group, each in 2–3 replicates). p values were calculated with two-tailed Student’s t test. *p < 0.05; **p < 0.01;

***p < 0.001; ****p < 0.0001.
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and IL-6, but similar amounts of TNF-a, compared to WT cells

(Figures 4B and 4C). Irg1�/� BMDM also sustained higher

expression of mature IL-1b and IL-18 under conditions that stim-

ulate NLPR3 (Figure 4D). Consistent with the known IL-1b-pro-

moting effect of HIF-1a (Tannahill et al., 2013), we observed

increased HIF-1a mRNA and protein levels in Irg1�/� cells and,

reciprocally, suppression of HIF-1a expression in DI-treated

BMDM (Figures 4E–4G). Thus, changes in HIF-1a and IL-1b pro-

duction correlate with efficiency of succinate oxidation by Sdh.

These observations raise the possibility that the HIF-1a-IL-1b

axis is linked to the efficiency and directionality of the electron

transport chain in activated macrophages rather than direct

signaling through succinate accumulation.

In summary, our work identifies itaconate as part of a posttran-

scriptional mechanism that governs TCA cycle remodeling and

macrophage activation via its inhibitory effect on Sdh and regu-

lation of succinate levels. Our results expand the physiological

roles of itaconate beyond a direct anti-bacterial action, to include

regulation of TLR-mediated inflammatory cytokine production,

and provide a physiological regulatory mechanism to control

electron transport chain flow, succinate levels, ROS production,

and tissue inflammation.

EXPERIMENTAL PROCEDURES

Mice

Irg1�/� (MGI:103206) mice were generated at Washington University after

receiving embryonic stem cells (ESCs) (Irg1tm1a(KOMP)Wtsi) from the Knockout

Mouse Project Repository (KOMP, University of California, Davis) containing

an insertion cassette between exons 3 and 4. This cassette prevents transcrip-

tion of downstream exons 4 and 5 and production of mature protein. Irg1�/�

C57BL/6N ESCs were microinjected into (Cg)-Tyrc-2J/J albino recipient

female C57BL/6 mouse blastocysts. Chimeric mice with black coat color

were selected and bred to wild-type C57BL/6N mice. Homozygous Irg1�/�

mice were generated by intercrossing the heterozygous animals and

confirmed by PCR. Irg1�/� mice were fertile and exhibited normal Mendelian

frequencies, and BMDM from both sexes were used.

C57BL/6N WT mice from Charles River Laboratories were used as age-

matched controls. Mice were maintained at Washington University under spe-

cific pathogen-free conditions in accordance with Federal and University

guidelines and protocols approved by the Animal Studies Committee of Wash-

ington University.

Differentiation and Activation of Macrophages

BMDM were prepared from 6- to 8-week-old mice as described (Jha et al.,

2015) and seeded at 105 cells/well in 96-well tissue-culture plates in RMPI-

1640medium (ThermoFisher) supplementedwith 10%FBS, 2mML-glutamine

(Thermo Fisher Scientific), and 100 U/mL penicillin-streptomycin (Thermo

Fisher Scientific). Cells were treated or not with DI (0.25 mM, 12 hr; Sigma)

and activated as shown with LPS (E. coli 0111:B4; 100 ng/mL; Sigma) ±

IFNg (50 ng/mL; Peprotech). For inflammasome activation, cells were primed

with LPS (100 ng/mL, 4 hr) before addition of ATP (3mM, 45min; Sigma), niger-

icin (5 mM; 1 hr; Sigma) or monosodium urate crystals (250 mg/mL; 4 hr;

InvivoGen).

Flow Cytometry

Cells were incubated with anti-CD16/32 (clone 93, Biolegend), surface

stained for F4/80 (clone BM8, eBioscience) and CD11b (clone M1/70; BD

PharMingen) together with LIVE/DEAD dye (Invitrogen), followed by intracel-

lular iNOS stain with anti-NOS2 (clone C-11; Santa Cruz Biotechnology) and

FITC-conjugated IgG (Clone A85-1; BD PharMingen) using the BD cytofix/

cytopermKit (BD Biosciences). Cells were acquired on Canto II flow cytometer

(BD Biosciences), and data were analyzed with FlowJo v.9.5.2 software (Tree

Star).
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Quantification of Cytokines and Nitric Oxide

Cytokines were quantified using DuoSet kits for IL-1b/IL-1F2, TNF-a, and IL-6

(all R&D systems), IL-12 ELISA MAX Deluxe Set (BioLegend), and IL-18 ELISA

kit (Medical & Biological Laboratories). Nitric oxide was detected with Griess

Reagent System (Promega).

Western Blotting

Cells were lysed in RIPA Lysis Buffer (Santa Cruz) and heat-denatured in

reducing sample buffer (Thermo Fisher Scientific). Proteins were separated

on 4%–20% polyacrylamide gradient gels (BioRad) and transferred onto

PVDF membranes. Non-specific binding was blocked with 5% skim milk,

and membranes were probed with primary antibodies to IL-1b (1:1,000;

12507S, Cell Signaling), Nlrp3 (1:500; NBP2-12446, Novus), HIF-1a (1:500;

NB100-449, Novus), a-tubulin (1:2,000; 2125S, Cell Signaling), and ASC

(1:1,000; sc-22514-R, Santa Cruz), followed by incubation with anti-rabbit-

HRP (1:10,000; sc-2030, Santa Cruz) and Clarity western ECL substrate

(Bio-Rad).

Sdh Activity Assay

Sdh was purified from the BV2 macrophage cell line and its activity measured

in the presence of itaconate using the Complex II Enzyme Activity Microplate

Assay Kit (Abcam) as per manufacturer’s protocol. Substrates were diluted in

activity buffer and added to the phospholipid mixture 5 min before adding the

activity solution. For kinetic analysis, sodium succinate hexahydrate was used

as indicated in activity buffer.

Extracellular Flux Analysis

Real-time extracellular acidification and oxygen consumption rates were

measured using Seahorse technology as described (Huang et al., 2014).

Metabolite Profiling by GC-MS

Cellular metabolites were extracted from an equal number of cells per sample

and analyzed by GC-MS as described (Vincent et al., 2015). Briefly, intracel-

lular metabolism was quenched with 800 ml of 80% methanol. To analyze

secreted metabolites, 20 ml supernatants were added to 800 ml of 80%

methanol. D-myristic acid (750 ng/sample) was used as internal standard.

Extracts were dried by vacuum centrifuge and pellets resuspended in 30 ml

pyridine-containing 10 mg/mL methoxyamine hydrochloride, before being de-

rivatized using N-(tert-butyldimethylsilyl)-N-methyltrifluoroacetamide. Metab-

olite abundance was expressed relative to the internal standard.

RNA-Seq Analysis

mRNA was extracted with oligo-dT beads (Invitrogen), and libraries were pre-

pared and quantified as described (Vincent et al., 2015).

Flux Balance Analysis

To investigate possible rewiring of the metabolic fluxes, we used flux balance

analysis framework (FBA). Using the RAW 264.7 macrophage cell line meta-

bolic model (Bordbar et al., 2012) and an algorithm similar to GIMME (Becker

and Palsson, 2008) and MADE (Jensen and Papin, 2011), we simulated fluxes

in untreated and DI-treated conditions based on their consistency with the

RNA-seq data for each condition. See Supplemental Information for detailed

analysis.

Myocardial Ischemia-Reperfusion Model

In vivo ischemia-reperfusion modeling was done as described (Ma et al.,

2012). 8- to 10-week-old mice were anesthetized and subjected to open chest

procedure of reversible left anterior descending artery ligation for 30 min and

subsequent reperfusion for 2 hr. Saline or DI (4 mg/kg/min) was infused intra-

venously 10 min before and during ischemia. A cardioplegic solution followed

by Evans Blue (after reocclusion of the LAD) was injected in a retrograde

manner through the aorta in situ. The left ventricle was then sectioned into

five slices, incubated in TTC (triphenyltetrazolium chloride) at 37�C (30 min),

and images analyzed with ImageJ (NIH).

Hypoxia Modeling in Neonatal Rat Cardiac Myocytes

Neonatal rat cardiac myocytes were isolated and cultured as described (Ma

et al., 2012). Cells were subjected to hypoxia in an oxygen control cabinet



(Coy Laboratories) mounted within an incubator and equipped with oxygen

controller and sensor for continuous oxygen level monitoring. A mixture of

95% nitrogen and 5% CO2 was utilized to create hypoxia, and oxygen levels

in the chamber were monitored and maintained at <1%. Cell death was as-

sessed with the Live-Dead Cytotoxicity Viability kit for Mammalian cells

(Invitrogen) and ROS detected by flow cytometry with fluorescent carboxy-

H2DCFDA (after incubation in 10 mmol/L for 30 min) (Ma et al., 2012).

mROS Measurement

Cells were treated with DI (0.25 mM, 12 hr) or vehicle, loaded with 5 mM

MitoSOX (Invitrogen) at 37�C for 30 min in HBSS supplemented with 0.1%

BSA, and rinsed with warm culture medium, before stimulation with LPS 1 hr

later (for 3 hr) and analysis on Canto II flow cytometer (Becton Dickinson).

Statistical Analysis

Statistical analyses were performed in GraphPad Prism 6 software using sta-

tistical tests indicated for each experiment.
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