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Abstract: This paper demonstrates the functionality and ease of use of a recently im-
plemented robust exact differentiator block for numerical simulations performed within the
Matlab/Simulink software environment. It is demonstrated that the differentiator block may
be used for various applications and may be easily integrated within existing Simulink models.
The underpinning discrete time differentiation algorithm is briefly outlined and its parameters
up to differentiator order 10 are presented. An extended version of the toolbox supports
the so-called automatic code generation feature of Matlab/Simulink. This functionality allows
compilable code to be produced for many available hardware platforms. Three applications are
presented in the paper, where two require the production of executable code. The simulation
based application presents a differentiator based edge detection algorithm for image processing
purposes which utilises the simulink block directly.
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1. INTRODUCTION

From a theoretical viewpoint, differentiators of arbitrary
order based on higher order sliding mode techniques are
well studied. This is documented by a large number of
publications and their associated citations, see e.g. Levant
(2003, 1998). Attractive characteristics such as finite time
estimation of the time-derivatives up to an arbitrary order
n of a noise-free signal f(t) are proven and discussed in
detail. Exploiting these differentiators for state observa-
tion of dynamical systems, the separation principle conse-
quently is fulfilled, see Levant (2003). In the case of a noisy
signal f(t), these differentiators are shown to provide ac-
curate estimates and even in a discrete-time environment,
the behaviour of the differentiators is well documented, see
Livne and Levant (2014). However, real world applications
or even simulation studies demonstrating the performance
of sliding mode based differentiators of order greater than
one are sparse. Applications of first order differentiators
are more often reported, see e.g. Imine et al. (2015, 2011).
The objective of the work summarized in this article is
to describe a differentiator toolbox which can be used
for both numerical simulation studies and real world ex-
periments. The toolbox is freely available for the Mat-
lab/Simulink environment 1 . It provides a single block
which is straightforward to integrate in existing Simulink
models. Figure 1 shows a screen shot of the block which

1 The toolbox can be downloaded at www.reichhartinger.at. A
version which also supports automatic code generation can be
requested from the authors.

has a single input port and two output ports. The signal
f to be differentiated has to be connected at the input
port of the differentiator block (labeled with f in Fig. 1).
The first output port, which is labeled c, represents the
convergence signal. It indicates whether the differentiator
provides reliable estimates of the derivatives of the input
signal which are included in the second output port la-
beled with x. The output x is a vector including the first
n time derivatives of f . A detailed discussion including
the usage, the tuning and some examples are given in
Reichhartinger and Spurgeon (2016). The differentiator
algorithm implemented in the toolbox is the discrete time
differentiator proposed in Livne and Levant (2014) and
outlined in Section 2. Three applications demonstrating
the application of the differentiator block are given in
Section 3. Section 4 concludes the paper.

2. REVIEW OF THE IMPLEMENTED ALGORITHM

Sliding mode based differentiators are often represented in
the so-called recursive structure. This may be motivated
by established tuning procedures, typically the n + 1 pa-
rameters of the differentiator are adjusted using a step-
by-step algorithm. At each step, the order of the differ-

Fig. 1. Simulink block of the implemented differentiator.
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entiator is increased requiring one additional parameter
to be selected. After appropriately selecting this param-
eter, the order of the differentiator is further increased
by 1 until the desired order is reached. However, in this
toolbox the differentiator is implemented based on a non-
recursive structure. From the authors’ point of view, an
implementation of the non-recursive structure is intuitive
and straightforward and, additionally, a discrete-time real-
ization may easily be obtained. The differentiator in non-
recursive form is given by

dx0
dt

= x1 + ϕ0, (1a)

dx1
dt

= x2 + ϕ1, (1b)

...

dxn
dt

= ϕn, (1c)

where

ϕi(e) = κi bee
n−i
n+1 (2)

and e = f − x0. The positive constants κi with i =
0, 1, . . . , n denote the parameters of the differentiator and
the operator b.e. is given by

baeb = |a|b sign(a). (3)

Given an appropriate set of parameters κi, it is well known
that in the case of a noise-free signal f , the estimation
error e and its first n time derivatives converge to zero
within finite time. Consequently, the variable xi of the
differentiator (1) is a finite time estimate of f (i)(t), i.e.
the ith time derivative of f(t). In the case of a signal f
corrupted by noise of maximum amplitude ε, the accuracy
of the differentiator (1) is given by∣∣∣xi − f (i)∣∣∣ = O

(
ε

n+1−i
n+1

)
. (4)

This relationship motivates selecting the order n of the
differentiator higher than required. Consider for example
an application requiring an estimate of the velocity of a
mass based on a measurement of position. A differentiator
of first order provides the accuracy of the first time deriva-
tive, i.e. the velocity, by O(ε

1
2 ) whereas a differentiator

of second-order provides an estimate of the first time-
derivative with accuracy O

(
ε

2
3

)
. In order to accommo-

date a discrete time realization of the differentiator, in
this paper the homogeneous discrete-time differentiator as
proposed in Livne and Levant (2014) is constructed by
the composition of a discrete-time version of a chain of
integrators combined with the non-linear terms as given
in Eq. (2), i.e.

x0,k+1

x1,k+1

...
xn,k+1

 = Φ(T )


x0,k
x1,k

...
xn,k

+ T


ϕ0(fk − x0,k)
ϕ1(fk − x0,k)

...
ϕn(fk − x0,k)

 , (5)

where the matrix Φ(T ) is computed using

Φ(T ) =

∞∑
ν=0

(AT )
ν

ν!
(6)

and the (n+1)×(n+1) matrix A is given in the companion
form by

A =


0 1 0 0 . . . 0
0 0 1 0 . . . 0

0 0 0 0
. . . 1

0 0 0 0 . . . 0

 . (7)

The variables xi,k denote the discrete time estimates of
the ith-time derivative of f at the time instant t = kT
with k = 0, 1, 2, . . . and the constant discretization time
T . Equation (5) was implemented in a so-called Simulink
C s-function which eventually represents the robust ex-
act differentiator block, see Reichhartinger and Spurgeon
(2016). In addition to the estimates of the derivatives
of the input signal f , the block provides a convergence
output signal given by fk − x0,k. This signal supports
the tuning of the differentiator as explained in detail in
Reichhartinger and Spurgeon (2016). The parameters κi
of the differentiator implemented in the s-function are
listed in Table 1. Note that these parameters are listed
assuming that the convergence rate / robustness factor
of the differentiator is selected as 1. This factor, which
represents the only tuning parameter of the differentiator,
scales the parameters κi such that uncertainty represented
by f (n+1) is eventually dominated by κnc

n+1. Due to space
restrictions, the parameter scaling factor is not included in
Table 1.

Table 1. Parameters implemented in the differentiator
block.

n κ0 κ1 κ2 κ3 κ4 κ5 κ6 κ7 κ8 κ9 κ10
1 2.1 1.1
2 3.1 3.2 1.1
3 4.1 6.3 4.3 1.1
4 5.1 10.4 10.6 5.4 1.1
5 6.1 15.5 21.0 16.0 6.5 1.1
6 7.1 21.6 36.5 37.0 22.5 7.6 1.1
7 8.1 28.7 58.1 73.5 59.5 30.1 8.7 1.1
8 9.1 36.8 86.8 131.6 133.0 89.6 38.8 9.8 1.1
9 10.1 45.9 123.6 218.4 264.6 222.6 128.4 48.6 10.9 1.1
10 11.1 56.0 169.5 342.0 483.0 487.2 351.0 177.0 59.5 12.0 1.1

It should be noted that the settings in Table 1 describe
a completely new set of parameters and do not rely on
the sets typically used, see e.g. Shtessel et al. (2014).
Additionally, no set corresponding to a differentiator order
greater than 6 has been published to date.

3. APPLICATIONS

Three applications are considered.

3.1 Suppression of drive-train oscillations

An automotive test bed is first analysed. The main compo-
nents of the test bed are a combustion engine and electric
motor which are coupled via a shaft, see Fig. 2. The
electric motor is used to emulate the load characteristics
of the combustion engine. Compared to a conventional
drive train as typically attached to a combustion engine,
the stiffness of the shaft is high. This increased stiffness
excites undesirable torsional oscillations in the shaft which
occur only on the test bed and are not present in the real
environment of the combustion engine. Hence, unrealistic
load behaviour is generated and, even worse, components
of the test bed may be destroyed. Any hardware solution
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Fig. 2. Engine test bench system.
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Fig. 3. Drive train, see Wipfler et al. (2016).

(e.g. attaching a shaft with lower stiffness and improved
damping characteristics) to solve this problem is typically
highly undesirable. Such an approach would have to be
adapted dependent on the combustion engine, i.e. it would
cause additional cost, and furthermore would not allow
high transient torques to be transmitted from the electric
drive to the combustion engine, which is a requirement
for dynamical test scenarios. So-called active damping
solutions tackle this problem by applying an additional
torque generated by the electric drive so that undesired
oscillations are adequately damped.

The torsional dynamics of the test bed are typically de-
scribed by a two-mass oscillator (see Fig. 3) with linear
shaft characteristics, see Kokal et al. (2013). The corre-
sponding mathematical model describing the system dy-
namics is given by

d

dt

[
ϕ
ω

]
=

[
0 1
− c
I −

d
I

] [
ϕ
ω

]
+

[
0 0
1
Ie
− 1
Il

] [
Te
Tl

]
, (8)

where the state variables

ϕ := ϕe − ϕl (9)

ω := ωe − ωl (10)

denote the torsion angle of the shaft and its time deriva-
tive, i.e. the angular speed, respectively. The torsional
stiffness c and the damping coefficient d are constant shaft
parameters, the moment of inertia of the electric drive is
given by Ie. The positive constant Il is the load moment
of inertia w.r.t. the electric drive, which represents mainly
the moment of inertia of the shaft and of the combustion
engine. The overall moment of inertia is given by

I =
IeIl
Ie + Il

. (11)

System (8) may be excited by the torque of the electric
drive, i.e. Te and the load torque Tl generated by the
combustion engine. The shaft torque

Ts =− cϕ− dω (12)

is typically measured in such test beds and, therefore,
is directly available as an input for control tasks. Some
characteristic parameters of the test bed used in this
application are listed in Table 2.

The active damping strategy considered in this paper, see
Wipfler et al. (2016), also acts as a control signal Tc which

Table 2. Characteristic parameters of the test bed.

parameter value unit

c 30 kNm/rad
d 0.01 Nms/rad
Ie 6.31 kgm2

Il 2.66 kgm2

Te

Tl

Tc

Td

Ts

−da − 1
c

ω̂ dTs

dt d
dt

drive train

Fig. 4. Closed loop system, see Wipfler et al. (2016).

is designed to fulfil the overall control task of the test bed
(driving the combustion engine at a desired speed profile),
see Fig. 4. The torque Te yields

Te = Tc + Td, (13)

where Td represents the corresponding torque designed to
suppress the undesired torsional oscillations. If the torque
Td is chosen as

Td = −daω, (14)

where da > 0 is the active damping constant, the damping
properties of system (8) can be improved as the overall
damping coefficient w.r.t. to the electric drive is now d +
da. According to (10), the calculation of ω is based on
the rotational speed of the combustion engine; thus, an
accurate measurement of ωl is desired. As this is not the
case with a typical engine test bed, an alternative based on
the measured shaft torque is used. Assuming the damping
coefficient d of the drive train is negligible, the measured
shaft torque may be approximated by

Ts = −cϕ− dω ≈ −cϕ. (15)

Differentiating Eq. (15) w.r.t. time t yields

dTs
dt
≈ −cω (16)

and an estimate of ω is established by

ω̂ = −1

c

dTs
dt

(17)

which is used in the active damping procedure as

Td = −daω̂. (18)

The active damping constant da may be chosen so that
the characteristic polynomial of the dynamic matrix of the
closed loop system consisting of system (8) and control
law (13) with Td as selected in Eq. (18) has real roots.

This damping strategy was implemented in a simulation
model of a test bed using the robust exact differentiator
toolbox as well as a linear differentiator, as shown in
Wipfler et al. (2016) to generate the estimate (17). The test
bed considered in this work is used for end-of-line tests in
which the engine is dragged from 100 to 500 rpm without
injection. During the procedure, characteristic values of
the engine are measured and potential failures can be
detected before the engine is taken into regular operation.

The simulation model considers a more complex mechan-
ical system than that presented in Fig. 3. Dead time, first
order dynamics for the torque measurement and the torque
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Fig. 6. Simulated rotational speed ne and shaft torque Ts.

build-up in the electrical drive are all considered. The first
resonance frequency is located at 20 Hz and is excited with
the 3rd and 6th order of the engine speed. The order of the
excitation depends upon the number of engine cylinders.
While suppression with the linear differentiator requires
a low-pass filter after the ideal differentiation to suppress
noise (see Fig. 5), there is no filter necessary for the robust
exact differentiator. Therefore, the phase shift due to the
filtering properties of the differentiator is smaller using the
robust exact differentiator.

The simulation results depicted in Fig. 6 compare the
closed loop system behaviour with the robust exact dif-
ferentiator and with the linear differentiator, respectively.
For comparison, both variants are tuned for maximum
damping. The discrete time first order transfer function

FLP (z) =
(1− pz) z
z − pz

(19)

with the filter pole pz is used for low-pass filtering in
the linear differentiator. It can be seen that both vari-
ants suppress the first resonance frequency. The frequency
spectrum of the shaft torque Ts in Fig. 7 reveals that when
using the linear differentiator, the resulting resonance fre-
quency moves from 20 Hz to 24 Hz. The resonant frequency
peak moves dependent on da, i.e. also the possible damp-
ing, due to the occurring phase shift of the additional filter.
In contrast, the shift of the resonance frequency peak is
smaller using the robust exact differentiator.

To further assess these results, the damping torque Td
is calculated from real measurement data of the shaft
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Fig. 7. FFT analysis of the shaft torque Ts.
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Fig. 8. Comparison of damping torque Td calculated based
on shaft torque measurement with linear differentia-
tion and robust exact differentiator.

torque using both differentiation methods with the same
parameters as in the closed-loop simulation (setting 1).
The results in Fig. 8 show that the damping torque Td
calculated using the robust exact differentiator has less
phase shift in comparison to Td gained from the linear
differentiator with the additional filter. Due to the filter,
the phase shift increases. Additionally, the filter within
the linear differentiator is tuned in such a way that
both signals have the same phase (setting 2). Now it
can be seen that the signal gained with setting 2 of the
linear differentiator has a lower signal quality with more
remaining noise and therefore cannot be used for damping.
In particular, the phase shift and the noise reduce the
possible damping in this application. A bigger phase shift
could lead to instability of the closed loop system in the
presence of dead time and increased time constants for
the torque build-up. Additionally, the remaining noise
following differentiation can lead to the excitation of
the second resonance frequency, which also results in an
unstable system. The settings used in the simulation to
perform active damping are

• differentiator order: 4,
• convergence rate / robustness factor: 350,
• step size: 1 ms,
• robust exact differentiator: da: 0.007,
• lin. differentiator setting 1: da: 0.02,
• lin. differentiator setting 1: pz: 0.8,
• lin. differentiator setting 2: da: 0.018,
• lin. differentiator setting 2: pz: 0.5.

3.2 Reconstruction of measured acceleration

In this application, the acceleration of a moving body is
estimated by the differentiation of the measured position
with respect to time. As the laboratory model that is used
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includes an accelerometer, a comparison of estimated and
measured acceleration is possible.

The active suspension laboratory system is depicted in
Fig. 9. It consists of three masses or plates on top of each
other. Each mass slides along steel shafts and is supported
by a set of springs. The lower plate (silver) is driven by
a DC motor via a lead screw and a gearing mechanism.
This motor can be used to emulate different road profiles.
The middle plate (red) is in contact with the lower plate
through springs and constitutes the tyre in the quarter-car
model. The top plate (blue) represents the vehicle body
supported by a set of springs working as the quarter-car’s
suspension. Attached to the top plate is an additional DC
motor that can emulate an active suspension via a capstan
drive. Both motors are equipped with encoders (Enc1,
Enc2), which can be used to measure angular positions.
Additionally, there is a third encoder (Enc3) attached
to the top plate to track the absolute position of the
vehicle body. The top plate is also instrumented with an
accelerometer to measure the acceleration of the vehicle
body. For additional information see Quanser (2013). The
accelerometer signal could be used for control; however,
in this work it is utilized as a reference to assess the
performance of the differentiator toolbox.

For the experiment presented in this work, the three plates
were mechanically connected and the DC motor in the base
of the model was used to move the plates up and down.
Therefore, the motor was operated in position control
mode to follow the given sinusoidal reference. The encoder,
Enc3, was used to measure the position x of the top plate,
this signal being presented in Fig. 10.
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Fig. 11. Estimated velocity signals.
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Fig. 12. Measured and estimated acceleration signals.

To estimate the plate’s acceleration, the position signal x
can be differentiated twice. The estimated and measured
acceleration can then be compared. To better assess the
results obtained by using the differentiator from the robust
exact differentiator toolbox, the acceleration will also be
estimated using the classical linear approach of numerical
differentiation and low-pass filtering. The corresponding
discrete time transfer function is given by

â(z)

x(z)
=

(
1− z−1

Td

)2
(1− pz) z
z − pz

(20)

where â is the estimated acceleration, Td is the sampling
interval and pz is the pole of the discrete time low-pass
filter. To estimate the plate’s velocity v̂

v̂(z)

x(z)
=

1− z−1

Td

(1− pz) z
z − pz

(21)

can be used. The results presented in the following were
obtained by using a filter pole of pz = 0.9 with a sampling
interval of Td = 1 ms. The parameter setting for the robust
exact differentiator is given by:

• differentiator order: 3,
• convergence rate / robustness factor: 13,
• step size: 1 ms.

The estimated velocities are presented in Fig. 11, while a
comparison of the estimated and the measured accelera-
tion signals is shown in Fig. 12. The settings for the robust
exact differentiator (differentiator order, convergence rate)
and the linear differentiator (filter pole) were tuned, so
that the high frequency signal components have similar
amplitudes. The estimated velocities in Fig. 11 show that
with the robust exact differentiator the time lag introduced
by the filtering properties of the differentiator is signifi-
cantly smaller.



Table 3. Comparison of estimation errors for the signal
section shown in Figs. 10–12.

type estimation error unit

robust exact differentiator 1.66 m/s2

linear differentiator 1.95 m/s2

This can also be seen in Fig. 12 where a comparison of
measured and estimated acceleration clearly shows that
with the robust exact differentiator the time lag between
measurement and estimation can be reduced. Additionally,
high order dynamic components in the acceleration signal
can be reconstructed more effectively. These benefits can
also be seen in the average estimation error

e =
1

N + 1

N∑
k=0

|a(k)− â(k)| (22)

where N is the number of samples considered and the
results are presented in Table 3 for both differentiators.

3.3 Edge detection for image processing

In this section the differentiator toolbox is used in the
context of an image processing application. The black and
white logo from Graz University of Technology shown in
Fig. 13a serves as the basis image for an edge detection
algorithm. Among other methods the detection of the
edges can be based on computation of the Laplacian,

∂2f(x, y)

∂x2
+
∂2f(x, y)

∂y2
, (23)

see Marr and Hildreth (1980). In equation (23), the vari-
ables x and y denote the direction of the image w.r.t the
length and height respectively. The function f(x, y) maps
into the interval [0, 255] where 0 and 255 indicate a white
and a black pixel respectively.

In order to compute the required second derivatives, as a
first step the rows of the image are combined into a single
vector which is differentiated using the Simulink block.
Then differentiation is performed with a vector generated
column wise, i.e. differentiation into the y-direction of the
image. According to Eq. (23) the results are added and
depicted as a black and white image, see Fig. 13b. The
settings of the differentiator block used are

• differentiator order: 2,
• convergence rate / robustness factor: 1.6,
• step size: 1.

4. CONCLUSION

A recently developed toolbox implementing a robust exact
differentiator has been introduced. A range of problems
involving both simulation studies and experimental trials
have been used to illustrate the practical application of
the toolbox. Whether implemented as a simulink block in
simulation studies or implemented via autocode genera-
tion, the software environment has been seen to provide a
very effective tool for signal differentiation across a variety
of applications.
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Birkhäuser, Springer Science+Business Media, New
York.

Wipfler, M., Bauer, R., Dourdoumas, N., and Rosseg-
ger, W. (2016). Regelungstechnische Methoden zur
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