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ABSTRACT

The aims of this study were to determine the role of cell death in cirrhotic

patients with acute decompensation (AD) and acute on chronic liver failure

(ACLF) using plasma-based biomarkers. The patients studied were part of the

CANONIC study (N=337; AD: 258; ACLF: 79); additional cohorts included

healthy volunteers, stable cirrhotic patients and a group of 16 AD patients for

histological studies. Caspase-cleaved keratin 18 (cK18) and keratin 18 (K18),

which reflect apoptotic and total cell death respectively and cK18:K18 ratio

(apoptotic index) were measured in the plasma by ELISA. The concentrations

of cK18 and K18 increased and the cK18:K18 ratio decreased with increasing

severity of AD and ACLF (p<0.001 respectively). Alcohol etiology, no previous

decompensation and alcohol abuse were associated with increased cell death

markers whereas underlying infection was not. Close correlation was

observed between the cell death markers and, markers of systemic

inflammation, hepatic failure, alanine amino transferase and bilirubin but not

with markers of extra hepatic organ injury. TUNEL staining confirmed

evidence of greater hepatic cell death in patients with ACLF as opposed to

AD. Inclusion of cK18 and K18 improved the performance of the CLIF-C AD

score in prediction of progression from AD to ACLF (p<0.05). Conclusion: Cell

death, likely hepatic, is an important feature of AD and ACLF and its

magnitude correlates with clinical severity. Non-apoptotic forms of cell death

predominate with increasing severity of AD and ACLF. The data suggests that

ACLF is a heterogeneous entity and shows that the importance of cell death

in its pathophysiology is dependent on predisposing factors, precipitating

illness, response to injury and the type of organ failure.
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Introduction

An acute decompensating event (AD) is the most common hospital

presentation of cirrhotic liver disease and can be successfully managed in

most cases(1). However, 30% of patients present with or develop rapidly

progressive hepatic and/or extra-hepatic organ failure, a condition referred to

as acute on chronic liver failure (ACLF)(2). About 20% of these patients

progress to multi-organ failure and death(2). The risk of death is closely

related to the number of organ failures(2).

The pathophysiological basis of ACLF is not clearly understood and the care

of patients is largely supportive. No targeted therapies are available. Current

hypotheses describe ACLF as being driven by systemic inflammation induced

by a cytokine storm, oxidative stress, immune dysfunction and increased risk

of infection(3)(4)(5). As the syndrome is defined by the failure of hepatic and

extra-hepatic organs(6), cell death is likely to be important(7) but the site, role,

type and extent has not been fully defined. Cell death may result in a release

of damage-associated molecular patterns (DAMPs) that could drive

inflammasome activation, directly perpetuate further cell death and mediate

additional organ failures.

Markers of cell death in particular, caspase-cleaved keratin 18 (cK18) and

keratin 18 (K18), have been previously demonstrated to be clinically relevant

in the diagnosis, assessment of disease severity and prognosis of a wide

range of acute and chronic liver diseases including chronic and acute-on-

chronic hepatitis B(8)(9), chronic hepatitis C(10), drug-induced liver injury(11),
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non-alcoholic fatty liver disease(12)(13), alcoholic hepatitis(14), acute liver

failure(15), and primary biliary cirrhosis(16) (reviewed in Supplementary Table

1), as well as in non-hepatological diseases such as breast and

gastrointestinal cancer(17) (18) and sepsis(19). Keratins are the main

epithelial subgroup of intermediate filament proteins (IFs)(20). K18 is

expressed by both hepatocytes and cholangiocytes(21) as well as other non-

hepatic tissues including kidney, intestine and lung (22) and after initiation of

apoptosis, K18 is cleaved by activated caspases at two points. Firstly, early in

apoptosis, at K18-Asp396 which is unique to K18 and then later at a common

caspase cleavage site found in members of the linker L1-2 region of the

central rod domain which is present in other members of the IF

family(23)(24)(25). It is the neoepitope generated in the first cleavage that is

recognized by the M30 antibody that is the basis for the most frequently used

measurement of cK18 and widely taken to reflect hepatic apoptosis(26). Intact

K18 can be measured using the M6 and M5 monoclonal antibodies. These

are termed the M65 antibodies and they recognise protein epitopes of K18

and therefore, detect intact K18, its non-apoptotic fragments but also the

apoptotic fragment. M65 values are widely taken to reflect necrotic cell death;

however, should probably be regarded as a measure of total cell death. Whilst

the measurement of circulating levels of cK18 and K18 have been widely

interpreted as reflecting hepatic cell death caution in the interpretation of

these data is required due to the potential for circulating cK18/K18 to be

derived from non-hepatic tissues. Small studies, including liver histology, have

suggested the importance of hepatic cell death in the pathogenesis of

ACLF(7) but its importance in the pathophysiology of acute decompensation
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of cirrhosis is unknown.

The aims of this study were to determine the changes in cK18 and K18 levels

as measures of apoptotic and total cell death in the plasma of 337 patients

with acute decompensation of liver disease who were enrolled in the

prospective, multi-centre CANONIC study(6).
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Materials and Methods

Patients

The samples and data of patients with AD and ACLF in the current study were

obtained from the patients in the CANONIC study (6) which was prospective

enrolled and was designed specifically to define the clinical and prognostic

features of ACLF. Samples and data from healthy volunteers and those with

stable cirrhosis were obtained from archived bio-banked material at the Royal

Free hospital. Liver sections from patients with alcoholic hepatitis were

obtained from the histology department of the Royal Free Hospital in London

(UCL Biobank Ethical Review Committee approval number NC.2017.10) and

from patients with HBV from the Third Affiliated Hospital of

Sun Yat-Sen University, China [Human Ethics Committee of the Third

Affiliated Hospital, approval number ZSSYME(2016)2-72]. All the samples

were collected with informed consent from the patients and the principles of

good clinical practice and the Declaration of Helsinki, 1951 were followed

closely throughout.

The cohort of the CANONIC study included 1343 patients who were

hospitalized with an acute decompensation of cirrhosis (bacterial infection,

large volume ascites, gastrointestinal haemorrhage, hepatic encephalopathy,

alone or in combination) in 29 Hepatology centres across 8 countries(6), 337

patients with plasma samples were available for analysis and they comprise

the study population. The characteristics of the patients included in this study

closely reflect the patients described in the CANONIC study. Additionally,
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samples from 34 healthy volunteers and 44 patients with stable cirrhosis were

used as controls.

Definitions

Definitions used in this study were as described in the CANONIC study(6).

Acute on Chronic Liver Failure: ACLF was defined in terms of organ failures

according to the CLIF-Organ Failure Score(6) and diagnosis required: 1)

single kidney failure; 2) single liver, coagulation, circulatory or respiratory

failure and serum creatinine levels between ⩾1.5 and <2 mg/dl and/or hepatic

encephalopathy grades I or II; 3) single cerebral failure (hepatic

encephalopathy grades III or IV) associated with a serum creatinine between

⩾1.5 and <2 mg/dl; or 4) two or more organ failures.

Acute Decompensation: AD was defined as the acute development of

ascites(27), hepatic encephalopathy(28), gastrointestinal haemorrhage(29), or

bacterial infection(30) alone or in combination in patients who did not fulfill the

criteria for the diagnosis of ACLF.

Study design

Baseline cK18 and K18 levels were measured and cK18:K18 ratio calculated.

The collected data were analysed blindly by the data management centre of

the European Foundation for the study of Chronic Liver Failure [(EF-CLIF)

Barcelona]. The pre-defined end points of the analysis were to perform a

descriptive analysis of cell death markers according to factors associated with
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acute decompensation of cirrhosis using the PIRO concept; Predisposition

(underlying factors such as age, etiology, etc.), Injury (precipitating factors),

markers of Response (inflammation and infection) and, Organ failures

(presence, type and number). The prognostic value of the cell-death markers

in patients with AD and ACLF and their relationship to 28-day and 90-mortality

was then assessed.

Correlation analyses for cK18 and K18 with inflammatory markers and

markers of macrophage activation that are known to be increased in ACLF

(IL-6, IL-8, IL-10, IL-Ra, NGAL, sCD163) and marker of oxidative stress

[human non-mercaptalbumin-2 (HNA-2)] were then performed. Data regarding

these analytes partly overlap with previous publications (Claria et al.(5); Ariza

et al.(31); Gronbaek et al.(32)). Correlation analyses for cK18 and K18 with

markers of individual organ dysfunction were then performed (bilirubin,

alanine aminotransferase, prothrombin time, creatinine, hepatic

encephalopathy grade, mean arterial pressure and heart rate

Measurement of cK18 and K18 and calculation of cK18:K18 ratio

All blood samples were centrifuged at 2000 rpm for 10 minutes and the

supernatants were stored at -80 within 4 hours of collection. Serum cK18 and

K18 levels were then measured in baseline EDTA samples by ELISA [M30

Apoptosense (Peviva, UK) and M65 EpiDeath (Peviva, UK) respectively]. The

cK18:K18 ratio (apoptotic index) was then calculated.
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Terminal deoxynucleotidyl transferase dUTP Nick-End Labeling (TUNEL)

staining of liver sections

Liver sections of patients with alcoholic hepatitis with and without ACLF and

HBV infection with and without ACLF were prepared and stained for TUNEL

positivity according to the kit protocol (In situ cell death detection kit,

colorimetric, Roche, UK).

Statistical Analysis

Results are presented as frequencies and percentages for categorical

variables, means and standard deviations for normally distributed continuous

variables and median and interquartile range for not normally distributed

continuous variables. Not normally distributed variables were log-transformed

for some statistical analyses and for graphical comparisons. In univariate

analyses, Chi-square test was used for categorical variables, Student’s t-test

or ANOVA for normal continuous variables and Mann-Whitney or Kruskal

Wallis test for not normally distributed continuous variables. To assess the

prediction of occurrence of ACLF in AD patients, logistic regression models

were carried out. Factors showing a clinically and statistically significant

association to the outcome in univariate analyses were selected for the initial

model. The final models were fitted by using a step-wise forward method

based on Likelihood Ratios with the same significance level (p<0.05) for

entering and removing variables. To assess the strength of the association

between cK18 and K18 levels and current scores for the prediction of ACLF

and its outcome, we estimated the Area Under the ROC curve (AUROC). The
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proportional-hazards model for Competing-Risks proposed by Fine and

Gray(33) was used to assess the presence of independent factors of

mortality. This model was chosen in order to account for liver transplantation

as an event ‘competing’ with mortality. Harrell’s concordance index (C-index)

was used to estimate the variables discrimination ability(34)(35). Statistical

comparisons of the C-index with the current scores were carried out using the

integrated discriminating improvement statistic(36). In all statistical analyses,

significances was set at p<0.05.
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Results

Patient characteristics

Three hundred and thirty seven patients with decompensated cirrhosis were

studied of whom 258 (76.6%) presented with AD and 79 (23.4%) with ACLF.

At 28 and 90 days, 41 (12.7%) and 68 (22.4%) of all patients had died

respectively. Thirty-nine (15.1%) patients who presented with AD progressed

to ACLF following admission. Eight patients (10.1%) who presented with

ACLF regressed to AD. The baseline characteristics of the patient group are

shown in Table 2. A further 16 patients with available liver biopsies were

studied, 8 with ACLF and 8 without. The cause of cirrhosis in 8 patients was

Hepatitis B virus infection and alcohol related cirrhosis with superimposed

alcoholic hepatitis in 8. The baseline characteristics of the patient group are

shown in Supplementary Table 2.

There were similar distributions of age and sex in the AD and ACLF groups.

An alcohol-related liver disease etiology, presentation with recent alcohol use,

bacterial infection, presence of ascites or its surrogates was associated with

increased risk of ACLF. According to the definitions, patients with ACLF

presented with higher rates of organ failure, significantly worse biochemical

and hematological parameters and clinical scores. The markers of systemic

inflammation, oxidative stress (HNA-2) and macrophage activation (sCD163)

were also significantly higher in ACLF patients. This pattern of patient

characteristics and inflammatory markers closely reflected those of the

original CANONIC study (Supplementary Table 3).
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Relationship of cK18, K18 and cK18/K18 ratio to AD and ACLF

The median values of cK18 and K18 for both the AD and ACLF groups were

significantly higher than healthy volunteers and stable cirrhosis patients

(Table 2). A statistically significant stepwise increase in cK18 and K18 level

was observed with increasing clinical severity from AD to ACLF and within

ACLF grades (Table 2). In addition, patients who presented with AD but

subsequently developed ACLF during hospitalisation had significantly higher

levels of cK18 and K18 than those who remained in AD throughout their

admission. Conversely, those patients who presented with ACLF but

improved to AD during admission had lower baseline levels of cK18 and K18

(Table 2). Furthermore, a significant reduction in the ratio of cK18 level to K18

level (referred to as apoptotic index) was observed with increasing severity of

AD and ACLF. Whilst overall both cK18 and K18 levels were markedly

increased with clinical severity the reduction in the apoptotic index reflects

that the relative magnitude of the increase in K18 was greater. In AD patients

the apoptotic index was high indicating that apoptotic cell death predominated

whereas in ACLF patients, the index was low suggesting that other non-

apoptotic modes of cell death, were more significant.

Relationship of cK18 and K18 levels to Predisposition, Injury, Response and

Organ failures.

Predisposition (Figure 1A. and Supplementary Table 4): No significant

differences were observed in cK18 and K18 levels when patients were

stratified by age or sex. Patients with underlying alcohol-related cirrhosis

demonstrated a significant elevation in cK18 level and a non-significant
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elevation in K18 level in comparison to non-alcohol-related etiologies

whereas, patients with HCV-related liver disease demonstrated significantly

reduced cK18 level and a trend toward reduced K18 levels in comparison to

non-HCV etiologies. A previous episode of decompensation was strongly

associated with a reduction of both cK18 and K18 levels.

Precipitating injury (Figure 1B. and Supplementary Table 5): Consumption of

alcohol within the 3-months prior to admission, indicating likely alcoholic

hepatitis as a precipitating cause of decompensation, was associated with a

significantly higher cK18 and K18 level and a significant reduction in

cK18:K18 ratio in comparison to those who were not abusing alcohol. In

contrast, the presence of bacterial infection was not associated with a

significant increase in cK18 or K18 level (figure 1B) but was clearly associated

with evidence of systemic inflammation and cytokinemia (Table 3)

Additionally, patients presenting without a clear precipitating event

demonstrated a significant lower K18 but not cK18 level.

Response to injury (Figure 1C. and Supplementary Table 6): WCC was

significantly associated with both cK18 and K18 levels and with a non-

significant reduction in cK18:K18 ratio. CRP was significantly associated with

K18 level. IL8, IL1Ra and sCD163 as well as NGAL were associated with both

cK18 and K18 level and a reduction in cK18:K18 ratio. Furthermore IL10 and

HNA2 were both associated with elevation of K18 but not cK18 level and a

reduction in cK18:K18 ratio. IL8 correlated strongly with both cK18 and K18

and IL6, sCD163 and HNA2 correlated with K18. (Supplementary Figure 1).
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Organ failures (Figure 1D. and Supplementary Table 7): Liver failure in

isolation or in a combination with other organ failures was associated with

significant elevation in both cK18 and K18 level and a reduction in cK18:K18

ratio. The liver was demonstrated as a possible source of the elevated cK18

and K18 levels as both bilirubin and alanine aminotransferase positively

correlated to cK18 and K18 levels (Supplementary Figure 2). In contrast,

cK18 or K18 levels did not correlate with with creatinine, prothrombin time,

grade of hepatic encephalopathy or mean arterial pressure indicating that the

source of increased cK18 and K18 was unlikely to be these extra hepatic

organs. Heart rate, which is another component of systemic inflammatory

response, was positively correlated with both cK18 and K18 level

(Supplementary Figure 2). Kidney failure in isolation was not associated with

elevation of either cK18 or K18 level; however, when kidney failure was

associated with liver failure, a trend towards elevated cK18 and K18 level was

demonstrated and a reduced cK18:K18 ratio observed (Supplementary Table

7). Isolated cardiac failure was not associated with elevation of cK18 and K18

level but only when cardiac failure was associated with liver failure

(Supplementary Table 7).

Relationship of cK18, K18 and cK18:K18 ratio to progression from AD to

ACLF and mortality

Prediction of Progression from AD to ACLF: Progression from AD to ACLF

was not associated with age, sex, underlying etiology or precipitating event.

Progression was associated with presence of ascites, significantly poorer
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indices of hepatic function (bilirubin, albumin and INR), increased markers of

systemic inflammation (WCC and CRP) and clinical prognostic scores. Both

cK18 and K18 levels were significantly higher in those patients who

progressed from AD to ACLF. (Supplementary Table 8). Both cK18 and K18

levels were independent predictors of progression from AD to ACLF in

univariate and multivariate analysis. The addition of cK18 to the CLIF-C AD

score led to a significant increase in its predictive accuracy (Table 4).

Prediction of mortality: In univariate analysis 28-day and 90-day transplant

free mortality was strongly associated with cK18, K18 and cK18:K18 ratio in

addition to a number of clinical parameters, liver and kidney biochemistry and

clinical scores (Supplementary Table 9). cK18 and K18 remained significant in

multivariate analysis in addition to age, presence of bacterial infection, INR,

sodium and WCC. For prediction of mortality at 28 and 90 days in the AD

population, K18 demonstrated a better predictive accuracy than the MELD

score. The most accurate predictive score was the CLIF-C AD score and

addition of cK18:K18 ratio non-significantly improved its accuracy (Table 5).

Additionally, cK18, K18 and cK18:K18 ratio were highly significant when

modeling cumulative incidence of death in 90 days in both the AD population

and ACLF populations (Figure 2).

Histology – TUNEL staining:

TUNEL staining of liver tissue from patients with alcoholic hepatitis or HBV

demonstrated that the presence of ACLF was associated with a marked

elevation in end stage hepatic cell death as demonstrated by increased levels
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of TUNEL positive cytoplasmic/extracellular staining [Figure 3A and 3B (40x

magnification) and Supplementary Figure 3A and 3B (10x magnification).

Clinical characteristics of these patients are described in Supplementary

Table 2.
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Discussion

This study demonstrates that markers of cell death, both apoptotic and non-

apoptotic, are elevated in patients with AD and ACLF in comparison to stable

cirrhosis or health and that they increase with the clinical severity of the

syndrome. Additionally, the more immunogenic, non-apoptotic forms of cell

death(37) predominate as clinical severity increases with progression from AD

to ACLF. The demonstration that the only single organ failure associated with

significant elevation of K18 markers and the positive correlation of K18

markers to markers of hepatic injury, bilirubin and alanine aminotransferase,

and not markers of non-hepatic organ dysfunction suggest that the elevation

of K18 markers demonstrated is likely to be predominantly derived from the

liver. This interpretation is supported by the marked increase in TUNEL

positive staining demonstrated in the liver biopsies of patient with ACLF as

opposed to those without in patients with a background of HBV infection and

those with alcoholic hepatitis. The data suggests that ACLF is associated with

increased hepatic cell death independent of the underlying etiology and

furthermore, that although ACLF is defined by multiple organ failure, products

of cell death, are likely to be important in its pathogenesis. Whether there is

additional contribution from cell death affecting other organs is not known and

cannot be ruled out from the results of this study. The variability in the

magnitude of increases in these markers highlights the heterogeneity of ACLF

indicating that other associated factors also contribute to its pathogenesis.
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From the pathophysiological perspective, a strong correlation with markers of

systemic inflammation, oxidative stress and macrophage activation was

observed indicating that cell death is an important feature of AD and ACLF.

Additionally, the significant reduction in the cK18:K18 ratio seen in patients

with ACLF as compared to those with AD suggests that whilst levels of both

apoptotic and non-apoptotic modes of cell death markedly increase with

clinical severity, it is non-apoptotic, and potentially more immunogenic, modes

of cell death that dominate in ACLF. Zheng et al. observed a relative increase

in K18 in relation to cK18 with increasing clinical severity in patients with

acute deterioration of liver function in the context of chronic HBV-related liver

disease(9) and the data presented here confirms and broadens this

observation to ACLF. The shift in the dominant mode of cell death from

apoptosis to non-apoptotic forms with increasing clinical severity also possibly

explains the limited effect of the pan-caspase inhibitor, Emricasan when used

in ACLF patients(38).

Current hypotheses describes ACLF as a syndrome driven by systemic

inflammation(3)(4)(5). In keeping with previous studies, both WCC count and

CRP were elevated in patients with ACLF. The profile of the correlations of

cK18 and K18 to the cytokines tested suggests that with increasing clinical

severity of ACLF, there is greater tissue injury and cell death with concomitant

activation of mechanisms that increase neutrophil recruitment (IL8) and the

activation of anti-inflammatory strategies to limit the immunological

consequences of cell death (IL10, IL1RA, sCD163). Whilst it is likely that
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elevation of DAMPs as a result of elevated rates of cell death would lead to

exacerbation of inflammasome activation driving ongoing inflammation, it is

possible that products of cell death have a direct cytotoxic effect and could

therefore propagate liver injury independent of the inflammasome. This would

account for the wide variation in cytokine profiles that have been

demonstrated in ACLF patients(5).

Although the levels of cK18 and K18 were appropriately elevated in the

patient population studied according to the severity of AD and ACLF, infection

as a precipitating event was not associated with a significant difference in

cK18 or K18 level but was associated with substantial increase in the markers

of systemic inflammation and cytokinemia (Table 3). This suggests that

pathogen-associated molecular patterns rather than DAMPs are likely to be

more important in mediating organ injury in this context. In contrast, recent

alcohol use as a precipitating event of AD or ACLF was associated with

marked elevations in these markers indicating distinct pathophysiological

mechanisms of decompensation. These data are supported by observations

in liver biopsies of patients with alcohol related ACLF, where the predominant

feature of infection was cholestasis(39) whereas balloon degeneration and

cell death were the predominant features of severe alcoholic hepatitis(40)

and necrosis predominates in patients with HBV related ACLF(41). The data

presented confirms the recent observation by Bissonnette et al. that patients

with alcoholic hepatitis have elevated levels of K18 and its fragments,

however argues for caution in using elevation of cK18 and K18 levels as

diagnostic of alcoholic hepatitis without considering the clinical severity of the
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presentation. Patients with a clinically severe presentation of etiologies other

than alcoholic hepatitis can also demonstrate marked elevations of cK18 and

K18 levels, especially if they have ACLF. The absence of a clear precipitating

event as a cause of AD and ACLF is observed in about 30-40% patients(6).

The mechanisms underlying this are not clear but the data from the present

study is against the idea that cell death is the defining mechanism.

The data also describes distinct patterns of severity of cell death in different

sub-populations of patients with AD and ACLF suggesting that therapeutic

approaches may need to be different depending upon the predisposing

factors, the precipitating illness and the type of organ injury. Despite age

being an independent predictor of mortality, no significant difference in cell

death markers were demonstrated between younger and older patients.

Patients who had not suffered a previous decompensating event

demonstrated significantly higher levels of cell death markers, possibly

explaining the previous observation that for a given severity of ACLF and

WCC, the mortality of those with no previous decompensation was

significantly higher(6). This observation may have several explanations. First,

hepatic injury is known to induce hepatic cellular senescence(42)(43) and

senescent hepatocytes have been demonstrated to be resistant to

apoptosis(44). Second, the process of decompensation itself may induce

organ tolerance(45)(46) through an as yet un-described mechanism. The data

also shows lower levels of markers of cell death in patients with Hepatitis C

infection compared with other etiologies. This may well represent a further

effect of senescent hepatocyte resistance to apoptosis as increased numbers
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of senescent hepatocytes have been demonstrated in Hepatitis C infected

patients (47).

The addition of cK18 and K18 enhanced the prognostic power of all clinical

scores both in terms of progression from AD to ACLF and short-term mortality

and allowed stratification of risk of death by 90 days. As described previously,

CLIF-C AD score performed best in predicting which patients would progress

from AD to ACLF(48). Its prognostic value was significantly enhanced by

inclusion of cK18 suggesting that this may be a useful biomarker to guide

targeting of patients for enhanced monitoring and intensive therapy. However,

from the analysis of the sub-groups outlined above, it is clear that, whilst there

is a clear overall rise in markers of cell death with clinical severity, there is

considerable variation in the mechanism and severity of cell death according

to the etiology, precipitating events and type of organ failure. The clinical utility

of cK18 and K18 as biomarkers in AD and ACLF may therefore be as a

companion to define which patients may benefit from specific interventions,

such as inhibitors of apoptosis, rather than provide prognostic information

about groups of patients.

There are limitations to this study that need to be acknowledged. The patient

samples available for analysis were less than the total number of patients

enrolled in the original CANONIC study(6) therefore there is potential for the

introduction of a selection bias. However, the samples used for the analyses

were obtained at random and the demographic, clinical and biochemical data

for the analysed group were not statistically different to that of the original
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study (Supplementary Table 2). Additionally, K18 is not specific to the liver

and is found in other epithelial tissues including the GI tract, lung and

kidney(26). Therefore, elevated circulating levels of K18 cannot be directly

attributed solely to liver injury. However, from the data presented it can be

seen that liver failure is associated with a marked elevation in K18 and its

fragments and such elevations are not seen with other isolated organ failures.

Additionally, cK18 and K18 correlated to markers of hepatic injury such as

ALT and bilirubin and not markers of other organ dysfunction. Furthermore,

TUNEL staining of liver biopsies from patients with two different etiologies

have both demonstrated that the presence of ACLF is associated with a

marked increase in hepatic cell death and so it seems likely that the elevation

in plasma K18 markers is likely to be hepatic in origin. cK18 level, as

measured by m30 antibody ELISA, reflects only the first cleavage of K18

occurring in early apoptosis and does not take account of the second

caspase-cleaved K18 fragment produced at a later stage of apoptosis(25).

Additionally, K18 level as measured by the M65 antibodies, reflects not only

intact K18 and non-apoptosis derived fragments but also an apoptotic

fragment and so does not exclusively reflect non-apoptotic cell death, rather is

more a measure of total cell death(49) and further studies will be required to

delineate the relative importance of other modes of cell death in ACLF.

In conclusion, the results of this study demonstrate that cK18 and K18 levels,

reflecting apoptotic and total cell death, closely reflect the severity of an

episode of acute decompensation of cirrhosis and this elevation is likely

hepatic in origin. This supports the hypothesis that liver cell death is an
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important feature of AD and ACLF. The data presented suggests that whilst

there is a dramatic increase in levels of both apoptotic and non-apoptotic cell

death with increasing clinical severity of decompensation, progression from

AD to ACLF is associated with a relatively greater rise in non-apoptotic cell

death. The severity of cell death is also closely related to the predisposing

factors, precipitating illness, severity of systemic inflammation and the type

and number of organ failures. Although, these markers of cell death do not

add substantially to the CLIF-ACLF score in determining prognosis, it

improves the performance of the CLIF-AD score suggesting that it could serve

as a potential biomarker to select patients for treatment with new agents

targeting cell death.
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Legends to Figures.

Figure 1. Caspase-cleaved Keratin (cK18), keratin 18 (K18), and cK18/K18

ratio in the cirrhotic patients with acute deterioration according to (A)

Predisposing factors (B) Injury – Precipitating factor (C) Response and (D)

Type of Organ failure (single organ failure). (*p<0.05).

Figure 2. Kaplan Meier analysis defining cumulative mortality according to

measurements of Caspase-cleaved Keratin (cK18), Keratin 18 (K18), and

cK18/K18 ratio in patients with (A) acute decompensation (no ACLF) and (B)

ACLF.

Figure 3. A) TUNEL staining of liver biopsies of patients with alcoholic

hepatitis without and with ACLF (40x magnification). B) TUNEL staining of

liver biopsies of patients with HBV without and with ACLF (40x magnification).

Numbering of images reflects the patient number as given in Supplementary

Table 2.
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Supplementary Figure 1.

This figure describes the correlations between markers of systemic inflammation,

macrophage activation and oxidative stress with markers of cell death, Keratin 18

(K18) and Caspase Cleaved Keratin 18 (cK18).

Supplementary Figure 2.

This figure describes the correlations between markers of organ failures: liver;

kidney; coagulation; brain; cardiac and markers of cell death, Keratin 18 (K18) and

Caspase Cleaved Keratin 18 (cK18).

Supplementary Figure 3A+B.

Figure 3. A) TUNEL staining of liver biopsies of patients with alcoholic hepatitis

without and with ACLF (10x magnification). B) TUNEL staining of liver biopsies of

patients with HBV without and with ACLF (10x magnification). Numbering of images

reflects the patient number as given in supplementary table 2.



Supplementary Table 1. selection of published studies using cK18 or K18 in

acute and chronic liver diseases.

Authors Year Liver Disease Findings

Bantel H. et al.1 2004 HCV Detection of plasma cK18 is a more
sensitive method of detecting early liver
injury in HCV than measurement of
transaminases.

Volkmann X. et al.2 2006 HCV cK18 level is predictive of patient
response to anti-HCV therapy.

Rutherford AE. et al. 3 2007 ALF Elevation of cK18 is associated with poor
outcome in ALF.

Papatheodoridis G V. et al.4 2008 HBV Plasma cK18 level can differentiation
between the inactive HBV carrier state
and HBeAg-negative chronic hepatitis B.

Diab DL. et al.5 2008 NAFLD/NASH cK18 level can predict NASH in NALFD
patients.

Volkmann X. et al.6 2008 ALF cK18 levels in plasma are predictive of
survival in ALF.

Feldstein A. et al.7 2009 NALFD/NASH cK18 level can predict NASH in NALFD
patients.

Tsutsui M et al.8 2010 NAFLD/NASH cK18 and K18 plasma level reflect the
NAFLD histological activity score score in
patients with NAFLD.

Papatheodoridis G V. et al.9 2010 HCV/NAFLD Serum cK18 level correlates to the
severity of the liver histological lesion in
HCV and in NALFD.

Farnik H, et al. 10 2011 HBV Circulating cK18 and K18 levels reduce
with viral DNA levels in response to
nucleos(t)ide analogue treatment of HBV,
suggesting a reduction in necro-
inflammation.

Shen J. et al.11 2012 NAFLD/NASH cK18 level can predict NASH in NALFD
patients.

Possamai LA. et al.12 2013 ALF Hepatocellular apoptosis, as measured
by cK18, peaks on day 1 of hospital
admission for paracetamol-induced ALF
and its level correlates strongly with poor
outcome.



Zheng S-J et al.13 2014 HBV cK18 and K18 levels are independent
predictors of mortality in patients with
HBV-ACLF.

Aida Y. et al.14 2014 NAFLD/NASH cK18 level can predict NASH in NAFLD
patients.

Thulin P. et al.15 2014 DILI K18 level as measure by M65 is a
potential biomarker of DILI.

Sekiguchi T. et al.16 2015 PBC K18 biomarkers can predict the level of
fibrosis in PBC and may predict poor
patient outcomes.

Bissonnette J. et al.17 2017 AH cK18 and K18 levels can be used to
diagnose AH avoiding the need for
biopsy.



Supplementary Table 2. Clinical characteristics of those patients whose liver
biopsies were stained for TUNEL positivity.

Patient
Number

ACLF
no / yes

Age Sex Aetiology
of liver
disease

Precipitating
event

1 no 55 M ALD AH

2 no 52 F ALD AH

3 no 50 M ALD AH

4 no 44 F ALD AH

5 yes 34 M ALD AH

6 yes 56 M ALD AH

7 yes 54 F ALD AH

8 yes 30 F ALD AH

viral load

9 no 23 M HBV none 2.34E+03

10 no 33 M HBV none 4.80E+08

11 no 49 F HBV none 1.33E+05

12 no 51 M HBV none 2.78E+03

13 yes 52 M HBV HBV reactivation 3.35E+03

14 yes 50 M HBV HBV reactivation 1.54E+07

15 yes 35 M HBV HBV reactivation 2.70E+06

16 yes 36 F HBV HBV reactivation 2.96E+04



Supplementary Table 3. Comparison of patient characteristics at baseline
between current study cohort and whole CANONIC study cohort.

Baseline characteristic Current study

(n=337)

CANONIC

study

(n=1349)

P value

Age (years) 57±12 57±12 0.864

Male (n, %) 210(62.3) 854(63.3) 0.736

ACLF at enrolment (n, %) 79(23.4) 302(22.4) 0.679

Etiology (n, %)

Alcohol 162(50.5) 664(52.1) 0.606

HCV 75(23.4) 248(19.5) 0.119

Alcohol + HCV 29(9.0) 122(9.6) 0.770

Other 55(17.1) 241(18.9) 0.466

Previous Decompensation (n, %) 247(75.8) 948(73.3) 0.369

Alcohol in last 3 months (n, %) 45(14.2) 218(17.1) 0.217

Ascites or its surrogates (n, %) 301(89.3) 1209(89.6) 0.870

GI bleeding (n, %) 54(16.0) 222(16.5) 0.848

Bacterial infection (n, %) 88(26.3) 325(24.2) 0.423

Organ Failures (n, %)

Liver 56(16.6) 205(15.2) 0.519

Kidney 38(11.3) 169(12.5) 0.531

Brain 29(8.6) 99(7.3) 0.432

Coagulation 29(8.6) 106(7.9) 0.651

Cardiac 19(5.6) 64(4.7) 0.498

Respiratory 7(2.1) 33(2.5) 0.690

Markers inflammation and stress

WBC (x109/L) 6.1(4.4-8.8) 6.2(4.3-9.2) 0.980

CRP (mg/L) 18(7-36) 18(7-43) 0.534

IL8 (pg/mL) 61(31-121) 52(26-113) 0.149

IL6 (pg/mL) 33(17-94) 27(13-65) 0.020

IL10 (pg/mL) 4.8(1.6-15.3) 4.8(1.5-15.6) 0.754

ILRA (pg/mL) 15(7-45) 14(6-40) 0.384

NGAL (ng/mL) 37(13-98) 35(13-95) 0.686

sCD163 (mg/L) 9.3(5.8-14.2) 8.7(5.2-13.5) 0.116



HNA-2 (%) 7.6(4.2-11.3) 7.0(3.3-11.7) 0.165

Laboratory values

Bilirubin (mg/dL) 3.2(1.6-7.5) 3.0(1.6-7.4) 0.440

INR 1.5(1.3-1.9) 1.5(1.3-1.9) 0.201

Albumin (g/dL) 2.9(2.4-3.2) 2.9(2.4-3.2) 0.834

Creatinine (mg/dL) 1.0(0.8-1.4) 0.9(0.7-1.4) 0.388

Sodium (mmol/L) 135±6 135±6 0.973

Platelets (x109/L) 87(52-128) 91(57-136) 0.154

MELD 19±8 19±7 0.325

MELD Na 22±7 21±7 0.473

CP score 9.7±2.1 9.7±2.1 0.797

CLIF – OFs 8±2 8±2 0.373

28-day mortality (%) 41(12.2) 143(10.6) 0.700

3-month mortality (%) 68(20.2) 165(19.6) 0.675

Data are mean ± SD or median (Q1-Q3)



Supplementary Table 4. Keratin 18, Caspase cleaved Keratin 18 and cK18:K18
ratio stratified by predisposition in all patients.

K18 (U/L) cK18 (U/L) cK18:K18 Ratio
cK18:K18N Median (IQR) Median (IQR) Median (IQR)

Age <57 160 985(496-2529) 1144(752-2198) 1.1(0.7-1.8)

Age ≥57 177 943(328-1930) 971(751-1505) 1.3(0.7-2.6)

Sex – Male 210 872(401-2060) 1012(725-1552) 1.2(0.8-2.4)

Sex – Female 127 1192(398-3065) 1050(793-1793) 1.1(0.6-2.2)

Etiology

Alcohol (No) 159 922(398-1908) 948(719-1359) 1.2(0.7-2.3)

Alcohol (Yes) 162 1011(376-2542) 1156(818-2394)* 1.2(0.8-2.4)

HCV (No) 246 985(424-2510) 1073(779-2180) 1.2(0.8-2.3)

HCV (Yes) 75 752(327-1854) 967(712-1335)* 1.3(0.7-2.4)

Alcohol + HCV (No) 292 939(359-2347) 1032(779-1700) 1.2(0.7-2.5)

Alcohol + HCV (Yes) 29 989(648-1754) 949(671-1303) 1.0(0.8-1.6)

Other (No) 266 961(378-2343) 1050(761-1665) 1.2(0.8-2.3)

Other (Yes) 55 898(413-2318) 926(751-2171) 1.3(0.7-2.7)

Previous Decomp. (No) 79 1316(537-3413) 1170(893-2346) 1.1(0.7-1.8)

Previous Decomp. (Yes) 247 938(347-1908)* 978(713-1534)* 1.2(0.8-2.5)

Ascites with subrogates (No) 36 673(332-1713) 1061(632-1378) 1.5(0.9-2.8)

Ascites with surrogates (Yes) 301 978(406-2352) 1025(775-1750) 1.2(0.7-2.2)

*P value < 0.05
Keratin 18 (K18), Caspase Cleaved Keratin 18 (cK18)



Supplementary Table 5. Keratin 18, Caspase cleaved Keratin 18 and cK18:K18 ratio

stratified by precipitating injury in all patients.

K18 (U/L) cK18 (U/L) Ratio cK18:K18

N Median (IQR) Median (IQR) Median (IQR)

Alcohol in last 3 months (No) 271 818(338-1949) 959(719-1513) 1.3(0.8-2.4)

Alcohol in last 3 months (Yes) 45 2213(1062-4590)* 1591(1237-3609)* 1.0(0.6-1.5)*

GI bleeding (No) 283 958(416-2273) 1019(780-1643) 1.2(0.7-2.2)

GI bleeding (Yes) 54 954(359-2510) 1132(626-2435) 1.4(0.9-2.6)

Bacterial infection (No) 247 918(377-2060) 1019(769-1643) 1.2(0.8-2.3)

Bacterial infection (Yes) 88 1217(429-2476) 1032(739-1775) 1.4(0.9-2.6)

No precipitating event 151 778(376-1764) 961(751-1371) 1.3(0.8-2.3)

Precipitating event 170 1129(419-2530)* 1116(739-1912) 1.1(0.7-2.0)

*P value < 0.05
Keratin 18 (K18), Caspase Cleaved Keratin 18 (cK18)



Supplementary Table 6. Keratin 18, Caspase cleaved Keratin 18 and cK18:K18 ratio

stratified by inflammatory markers, cytokines and markers of oxidative stress in all

patients.

K18(U/L) cK18(U/L) cK18:K18 Ratio
cK18:K18N Median(IQR) Median(IQR) Median(IQR)

WBC (x109/L) <8 227 838(339-1737) 950(696-1371) 1.2(0.7-2.5)

WBC (x109/L) 8-12 67 1139(453-2611) 1219(829-2290) 1.2(0.8-2.0)

WBC (x109/L) >12 42 2749(853-7016)* 1984(985-3995)* 1.0(0.6-1.4)

CRP (mg/L) <10 87 903(330-1462) 988(740-1373) 1.4(0.8-2.8)

CRP (mg/L) 10-20 60 1139(459-2542) 1114(810-1988) 1.0(0.6-1.6)

CRP (mg/L) >20 118 1218(453-2894)* 1156(783-2500) 1.3(0.8-2.0)

IL8 (pg/mL) <61 102 558(279-1217) 879(665-1214) 1.7(0.9-2.9)

IL8 (pg/mL) ≥61 101 2194(869-5138)* 1505(997-3517)* 1.0(0.6-1.5)* 

IL6 (pg/mL) <33 99 842(327-2542) 1061(696-2180) 1.4(0.8-2.7)

IL6 (pg/mL) ≥33 99 1306(502-2529) 1183(838-2207) 1.0(0.7-1.8)* 

IL10 (pg/mL) <4.8 96 820(332-2216) 1078(780-1702) 1.3(0.8-2.9)

IL10 (pg/mL) ≥4.8 94 1542(413-3577)* 1152(712-2500) 1.0(0.6-1.8)* 

IL1Ra (pg/mL) <14.7 101 687(330-1908) 926(712-1524) 1.3(0.8-2.7)

IL1Ra (pg/mL) ≥14.7 101 1377(454-3765)* 1243(830-2611)* 1.1(0.6-2.9) 

NGAL (ng/mL)) <37 140 668(331-1581) 939(713-1379) 1.4(0.8-2.9)

NGAL (ng/mL)) ≥37 143 1002(398-2273)* 1124(740-2041)* 1.1(0.7-2.2) 

sCD163 (mg/L) <9.3 164 704(299-1542) 939(678-1371) 1.4(0.8-3.0)

sCD163 (mg/L) ≥9.3 164 1139(504-2894)* 1156(801-2346)* 1.1(0.6-1.8)* 

HNA2 (%) <7.6 102 777(310-2311) 1064(685-2041) 1.5(0.9-2.9)

HNA2 (%) ≥7.6 101 1218(542-3272)* 1197(814-2239) 1.0(0.6-1.7) 

*P value < 0.05
Keratin 18 (K18), Caspase Cleaved Keratin 18 (cK18)



Supplementary Table 7. Keratin 18 (K18), Caspase Cleaved Keratin 18 (cK18) and

cK18:K18 ratio stratified by organ failures in all patients.

K18(U/L) cK18(U/L) Ratio cK18:K18

N Median(IQR) Median(IQR) Median(IQR)

Single organ failures

Liver (No) 301 931(359-2213) 998(742-1571) 1.2(0.7-2.4)

Liver (Yes) 30 1809(694-8945)* 1375(801-9355)* 1.0(0.8-1.4)

Kidney (No) 312 948(378-2331) 1037(739-1665) 1.2(0.7-2.3)

Kidney (Yes) 19 985(708-2354) 997(879-1591) 0.9(0.6-1.4)

Brain (No) 320 963(406-2348) 1044(775-1700) 1.2(0.7-2.2)

Brain (Yes) 11 537(377-978) 706(675-982) 1.4(0.8-3.8)

Coagulation (No) 322 955(377-2318) 1022(742-4662) 1.2(0.7-2.3)

Coagulation (Yes) 9 1199(717-3737) 1232(998-1534) 1.0(0.7-1.1)

Cardiac (No) 329 961(401-2343) 1034(752-1662) 1.2(0.7-2.2)

Cardiac (Yes) 2 421(332-510) 1018(464-1571) 2.8(0.9-4.7)

Respiratory (No) 330 955(398-2318) 1037(752-1662) 1.2(0.7-2.3)

Respiratory (Yes) 1 3788(3788-3788) 638(638-638) 0.2(0.2-0.2)

Single and Multiple

Liver (No) 281 859(331-1910) 978(726-1526) 1.3(0.8-2.7)

Liver (Yes) 56 2347(867-8339)* 1417(938-3639)* 0.9(0.6-1.3)*

Kidney (No) 299 898(347-1934) 998(726-1569) 1.3(0.8-2.5)

Kidney (Yes) 38 2349(954-7611)* 1407(971-3711)* 0.7(0.5-1.3)*

Brain (No) 308 941(378-2223) 1019(742-1645) 1.2(0.7-2.3)

Brain (Yes) 29 1034(407-4965) 1269(860-2822) 1.1(0.7-2.1)

Coagulation (No) 308 935(376-2085) 1016(731-1591) 1.2(0.8-2.4)

Coagulation (Yes) 29 2176(717-4843)* 1232(890-2528) 0.9(0.6-1.7)*

Cardiac (No) 318 941(398-2213) 1019(742-1572) 1.2(0.8-2.3)

Cardiac (Yes) 19 2458(510-5087)* 2171(921-3711)* 0.9(0.6-1.6)

Respiratory (No) 330 947(400-2288) 1030(746-1661) 1.2(0.7-2.2)

Respiratory (Yes) 7 2476(267-5087) 1264(921-2290) 0.6(0.2-3.4)

*P value < 0.05
Keratin 18 (K18), Caspase Cleaved Keratin 18 (cK18)



Supplementary Table 8. Univariate analysis factors associated with
progression of AD patients to ACLF

AD patients at enrolment P value

No progression to ACLF Progression to
ACLF

(N=195) (N=39)

Age1 58±11 58±11 0.951

Male 126(64.6) 25(64.1) 0.951

Etiology

Alcohol 88(47.1) 19(51.4) 0.633

HCV 48(25.7) 7(18.9) 0.384

Alcohol + HCV 16(8.6) 3(8.1) 0.929

Other 35(18.7) 8(21.6) 0.682

Previous Decomp. 141(73.4) 26(70.3) 0.691

Alcohol in last 3 months 18(9.7) 4(11.4) 0.759

Ascites with subrogates1 162(83.1) 38(97.4) 0.020

HE 50(25.6) 13(33.3) 0.323

GI bleeding1 33(16.9) 3(7.7) 0.145

Bacterial infection 43(22.2) 11(29.0) 0.366

Laboratory values

Bilirubin1 2.6(1.5-5.5) 4.5(2.4-9.1) 0.005

INR1 1.4(1.3-1.7) 1.8(1.4-2.2) <0.001

Albumin1 2.9(2.6-3.2) 2.7(2.2-3.0) 0.007

Creatinine1 0.9(0.7-1.2) 1.1(0.8-1.4) 0.165

Sodium1 136±5 132±9 0.009

Leucocyte count1 5.4(4.0-8.0) 6.8(5.2-11.2) 0.001

Neutrophil count 191(50-3056) 220(30-4224) 0.993

Platelets 91(55-141) 101(65-124) 0.574

C-reactive protein1 15(6-30) 28(14-39) 0.012

MELD 16±5 20±6 <0.001

MELD Na 18±6 24±6 <0.001

CP score 9.0±1.9 10.4±1.8 <0.001

CLIF AD score 51±8 60±10 <0.001

CLIF – OF 6.9±1.0 7.7±1.3 <0.001

CLIF – SOFA 5.7±2.1 7.1±1.9 <0.001

M30 933(679-1363) 1456(998-2198) <0.001

M65 716(319-1605) 1404(542-3788) 0.002

M30:M65 ratio 1.4(0.9-2.7) 1.1(0.7-1.8) 0.117

1Variables included in the multivariate model for the stepwise selection



Supplementary Table 9. Univariate analysis of factors associated with
survival.

28 days mortality^ P value*

Alive Dead
(N=283) (N=41)

Age1 58±12 57±9 0.891
Male 176(62.2) 24(58.5) 0.565
Etiology

Alcohol 140(51.7) 21(52.5) 0.789
HCV 59(21.8) 13(32.5) 0.135
Alcohol + HCV 26(9.6) 2(5.0) 0.368
Other 46(17.0) 4(10.0) 0.512

Previous Decomp. 210(76.4) 25(65.8) 0.133
Alcohol in last 3 months1 36(13.5) 9(23.7) 0.074
Ascites with subrogates1 248(87.6) 40(97.6) 0.106
HE1 91(32.2) 20(48.8) 0.044
GI bleeding 47(16.6) 7(17.1) 0.792
Bacterial infection1 64(22.8) 19(46.3) 0.002
Organ Failures

Liver 33(11.7) 17(41.5) <0.001
Kidney 24(8.5) 12(29.3) <0.001
Brain 20(7.1) 7(17.1) 0.038
Coagulation 18(6.4) 7(17.1) 0.033
Cardiac 10(3.5) 7(17.1) <0.001
Respiratory 3(1.1) 3(7.3) 0.009

Laboratory values
Bilirubin1 2.8(1.5-6.4) 6.9(2.9-25.0) <0.001
INR1 1.5(1.3-1.8) 1.9(1.5-2.3) <0.001
Albumin 2.9(2.5-3.2) 2.6(2.3-3.2) 0.211
Creatinine1 1.0(0.7-1.3) 1.3(0.9-2.8) <0.001
Sodium1 136±5 131±8 <0.001

Leucocyte count1 5.8(4.2-8.2) 8.7(6.4-14.4) <0.001
Neutrophil count 205(44-27000) 170(20-4900) 0.382
Platelets 91(57-137) 63(39-115) 0.079
C-reactive protein1 16(6-32) 37(18-61) <0.001

MELD 18±6 26±8 <0.001
MELD Na 20±7 29±7 <0.001
CP score 9.4±2.0 11.1±1.8 <0.001
CLIF AD score 51±8 61±10 <0.001
CLIF ACLF score 47±9 55±7 <0.001
CLIF – OF 7.5±1.7 9.8±2.8 <0.001
CLIF - SOFA 6.6±2.7 9.6±3.8 <0.001
M30 981(729-1511) 1643(949-3609) <0.001
M65 863(347-1917) 2334(929-5151) <0.001
M30:M65 ratio 1.3(0.8-2.5) 0.9(0.5-1.3) 0.005



^13 patients were transplanted and considered as a secondary event
*p value is obtained with a competing risks model with variables log
transformed when necessary.
1Variables included in the multivariate model for the stepwise selection
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Table 1. Patient characteristics at baseline stratified by presence or

absence of ACLF at enrolment.

Baseline characteristic AD

(n=258)

ACLF

(n=79)

P value

Age (years) 58±12 55±12 0.111

Male (n, %) 165(64.0) 45(57.0) 0.262

Etiology (n, %)

Alcohol 115(46.9) 47(61.8) 0.023

HCV 61(24.9) 14(18.4) 0.244

Alcohol + HCV 22(9.0) 7(9.2) 0.951

Other 47(19.2) 8(10.5) 0.080

Previous Decompensation

(n, %)

186(73.5) 61(83.6) 0.078

Alcohol in last 3 months (n, %) 25(10.3) 20(27.4) <0.001

Ascites or its surrogates (n, %) 222(86.1) 79(100.0) <0.001

GI bleeding (n, %) 41(15.9) 13(16.5) 0.905

Bacterial infection (n, %) 58(22.7) 30(38.0) 0.007

Organ Failures (n, %)

Liver 20(7.8) 36(45.6) <0.001

Kidney - 38(48.1) -

Brain 8(3.1) 21(26.6) <0.001

Coagulation 5(1.9) 24(30.4) <0.001

Cardiac 2(0.8) 17(21.5) <0.001

Respiratory 1(0.4) 6(7.6) <0.001

Inflammatory and

oxidative stress markers

WBC (x109/L) 5.7(4.2-8.2) 7.6(5.8-12.1) <0.001

CRP (mg/L) 16(6-32) 23(10-54) 0.010

IL8 (pg/mL) 48(26-94) 110(61-205) <0.001

IL6 (pg/mL) 27(16-60) 63(20-130) 0.001



3

IL10 (pg/mL) 3.9(1.4-9.9) 9.1(2.0-37.2) 0.001

ILRA (pg/mL) 13(6-30) 25(10-91) <0.001

NGAL (ng/mL) 28(12-73) 95(28-384) <0.001

sCD163 (mg/L) 8.7(5.1-12.5) 14.1(9.0-20.0) <0.001

HNA-2 (%) 6.0(3.8-9.7) 10.2(6.6-14.0) <0.001

Laboratory values

Bilirubin (mg/dL) 2.8(1.5-5.9) 9.7(2.6-21.3) <0.001

INR 1.5(1.3-1.7) 1.9(1.5-2.6) <0.001

Albumin (g/dL) 2.9(2.5-3.2) 2.8(2.2-3.3) 0.249

Creatinine (mg/dL) 0.9(0.7-1.2) 1.8(0.9-3.0) <0.001

Sodium (mmol/L) 135±6 134±6 0.110

Platelets (x109/L) 91(55-135) 66(48-111) 0.014

MELD 17±6 28±7 <0.001

MELD Na 19±6 30±6 <0.001

CP score 9.2±1.9 11±2 <0.001

CLIF – OFs 7±1 11±2 <0.001

28-day mortality (%) 16(6.2) 25(31.7) <0.001

3-month mortality (%) 34(13.2) 34(43.0) <0.001

Data are mean ± SD or median (Q1-Q3)
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Table 2. cK18, K18 and cK18:K18 ratio stratified by patient group.

cK18 (U/L)

Median (IQR)

K18 (U/L)

Median (IQR)

cK18:K18 ratio

Median (IQR)

Healthy Controls(n=34) 201(107-357) 11(11-11) 18,3(9,7-32,4)

Stable Cirrhotics (n=44) 182(103-275) 245(98-650) 0,7(0,4-1,5)

All decompensated (n=337) 1034(751-1662) 955(398-2343) 1,19(0,74-2,24)

P value <0.001 <0.001 <0.001

No ACLF at enrolment (n=258) 975(712-1530) 818(330-1854) 1.3(0.8-2.7)

ACLF at enrolment (n=79) 1213(921-2719) 1766(708-4658) 0.9(0.6-1.6)

P value <0.001 <0.001 <0.001

ACLF I at enrolment (n=36) 1103(849-1583) 1100(682-2283) 0.9(0.7-1.3)

ACLF 2 at enrolment (n=32) 1228(906-3164) 2082(508-4994) 1.0(0.6-2.1)

ACLF 3 at enrolment (n=11) 2701(1264-12736) 4994(2476-10826) 0.6(0.4-0.7)

P value 0.020 0.004 0.048

AD throughout (n=195) 933(679-1363) 716(319-1605) 1.4(0.9-2.7)

ACLF to AD (n=8) 1053(828-1954) 633(376-3141) 1.2(0.8-2.3)

AD to ACLF (n=39) 1456(998-2198) 1404(542-3788) 1.1(0.7-1.8)

ACLF throughout (n=71) 1232(921-2794) 1901(853-4843) 0.9(0.6-1.3)

P value <0.001 <0.001 0.001
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Table 3. Markers of inflammation, oxidative stress, macrophage
activation and cell death stratified by the presence of absence of
infection.

No infection

(n=247)

Infection

(n=88)

P value

WBC (x109/L) 6.0(4.4-8.2) 6.7(4.7-11.2) 0.044

CRP (mg/L) 16(6-27) 34(11-69) <0.001

IL8 (pg/mL) 56(27-112) 80(41-128) 0.017

IL6 (pg/mL) 26(15-57) 72(28-353) <0.001

IL10 (pg/mL) 3.8(1.2-10.2) 9.4(3.6-26) <0.001

ILRA (pg/mL) 14(6-31) 26(10-76) <0.001

sCD163 (mg/L) 9.1(5.2-13.9) 9.5(7.0-16.5) 0.053

NGAL (ng/mL) 30(12-85) 49(18-140) 0.062

HNA-2 (%) 7.0(3.8-10.5) 9.4(5.6-12.9) 0.005

cK18 (U/L) 1019(769-1643) 1032(739-1775) 0.760

K18 (U/L) 918(377-2060) 1217(429-2476) 0.194

cK18:K18 ratio 1.2(0.8-2.3) 1.1(0.6-2.2) 0.185

Data are mean ± SD or median (Q1-Q3)



6

Table 4. Performance of cK18 and K18 level, cK18:K18 ratio and clinical

scores in predicting AD patients who will progress to ACLF.

Progression to ACLF
AUROC (95% CI) P value

Ln(cK18) 0.670(0.576-0.764)
Ln(K18) 0.655(0.554-0.756
Ln(cK18:K18) 0.581(0.479-0.682)
MELD 0.710(0.618-0.802)
MELD+Ln(cK18) 0.740(0.653-0.826) ns
MELD+Ln(K18) 0.723(0.632-0.815) ns
MELD+Ln(cK18:K18) 0.709(0.616-0.802) ns
MELDna 0.729(0.637-0.820)
MELDna+Ln(cK18) 0.745(0.658-0.833) ns
MELDna+Ln(K18) 0.736(0.642-0.831) ns
MELDna+Ln(cK18:K18) 0.728(0.633-0.822) ns
CLIF-C AD 0.737(0.655-0.820)
CLIF-C AD+Ln(cK18) 0.765(0.690-0.841) <0.05
CLIF-C AD+Ln(K18) 0.760(0.679-0.841) ns
CLIF-CAD+Ln (cK18:K18) 0.744(0.660-0.827) ns



7

Table 5. Performance of cK18 and K18 levels, cK18:K18 ratio and clinical
scores in predicting 28-day and 90-day mortality in AD patients.

28 days mortality 90 days mortality
C-index (95% CI) P value C-index (95% CI) P value

Ln(cK18) 0.571(0.408-0.733) 0.585(0.481-0.689)
Ln(K18) 0.659(0.518-0.800) 0.640(0.543-0.737)
Ln(cK18:K18) 0.634(0.501-0.767) 0.622(0.531-0.712)
MELD 0.628(0.498-0.758) 0.721(0.637-0.804)
MELD+(cK18) 0.654(0.524-0.783) 0.592 0.735(0.654-0.817) 0.401
MELD+(K18) 0.703(0.574-0.831) 0.273 0.743(0.662-0.824) 0.327
MELD+ (cK18:K18) 0.675(0.551-0.799) 0.385 0.733(0.652-0.814) 0.493
MELDna 0.695(0.566-0.823) 0.751(0.672-0.831)
MELDna+(cK18) 0.698(0.567-0.830) 0.927 0.756(0.675-0.837) 0.912
MELDna+(K18) 0.737(0.609-0.866) 0.201 0.767(0.684-0.850) 0.368
MELDna+(cK18:K18) 0.733(0.613-0.854) 0.267 0.762(0.682-0.841) 0.459
CLIF-C AD 0.764(0.644-0.884) 0.752(0.675-0.828)
CLIF-C AD+(cK18) 0.767(0.646-0.887) 0.897 0.755(0.678-0.832) 0.956
CLIF-C AD+(K18) 0.789(0.670-0.908) 0.320 0.771(0.692-0.850) 0.376
CLIF-C AD+(cK18:K18) 0.796(0.681-0.911) 0.213 0.770(0.692-0.848) 0.374
























