
 

Narrative review (Clinical Microbiology and Infection – CMI)  

Title: Mycobacterium tuberculosis and whole-genome sequencing: how close are we to unleash its full 

potential? 

Authors: Satta G1,2, Lipman M3,4, Smith GP5,6, Arnold C1,7 , Kon OM2,8, McHugh TD1.  

1. UCL-TB and UCL Centre for Clinical Microbiology, Department of Infection, University College London, 

UK 

2. Imperial College Healthcare NHS Trust, London, UK 

3. UCL-TB and UCL Respiratory, University College London, UK 

4. Royal Free London NHS Foundation Trust, London, UK 

5. National Mycobacterium Reference Laboratory, Public Health England, UK 

6. Heart of England NHS Foundation Trust, Birmingham, UK  

7. Genomic Services and Development Unit, Public Health England, UK 

8. National Heart and Lung Institute, Imperial College London, UK 

Corresponding author: 

Dr Giovanni Satta 

Research Fellow - University College London, Centre for Clinical Microbiology, Department of Infection 

Consultant in Medical Microbiology and Infectious Diseases - Imperial College Healthcare NHS Trust, 

London 

Giovanni.satta@nhs.net  

Keywords: Mycobacterium tuberculosis, Whole Genome Sequencing, applications, drug resistance 

 

Abstract  

Background: Nearly two decades after the completion of the genome sequence of Mycobacterium 

tuberculosis (MTB), and with the advent of next generation sequencing technologies (NGS), whole-

genome sequencing (WGS) has been applied to a wide range of clinical scenarios. Starting in 2017, 

England is the first country in the world to pioneer its use on a national scale for the diagnosis of 

tuberculosis, detection of drug resistance and typing of MTB.  
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Aims: This narrative review critically analyses the current applications of WGS for MTB and explains how 

close we are to realizing its full potential as a diagnostic, epidemiologic and research tool. 

Sources: We searched for reports (both original articles and reviews) published in English up to 31st May 

2017, with combinations of the following keywords: whole genome sequencing, Mycobacterium and 

tuberculosis. MEDLINE, Embase and Scopus were used as search engines. We included articles that 

covered different aspects of whole genome sequencing in relation to MTB. 

Content: This review focuses on three main themes: the role of WGS for the prediction of drug 

susceptibility, MTB outbreak investigation and genetic diversity, and research applications of NGS.  

Implications: Many of the original expectations have been accomplished, and we believe that with its 

unprecedented sensitivity and power WGS has the potential to address many unanswered questions in 

the near future. However, caution is still needed when interpreting WGS data as there are some 

important limitations to be aware of, from the correct interpretation of drug susceptibilities to the 

bioinformatic support needed.  

 

Introduction 

The complete genome sequence of Mycobacterium tuberculosis (MTB) was described in 1998 1. Since 

then, whole-genome sequencing (WGS) has been applied to a wide range of clinical scenarios, with the 

potential to revolutionize tuberculosis (TB) diagnosis, outbreak investigation, drug and vaccine 

development, plus assist in understanding MTB evolution and pathogenicity. In 2017, Public Health 

England (PHE) introduced routine WGS in the clinical setting of the National Health Service (NHS); and 

England will be the first country in the world to pioneer its use at a population level for the diagnosis, 

detection of drug resistance and typing of MTB 2 (Scotland, Wales and Northern Ireland are not included 

yet).  

The main aim of this narrative review is to summarize and critically analyze the current literature 

relating to WGS and MTB as a diagnostic, epidemiologic and research tool; and determine to what 

extent we have been able to utilize its full potential (search criteria are specified in Box 1). This review 

will provide the reader with an overview of the current applications (and limitations) of WGS, with a 

specific focus on three main themes: prediction of drug susceptibility, outbreak investigation and 

genetic diversity, and research applications (pathogenesis, drug discovery and vaccine development) 

(Table 1). It will interpret the present situation and provide guidance on the future direction of 

development.   

Prediction of drug susceptibility and resistance 

Extensive work on WGS and susceptibility testing has been led by the Wellcome Trust/University of 

Oxford (and collaborators), with the demonstration that this approach can be integrated into routine 

diagnostic workflows, with data generated in 9 days (compared to an average of 3 weeks for 

conventional susceptibility methods) (Figure 1) and at a similar or cheaper price than the current 



 

diagnostic workflows 3 4. A recent systematic review 5 on the use of WGS for the detection of drug 

resistance in MTB highlighted its role as a promising alternative to existing phenotypic and molecular 

drug susceptibility testing methods. In particular, this high sensitivity and specificity has been 

demonstrated for the first line drugs isoniazid (INH) and rifampicin (RIF). However, there is still 

significant variation with the remaining first and second line drugs. This results from the complexity of 

genetic mechanisms conferring resistance, plus in some cases resistance driven by non-specific 

mechanisms such as efflux pumps 6. This may be of considerable importance when using WGS to guide 

clinical decisions. The lack of standardization for some phenotypic tests, in particular pyrazinamide, also 

confounds the identification of resistance in clinical isolates and mutants 7. 

The implementation of WGS in the clinical setting is hindered by some significant limitations. Not least 

of these is the requirement for a culture sample before DNA isolation and sequencing. Direct WGS from 

clinical samples has been successfully demonstrated 8 9 10; though all current protocols for clinical 

practice still require a culture step. Additionally, before switching completely to WGS testing, a long 

transition period with both WGS and conventional culture susceptibility methods used in parallel will be 

needed to clarify the current discrepancies between genotype and phenotype and to satisfy the need 

for large data sets to better understand the role of rare resistance mechanisms, and the level of 

resistance conferred by different mutations.  

On the other hand, major progress has already been made in terms of data interpretation and 

standardization. Several online software tools, all-in-one and easy to use, are available for the rapid 

interpretation of WGS data in MTB11 and various online databases (ReSeqTB12, TB Portal13, GenTB14) 

offer support to share, interpret and link genetic results to drug resistance phenotype and other 

epidemiological variables, providing international harmonization of such data.  At the same time, these 

and other databases also allow the automatic surveillance of drug resistance at a global level, 

influencing public health interventions.  

WGS has the potential to revolutionize the definition of drug susceptibility testing (DST) of MTB in both 

high- and low-income settings and a growing knowledge of the genetic mechanisms of resistance, 

combined with an improved IT infrastructure, will facilitate its adoption and enhance its clinical utility 

for drug testing. A key challenge is to demonstrate that its use in the routine diagnostic service will have 

an impact on patient outcomes. Treatment guidelines have evolved over decades to reflect the role of 

clinical suspicion and not to over-rely on microbiological positive results, especially in the setting of 

culture negative samples or in case of extra-pulmonary disease. Recently, rapid PCR methods have 

allowed the rapid detection of resistance within the same day. However  data from developing countries 

do not seem to support any improvement in outcome 15 16 and it is currently unknown if this is also 

relevant to WGS.  

Outbreak investigation and genetic diversity 

Several studies 4 17 18 19 have demonstrated the utility of WGS in public health interventions and in the 

detection of outbreaks and transmission events, confirming its higher resolution when compared to 

MIRU-VNTR typing, IS6110 RFLP typing and spoligotyping methods. Some of the latest techniques (e.g. 



 

spoligotyping) lack discrimination 20 when determining the likely route of transmission or distinguishing 

isolates with minor differences. That WGS can identify Single Nucleotide Polymorphisms (SNPs) between 

different strains is particularly useful when trying to discriminate clinical relapse from reinfection. For 

example, using data from the recent RIFAQUIN trial 21, 36 patients with positive cultures before and 

after treatment had their strains typed using 24-loci MIRU-VNTR, in silico spoligotyping and WGS. Whilst 

WGS and MIRU-VNTR differentiated relapse and reinfection with a similar level of discrimination, WGS 

provided significant extra information. One pair had an intermediate number of SNP differences (more 

than 5), which was likely to result from a mixed infection with a pre-treatment minor genotype that was 

highly related to the post-treatment genotype. WGS reclassified this as a relapse, whilst MIRU-VNTR 

typing could not do this. From a global perspective, WGS has allowed the detection of genetic diversity 

in MTB with unprecedented resolution. It has been used to understand its evolution, including the 

discovery of its origin from Mycobacterium canettii (first described in 1969 and now considered the 

progenitor species from which MTB emerged) 22, and also lineages, variation at global, local and 

individual levels 23. 

By contrast, the utility of WGS has been questioned in a recent paper analyzing a large isoniazid-

resistant (INH-R) MTB outbreak in London (UK) 24. WGS did provide increased resolution over variable 

number tandem repeat (VNTR)-based clustering but was still insufficient to resolve transmission 

networks in a very large tuberculosis outbreak. There appears to be little evidence that the routine use 

of VNTR-genotyping helps in controlling transmission; and it has not been shown to be effective or cost-

effective in its current form 25. Thus, uncertainty remains whether this also applies to WGS though its all-

in-one potential (including identification, susceptibility and “typing”) can provide relevant data for 

different purposes.  

From a practical perspective, microbiology laboratories, physicians and TB nurses are familiar with the 

linear, visual numeric MIRU-VNTR profile that is relatively easy to compare between patients. Without 

adequate bioinformatics support and IT infrastructure, public health teams will struggle to interpret 

WGS output data, which may lead to significant delays in the identification of outbreaks and 

transmission events. Additionally, the delivery of this information to clinicians and TB nurses in an 

understandable format and in a timely manner remains a key issue. Obtaining MIRU-VNTR profiles from 

WGS data is technically challenging and phylogenetic trees need to be run whenever a new sample has 

been added. The amount of data generated can be immense and not easily supported by the current IT 

infrastructure. This is something that still needs to be addressed. Cloud-based systems may represent a 

solution and allow the discovery of nationwide transmission events.  

Pathogenesis, drug targets discovery and vaccine development 

The complete genome of MTB includes 4 million base pairs and 4000 genes 1. However, up to 50% of 

these genes are still labeled as unknown, uncharacterized or with hypothetical function 26. More 

recently, a SNP-calling program combined with WGS has allowed the creation of a catalog of virulence 

genes and new potentially virulent sub-lineages 27.  As illustrated in a recent paper exploring the genetic 

variation of a sub-cluster of the London INH-R TB outbreak 28, WGS was also able to demonstrate 

specific deletions and SNPs affecting different genes that were peculiar to those clinical strains and 



 

which could potentially explain the persistence of the outbreak over years. However, the simple 

presence of such mutations does not necessary confirm their function – which is another limitation of 

WGS. Further studies (transcriptomics, knock out models, recombineering) are still needed to confirm 

the impact of those genes in the pathogenesis of TB and if any of the virulence genes involved by SNPs 

can be actually used as drug targets for the development of new compounds. Caution also needs to be 

used with this approach. Many of these genes may not be essential, accompanied by genetic 

redundancy or metabolic scavenging (overcoming nutrient insufficiency by using alternative pathways or 

substrates), leading us to appreciate that pharmacological target-validation may be far more reliable 

and a better predictor of success 29 30. Additionally, compensatory mutations in other part of the 

genome may balance the initial fitness cost and further complicate the overall picture 31. 

WGS has the potential to revolutionize the process of drug target identification 32. It has been 

successfully used to determine the target of Bedaquiline (BDQ) 33. Here, the authors selected and 

sequenced BDQ resistant Mycobacterium smegmatis strains and identified mutations in the proton 

pump of adenosine triphosphate (ATP) synthase associated with resistance. Others 34 have selected 

mutants directly using MTB to evaluate combination treatment against drug resistant strains. A scalable 

platform for the discovery of drug targets, based on combining high-throughput screening (HTS) with 

whole-genome sequencing (WGS) of resistant isolates, has been proposed 35. Using this approach, the 

authors have identified promising new drug targets. Surprisingly, some of the resistant bacteria had 

mutations on the same genes (though were resistant to structurally different compounds). When 

sequencing the genome of resistant mutants, researchers should remember that the mutations 

conferring resistance may involve different stages of drug metabolism: mutations can affect enzymes 

that convert the compound into an active form (and then inhibit an unknown target), the target gene, 

regions responsible for up- or down-regulation of targets and activating enzymes, efflux pumps or 

detoxifying enzymes. It is also possible that the same drug may be inactivated by different mechanisms 

of resistance and some of them may be common to other compounds, as already described for other 

anti-MTB drugs such as isoniazid and ethionamide 36. WGS could therefore contribute to elucidating 

global mechanisms of action/resistance.  

Understanding bacterial pathogenesis is expected to provide an instrumental contribution to vaccine 

development, particularly to target those pathogens (such as MTB) for which the traditional approaches 

have not been completely successful 37. The comparison by genome sequencing of MTB clinical strains 

CDC1551 with the laboratory-adapted H37Rv has demonstrated a more extensive variability than had 

been anticipated 38, highlighting the importance of understanding genetic diversity in pathogenic strains 

and of validating candidate targets with other genomic techniques. A functional genomic approach has 

been developed and inhibition techniques, such as signature-tagged mutagenesis (STM) and transposon 

site hybridization (TraSH), have been successfully applied to MTB 39 40 with the potential for better-

attenuated vaccines.  

Discussion 

WGS has undoubtedly offered us a greater understanding of MTB, in particular its epidemiology and 

evolution. WGS has the potential to revolutionize susceptibility testing in the routine microbiology 



 

laboratory. With the cost of sequencing likely to continue to decrease (it has already dropped from 

thousands to around a hundred dollars per test) and the capabilities of sequencing technologies to 

improve, the number of clinical and research laboratories implementing it will increase, as well as the 

number of trained scientists able to interpret the data. However, several important challenges still exist 

and it is important for clinicians and microbiologists to be aware of the limitations. 

From a clinical perspective, the impact on treatment outcomes and on the reduction of onward 

transmission still needs to be demonstrated and other questions still remain unanswered (Table 2). A 

positive culture is still needed before DNA isolation and sequencing can be performed and this generally 

takes at least a couple of weeks. On the positive side, clinicians will be able to receive preliminary results 

weeks in advance of conventional susceptibility culture methods. PHE plans to release genotypic 

resistance prediction for seven antituberculous drugs (Rifampicin, Isoniazid, Ethambutol, Pyrazinamide, 

Quinolones group, Streptomycin and Amikacin) as soon as WGS has been performed on the isolate 

(unpublished data from PHE). Culture results will follow but the plan is to potentially stop routine 

phenotypic testing for Rifampicin, Isoniazid, Ethambutol and Pyrazinamide on the majority of those 

isolates that have no mutations in resistance genes for these four drugs, and to provide MICs on a wider 

range of drugs where there is an indication of resistance mutations, drug intolerance or other clinical 

indicators of poor response to first line treatment. Current molecular methods (i.e. GeneXpert and Line 

Probe Assays) already offer rapid detection of Rifampicin and Isoniazid resistance directly from clinical 

samples (smear positive and negative) 41 42. They objectively reduce the diagnostic time in the laboratory 

with also a major reduction in the delay between identification of patients at risk of MDR-TB and 

initiation of treatment 43. However, they are not exempt from some major limitations, including the 

detection of mutations outside the target regions (GeneXpert cannot detect INH mono-resistance) and 

low sensitivity for other drugs (Line Probe MTBDRsl) 44.  WGS is unlikely to completely replace 

phenotypic DST for TB in the near future. Large datasets are needed to clarify the current discrepancies 

between genotype and phenotype, as well as the role of rare resistance mechanisms and the level of 

resistance conferred by different mutations. In this respect, the CRyPTIC Project (Comprehensive 

Resistance Prediction for Tuberculosis: an International Consortium) aims to collect 100,000 MTB 

isolates with each global site performing drug-resistance testing in parallel with WGS. The results will be 

assembled into a single open-access database 45 that may allow a more complete understanding of the 

relationship between clinical resistance and genotype. Additionally, the real potential of WGS, together 

with deep sequencing, will be to distinguish also individual variation (that is, relapse from reinfection) 

and the detection of minority variants and subpopulations with low-level drug resistance, that may be 

selected during treatment and contribute to the emergence of drug resistance 46.  

From a laboratory perspective, various practical considerations need to be taken into account. These 

include the challenge in extracting MTB DNA to the need for extensive and robust IT infrastructure with 

cloud-based systems (or remote access to servers) and reliable high-speed internet connections. Despite 

different online tools available for the rapid interpretation of WGS data 11, a powerful Information 

Technology (IT) infrastructure is still needed for the analysis, storage and transfer of multiple samples 

and cloud based services and reliable internet connections are necessary. The amount of data generated 

by WGS is immense and laboratory computers will need to be upgraded and with a robust backup 



 

system in place. The lack of bioinformatics expertise among clinical microbiologists is another major 

potential barrier for clinical adoption as the introduction of WGS will be hampered by the complexity of 

data and its analysis. A new generation of biomedical and clinical scientists will need to be trained and, 

considering the applications of WGS in many other fields (genetics and oncology in particular), bio-

informaticians may become part of the pathology workforce as IT managers were in the early 1990s 

when laboratory information systems were first introduced 47.  Finally, accreditation (ISO 15189 and 

others) will be essential for clinical diagnostic laboratories performing and interpreting WGS: PHE is 

already working toward this goal 2.  

From a research perspective, WGS should support us in unveiling the real role in virulence and 

pathogenicity of MTB genes and clinical strains represent the perfect samples for further analysis. In this 

context, we would support wide-scale investment in WGS and the creation of comparable databases of 

genetic variations of clinical strains, plus the addition of biological information, including fitness assays 48 

and mutation rate 49, for a comprehensive picture useful in clinical practice. This will potentially allow 

the discovery of new drug targets and the deciphering of MTB gene function.  

In conclusion, this review has summarized the current applications, achievements and limitations of 

WGS for MTB’s diagnosis, epidemiology and research. Many of the original expectations have been 

accomplished, with greater understanding of its evolution and global diversity, applications in drug 

discovery and vaccine development and, more importantly, its introduction at a national scale for 

susceptibility testing and typing. With its incremental sensitivity and power WGS has the potential to 

address many unanswered questions in the near future. However, caution is still needed when 

interpreting WGS data and it is important to be aware of its limitations.  

  



 

Tables and figures 

Box 1: Search Strategy and selection criteria 

We searched for PubMed reports published in English until 31st May 2017, with combinations of the 

following keywords: whole genome sequencing, WGS, Mycobacterium and tuberculosis. We searched 

for reports (both original articles and reviews) published in English up to 31st May 2017, with 

combinations of the following keywords: whole genome sequencing, Mycobacterium and tuberculosis. 

MEDLINE, Embase and Scopus were used as search engines. We reviewed the articles resulting from 

these searches and the relevant references cited in them. Additional search using an internet search 

engine was performed to potentially identify some additional papers. As this is narrative review, we 

considered to be most appropriate to focus on three main themes (prediction of susceptibility, outbreak 

investigation and research applications) and included articles that reflected this. Inevitably, we did not 

include some papers that were not relevant to the main themes and that did not provide any additional 

information.   

 

Table 1: Current applications of whole genome sequencing and Mycobacterium tuberculosis, with 

achievements and limitations 

1. Prediction of drug susceptibility and resistance 

Achievements Limitations 

- Diagnostic workflow with data generated 
in 9 days and at a price 7% cheaper  

- First line drugs (Rifampicin and Isoniazid): 
strong performance with high sensitivity 
and specificity 

- Potential for WGS directly from clinical 
samples 

- Online tools available for rapid data 
interpretation 

 

- Significant variation for the remaining first 
line and other drugs 

- Culture still needed for DNA extraction 
and WGS 

- Bioinformatics support and IT 
infrastructure needed to download and 
analyze data 

- Lack of accreditation (ISO 15189 and 
others) 

2. Epidemiological analysis 

Achievements Limitations 

- Higher resolution compared to MIRU-
VNTR typing, IS6110 RFLP typing and 
spoligotyping methods 

- Ability to distinguish relapse from 
reinfection  

- Better understanding of evolution, 
lineages and genomic variation 

- Still insufficient to resolve transmission 
networks in tuberculosis outbreaks 

- Clinical benefits and cost-effectiveness not 
demonstrated 

- Bioinformatics support and IT 
infrastructure needed to download and 
analyze data 

3. Research 

Achievements Limitations 

- Demonstration of specific deletions and 
SNPs peculiar to clinical strains 

- Further studies and techniques still 
needed to confirm gene function 



 

- Discovery of mechanism of action of new 
drugs 

- Demonstration of more extensive genetic 
variability than original expected 

- Potential in vaccine development 

- Mutations may be nonspecific 
- Need for large database to compare data 

at international level 

 

Table 2: Questions still to be addressed by whole genome sequencing 

1. Does the application of WGS provide better treatment outcomes?  

2. Does the application of WGS help in reducing transmission? 

3. Does WGS provide any benefit compared with current molecular methods? 

4. Can WGS clarify the current discrepancies between genotype and phenotype, the role of rare 
resistance mechanisms and the level of resistance conferred by different mutations? 

5. How can WGS be implemented in the current laboratory workflow for MTB diagnosis? 

6. Can WGS identify minority variants and subpopulations from pooled sweeps of colonies? 

7. What is the real extent of MTB global, local and individual diversity? And how can we use this 
information for the selection of a better vaccine?  

 

Figure 1: Workflow or the processing of mycobacterial samples and whole genome sequencing. 

Genotypic susceptibilities can be available within 9 days of a positive culture, compared to an average of 

3 weeks with traditional phenotypic methods.  Abbreviations: AFB – Acid Fast Bacilli, RIF – Rifampicin, 

INH – Isoniazid.  
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