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ABSTRACT
Molecular and cellular oscillations constitute an internal clock that
tracks the time of day and permits organisms to optimize their
behaviour and metabolism to suit the daily demands they face. The
workings of this internal clock become impaired with age. In this
review, we discuss whether such age-related impairments in
the circadian clock interact with age-related neurodegenerative
disorders, such as Alzheimer’s disease. Findings from mouse
and fly models of Alzheimer’s disease have accelerated our
understanding of the interaction between neurodegeneration and
circadian biology. These models show that neurodegeneration likely
impairs circadian rhythms either by damaging the central clock or by
blocking its communication with other brain areas and with peripheral
tissues. The consequent sleep and metabolic deficits could enhance
the susceptibility of the brain to further degenerative processes.
Thus, circadian dysfunction might be both a cause and an effect of
neurodegeneration. We also discuss the primary role of light in the
entrainment of the central clock and describe important, alternative
time signals, such as food, that play a role in entraining central and
peripheral circadian clocks. Finally, we propose how these recent
insights could inform efforts to develop novel therapeutic approaches
to re-entrain arrhythmic individuals with neurodegenerative disease.
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Proteostasis, Sleep dysfunction

Introduction
The circadian clock is a complex biological machine that allows
organisms, from fruit flies to humans, to predict and prepare for
the challenges of everyday life. According to each organism’s
ecological niche, activities such as sleeping, eating, mating and
predation-avoidance are optimally performed either during the day
or night (Hut et al., 2012). This ability to track the hours of
the day must, therefore, be of general benefit, as evidenced by the
remarkable conservation of the molecular components of the
circadian clock across many species (for exceptions see Bloch et al.,
2013). Given the importance of circadian biology in regulating
organismal health, it is of no surprise that the breakdown of daily

circadian rhythms (see Glossary, Box 1) is a risk factor for a range of
diseases, including metabolic syndrome, vascular disease and
cancer (Anea et al., 2009; Bass and Takahashi, 2010; Evans and
Davidson, 2013; Kondratov and Antoch, 2007). In rodents, as well
as in humans, there is evidence that sleep disruption leads to
neurodegenerative pathology (Benedict et al., 2014; Kang et al.,
2009). In humans, common neurodegenerative disorders increase in
prevalence with age, and so are becoming more prevalent as the
human population ages (Ballard et al., 2011). The primary example,
Alzheimer’s disease (AD), affects 20-40 million people worldwide,
and is the most common cause of progressive cognitive dysfunction
(dementia) in adults (Ballard et al., 2011; Prince et al., 2016); it has
also been noted to cause circadian dysfunction from an early stage
(Osorio et al., 2011; Tranah et al., 2011). Such ageing demographic
trends, along with the disruptive effects of the modern environment,
such as bright light at night and shift work, could result in a
population predisposed to circadian dysfunction (Antunes et al.,
2010). This review therefore addresses the question of whether a
positive feedback loop exists, in which neurodegenerative disorders
are both a cause and an effect of circadian dysfunction.

A better understanding of how circadian dysfunction can
contribute to neurodegenerative disease mechanisms might help
with the development of novel therapies for AD and for other
neurodegenerative disorders. There are currently no licensed, disease-
modifying treatments for AD, despite enormous efforts aimed
primarily at preventing or clearing the characteristic protein deposits
that characterize this disease (Table 1). While acknowledging the
pathological primacy of amyloid deposition in AD, an understanding
of the possible role of circadian disruption in mediating disease
progression could provide us with novel therapeutic targets. As
circadian mechanisms are highly conserved between flies, rodents
and humans, there are a wide range of model systems available
for study.

Here, we provide an overview of the molecular and neurological
basis of circadian biology in insects and mammals. We discuss
evidence from fly and mouse models of AD that highlights the
involvement of circadian dysfunction in AD, and shows how
circadian dysfunction, specifically sleep disruption, can promote
amyloid pathology directly, and disease progression indirectly,
through downstream metabolic dysfunction and diabetes. Finally,
we discuss a range of therapeutic approaches that aim to correct
circadian dysfunction in neurodegenerative diseases, such as AD,
including metabolic correction, the restoration of circadian rhythms
and the enhancement of sleep.

The molecular basis of the circadian clock
The molecular basis for circadian rhythms consists of conserved
transcriptional and translational feedback loops of so-called ‘clock
genes’. In mammals, the core transcriptional machinery consists of
the bHLH-PAS [basic helix-loop-helix–PER/aryl hydrocarbon
receptor nuclear translocator/single minded homology domain
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(Kewley et al., 2004)] transcription factors, such as those encoded
by the genes Bmal1 (Arntl) and Clock. As well as modulating the
expression of a vast number of genes across the genome, these
factors stimulate the transcription of their own repressors, such as
the period (PER1-PER3) and cryptochrome (CRY1/CRY2)
proteins. Thus, Per1-Per3 and Cry1/Cry2 provide time-delayed
inhibition of Bmal1 and Clock, resulting in gene expression patterns
that oscillate within a∼24 h period. Circadian biology has also been
studied extensively in the fruit fly,Drosophila, because many of the
clock genes have orthologues and/or conserved feedback loops (see
Fig. 1 for a comparison of the mammalian and Drosophila
molecular clocks) (Hardin and Panda, 2013; Mohawk et al., 2012).
These clock genes are responsible for circadian oscillations at the

cellular level by regulating membrane electrical activity and cellular
metabolism (O’Neill and Feeney, 2014; O’Neill and Reddy, 2012).
The creation of whole-organism rhythms in behaviour and
physiology requires the formation of dedicated neural circuits,
made up of cells that express the clock genes within the central
nervous system. In mammals, ∼20,000 of such ‘master clock’

neurons reside within the suprachiasmatic nucleus (SCN) (see
Glossary, Box 1) of the hypothalamus (Dibner et al., 2010). In
Drosophila, 150 central clock gene-expressing neurons are
subdivided into seven groups that are located in the anterior,
posterior and superior brain (Peschel and Helfrich-Förster, 2011).

While this neural circuitry generates endogenous rhythms within
a period of ∼24 h, an environmental cue (a zeitgeber) is also
required to keep the organism in synchrony with its optimal
temporal niche (Hut et al., 2012). This process is termed circadian
entrainment (see Glossary, Box 1). Light is the primary zeitgeber
and, as such, is primarily responsible for entraining the endogenous
rhythmicity of an organism’s neural circuits so that they oscillate in
synchrony with their environment (Münch and Bromundt, 2012). In
mammals, the predominant mechanism for light entrainment
utilizes the nonvisual photoreceptor, melanopsin, which is found
in photosensitive retinal ganglion cells that provide input directly to
the SCN (Hankins et al., 2008). The central clock communicates
with peripheral clocks in other brain regions and in systemic organs,
such as the liver, via rhythmic neuronal and humoral signals (see
Glossary, Box 1). Unlike its mammalian orthologues, CRY in
Drosophila acts as a cell-autonomous circadian photoreceptor by
destabilising the transcription repressor timeless upon light
exposure (Fig. 1A) (Koh et al., 2006; Peschel et al., 2009). In this
way, light infiltrating the fly’s cuticle directly synchronizes the
central circadian clock, as well as the peripheral oscillators (Plautz
et al., 1997) (see Fig. 2 for a comparison of central and peripheral
mammalian and Drosophila clock circuitry). Notably, visual photic
signals, meaning perceived visual inputs, act as a relatively minor
entraining stimulus in mammals (Hankins et al., 2008) and
Drosophila (Rieger et al., 2003).

Other zeitgebers include nonphotic stimuli, such as temperature,
food availability, exercise and social interactions (Buhr et al., 2010;
Carneiro and Araujo, 2012; Glaser and Stanewsky, 2007; Hastings
et al., 1998; Levine et al., 2002a; Mistlberger and Skene, 2005;
Simoni et al., 2014), which under certain circumstances can entrain
endogenous rhythmicity. For example, when nocturnal rodents are
restricted to a daytime feeding schedule, through the provision of a
2-6 h meal time during their usual rest phase, they exhibit a
dissociation of peripheral circadian oscillators from the SCN. Not
only will the rodents’ activity shift to realign with the expected
mealtime, but the timing of clock gene expression in peripheral
tissue will also be shifted by the daytime feeding schedule (Boulos
and Terman, 1980; Damiola et al., 2000; Stokkan et al., 2001).
Meanwhile, the SCN remains entrained to the light-dark cycle under
most conditions (Hara et al., 2001).

In Drosophila, feeding behaviour is controlled by both central
and peripheral clocks, such that feeding rhythms are diminished in
flies with either no central clock or with no peripheral clock in the

Box 1. Glossary
Circadian entrainment: The process by which endogenous oscillations
within a period of ∼24 h are synchronized with environmental
oscillations. The signal that mediates the entrainment (often light but
can also be feeding) is termed the zeitgeber (i.e. time giver or timer).
Circadian rhythms: Molecular, hormonal, physiological and behavioral
rhythms within a period of ∼24 h.
Fat body: This tissue is considered to be theDrosophila equivalent of the
liver and adipose tissue of vertebrates, in terms of its storage and
metabolic functions.
Glymphatic system:Clearance pathway for interstitial waste (solute and
fluid) in the vertebrate central nervous system.
Humoral signals: Signals mediated by hormones.
Hypothalamus-pituitary-adrenal axis: Three structures of the
endocrine system, namely the hypothalamus, pituitary and adrenal
cortex, that constitute the glucocorticoid hormone pathway.
Neurofibrillary tangles: Intracellular deposits of the microtubule binding
protein tau. Tangle density is correlated with cognitive impairment in AD.
Rapid eye movement (REM) sleep behaviour disorder: The loss of
normal muscle atonia during REM (dreaming) sleep, resulting in
movement, often linked to dream content. This sleep disorder is
strongly linked to subsequent development of Parkinson’s disease
and/or dementia with Lewy bodies.
Suprachiasmatic nucleus (SCN): Brain nucleus located in the
hypothalamus, above the optic chiasm, which contains the central
circadian clock in mammals.
Tauopathies: Neurodegenerative diseases associated with the
pathological aggregation of the protein, tau, in deposits such as
neurofibrillary tangles.

Table 1. Key proteins involved in the pathogenesis of AD

Gene
symbol Gene name Role in AD pathology References

APP Amyloid β precursor
protein

APP undergoes proteolytic cleavage to yield the Aβ peptide that aggregates to
form amyloid plaques in the brain. Sequence variants are linked to familial AD;
for example, the Swedish mutation (APP KM670/671NL) is widely used in
transgenic models of AD.

(Hardy, 1997)
(Citron et al., 1997)
(Braak and Braak, 1994)

PSEN1;
PSEN2

Presenilin 1; presenilin 2 PSEN1 and PSEN2 are subunits of the γ-secretase catalytic complex. This
complex proteolytically cleaves APP to generate Aβ. Sequence variants are
linked to familial AD.

MAPT Tau (microtubule-
associated protein tau)

Tau is a microtubule binding protein that becomes hyperphosphorylated and
aggregates to form neurofibrillary tangles. Sequence variants are linked to
frontotemporal dementia.

(Hutton et al., 1998)
(Spillantini et al., 1998)
(Spillantini and Goedert, 2013)
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fat body (see Glossary, Box 1) (Xu et al., 2008). In the periphery, the
fat body derived cytokine, Unpaired 2 (Upd2), conveys the fed
status in Drosophila to the insulin-producing cells (IPCs) in the
brain (Rajan and Perrimon, 2012). Interestingly, a subset of IPCs
has been shown to regulate sleep-wake behaviour in Drosophila
(Yurgel et al., 2015). Centrally, a subset of clock (DN1) neurons
regulates the secretion of insulin-like peptide (ILP) in a circadian
pattern, which in turn regulates fat body-mediated sugar
homeostasis (Barber et al., 2016) (Fig. 2A).
The concordant and synchronized oscillation of the central clock

with the various peripheral tissue clocks is thought to optimally
coordinate an organism’s metabolism (Bass and Takahashi, 2010),
supporting its health and fitness (Nedeltcheva and Scheer, 2014;
Roenneberg and Merrow, 2016; Scheer et al., 2009). The

desynchronization of the central and peripheral clocks can occur
as a result of modern life, as seen in individuals exposed to light-
emitting diode (LED) light at night (Hatori et al., 2017) and those
undertaking shift work (Kecklund and Axelsson, 2016; Knutsson,
2003; Pan et al., 2011). The aberrant circadian signals in today’s
environment pose a particular challenge to elderly people who, as
we discuss below, exhibit progressively less robust circadian
rhythms.

Circadianclock function inageingand inage-relateddisease
Healthy ageing in humans is often linked to changes in the sleep-
wake cycle. Typically, older individuals nap more often during the
day (Buysse et al., 1992) and experience shallower night-time sleep
with more arousals, which disrupt non-rapid eye movement sleep in
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Fig. 1. Conservation of circadian clocks between flies and mice. The heterodimeric transcription activators, Clock/Cycle in Drosophila (A) or Clock/Bmal1 in
mice (B) (green and purple ovals, respectively), drive the transcription of the period/timeless (per/tim) genes in Drosophila (A) and of the genes for the period or
cryptochrome proteins (Per1-Per3 or Cry1/Cry2) in mice (B) by binding to the regulatory E-box upstream of target genes. The protein dimers of PER/TIM, PER1-
PER3 or CRY1/CRY2 (red and blue pentagons, respectively) in turn negatively regulate Clock/Cycle or Clock/Bmal1 transactivation. This time-delayed, negative
feedback is the basis for the temporal oscillation of the molecular clock. Of note, mammalian CRY1/CRY2 and Drosophila TIM are functional, not sequence,
orthologues. In Drosophila, light entrainment can be mediated by CRY, allowing light to directly entrain the molecular clock of both central and peripheral tissues.
The cell-autonomous sensing of light by CRY results in the light-dependent degradation of TIM. Such cell-autonomous detection of light is not possible in larger
animals as their internal tissues cannot directly sense this zeitgeber.
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Fig. 2. Entrainment of the central and peripheral clocks in Drosophila andmice. (A) A cross-section of a Drosophila brain, dorsal is top. The central clock in
Drosophila consists of a neuronal network in the brain (green circles). Light directly entrains both the central and peripheral clocks in Drosophila via CRY.
Peripherally, circadian variation in feeding drives oscillation in stored energy in a Drosophila organ called the fat body. The status of energy stores is conveyed to
IPCs (orange circles) in the fly brain by the fat body-derived cytokine Upd2 (green arrow). The peripheral clock in the fat body is regulated partly by neuropeptide F
(NPF, lower red arrow), which derives from a subset of central clock neurones. Subsets of central clock neurones also regulate the production of Drosophila
insulin-like peptides (DILPs) in IPCs (top red arrow). DILPs, in turn, regulate circadian oscillations in carbohydratemetabolism in the fat body (orange arrow). (B) A
side view of an adult mouse brain, anterior is to the left. Inmice, light input is conveyed to the central clock in the SCN (green clock) of the hypothalamus via retinal-
hypothalamic neuronal input (yellow arrow). Nutritional status is conveyed to the hypothalamus via gut-derived ghrelin and GLP-1, or by adipocyte-derived leptin
(green arrows from gut and adipocytes). Peripheral metabolic clocks are entrained primarily by autonomic innervation and by glucocorticoid hormones (top
orange arrow). The food entrained oscillator is likely synchronized by nutrient inputs and by gut-derived hormones (green arrows from gut), such as by GLP1 and
insulin (orange arrows from pancreas), peripherally, and by leptin, ghrelin, GLP1 and β-hydroxybutyrate (βHOB), centrally.
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particular (Dijk et al., 2001). The relative timings (phase
relationships) of sleep and of other circadian oscillations, such as
body temperature, also change with age (Yoon et al., 2003), likely
indicating differences in entrainment communication between
various clocks. Data from experimental organisms, such as
Drosophila (Chen et al., 2014) and mouse (Nakamura et al.,
2011), indicate that communication between clock neurons, and
between clock neurons and their output pathways, fails earlier than
does the circadian cycling of the molecular components of the
clock. While in vitro (Kunieda et al., 2006) and in vivo (Wyse and
Coogan, 2010) models of ageing indicate that the molecular clock
might also be impaired in aged cells and organisms, the extent to
which this contributes to circadian changes in elderly humans
(Münch et al., 2005; Schmidt et al., 2012) is unclear. For this reason,
model organisms that carry clock gene mutations that abolish
molecular rhythmicity, such as mutations in Bmal1 in mice (Bunger
et al., 2000; Laposky et al., 2005) or in period ( per0) in flies
(Konopka and Benzer, 1971), might not be the optimal models in
which to study age-related circadian deficits.
Less robust circadian signalling with age might underpin age-

related sleep deficits, which might, in turn, directly injure the brain
(Kondratova and Kondratov, 2012). For example, chronic ‘jet lag’ in
rodents causes deficits in hippocampal neurogenesis (Rakai et al.,
2014) and cognition (Kott et al., 2012), and in long-haul aircrew, jet
lag has been linked to reduced hippocampal volume (Cho, 2001).
The damage to the hippocampus has been likened to accelerated
ageing, likely mediated by astrogliosis and increased production of
reactive oxygen species (Ali et al., 2015; Musiek et al., 2013). Such
age-related stressors could explain at least some of the increasing
incidence of neurodegenerative disease in the elderly.
The neurodegenerative disease we focus on in this review is AD,

which is characterized histologically by the dual pathologies of
extracellular neuritic (amyloid β, Aβ) plaques (Braak and Braak,
1994) and intraneuronal neurofibrillary tangles (see Table 1 and
Glossary, Box 1) (Braak et al., 1994). These pathological features
have been replicated to some extent in vertebrate and invertebrate
model organisms (Drummond and Wisniewski, 2017; Moloney
et al., 2010b). Genetic linkage studies in familial AD (Goate et al.,
1991; Rogaev et al., 1995; Sherrington et al., 1995) and whole-
genome studies of the more common, sporadic form of AD (Jonsson
et al., 2012) indicate that the increased production of aggregation-
prone Aβ peptides, the main component of plaques (Glenner and
Wong, 1984; Masters et al., 1985a,b), might initiate the disease. In
addition, genome-wide association studies have implicated a wider
range of biological functions that likely contribute to risk of AD, in
particular innate immunity and inflammation (Cuyvers and
Sleegers, 2016; Guerreiro et al., 2013; Jonsson et al., 2013;
Lambert et al., 2013; Singleton and Hardy, 2016).
Memory deficits are a cardinal symptom of AD. However, many

individuals with AD experience an earlier symptom (prodrome)
characterized by disrupted sleep; this likely explains the strong link
between ever taking benzodiazepine sleeping medication and risk of
dementia (Billioti de Gage et al., 2014). In established AD, the main
sleep abnormalities resemble an exaggerated form of the sleep
changes that occur during healthy ageing. The main features include
increased night-timewakefulness, caused by increased sleep latency
and reduced sleep consolidation (the duration of uninterrupted sleep
episodes), reduced slow-wave sleep and increased day-time naps
(Bonanni et al., 2005; Musiek et al., 2015). Additionally,
individuals with moderate and advanced AD may exhibit
‘sundowning’, where agitation is more marked in the late
afternoon (Bedrosian and Nelson, 2013; Volicer et al., 2001).

Circadian disturbance is also evident in the daily rhythms of activity
and core body temperature. Individuals with AD typically show two
abnormalities: first, there is less differentiation between day and
night and second, the oscillations are phase shifted so that peaks in
both body temperature and activity occur later in the day as
compared to healthy controls (Harper et al., 2001; Satlin et al., 1995;
Tranah et al., 2011; Volicer et al., 2001). By contrast, men with
frontotemporal dementia exhibit activity oscillations that are phase
advanced as compared to AD (Harper et al., 2001).

The link between sleep disorders and Parkinson’s disease is
arguably even stronger, with rapid eye movement (REM) sleep
behaviour disorder (see Glossary, Box 1) preceding classical
Parkinsonian features by decades in some instances (Postuma and
Berg, 2016). As many as 90% of individuals diagnosed with REM
sleep behaviour disorder will go on to develop a neurodegenerative
disease associated with α-synuclein aggregation (Boeve et al., 2001;
Iranzo et al., 2014). The mechanisms underlying this exceptionally
high rate of association are unknown; however, this association
supports the hypothesis that the neural circuits controlling sleep-
wake behaviour are particularly vulnerable in the early stages of
neurodegenerative disease.

Circadian disorders in AD models: role of the central clock
Murine transgenic models of AD have been generated in various
ways to yield human-like AD pathology (Fig. 3). In one approach,
extracellular amyloid pathology has been driven by expressing
disease-linked variants of the human Aβ precursor protein (APP)
(Table 1). Such transgenes can be combined with disease-linked
variants of human presenilin 1 (PSEN1) (Table 1), which encodes a
subunit of the complex that cleaves APP to generate the Aβ peptide.
Mice have also been generated to express variants of human tau, for
example P301L or R406W, that are linked to human tauopathies
(see Table 1 and Glossary, Box 1), such as frontotemporal dementia.
The circadian consequences of overexpressing APP or Aβ include
abnormalities in sleep, locomotor and body temperature rhythms
(Ambrée et al., 2006; Gorman and Yellon, 2010;Wisor et al., 2005).
Interestingly, mice that express disease-associated variants of
human APP/PSEN1 also exhibit phase delays similar to those
identified in patients with AD (Duncan et al., 2012). By contrast,
mice that express either of two human tau variants that contain
disease-linked substitutions (P301L and R406W) exhibit
abnormalities in a sleep electroencephalogram but no disruption
to their circadian rhythms (Koss et al., 2016). The triple-transgenic
mouse model (which carries three human variants associated with
AD: the APP Swedish variant, KM670/671NL, the PSEN1 variant,
M146V, and theMAPT variant, P301L) exhibit decreased nocturnal
activity (the equivalent of daytime napping in a nocturnal species),
increased daytime activity (Sterniczuk et al., 2010) and age-related
changes in body temperature rhythms (Knight et al., 2013). These
mice also exhibit reductions in the number of vasoactive intestinal
polypeptide- and arginine vasopressin-containing neurons that
constitute the central clock mechanism (Sterniczuk et al., 2010).
SCN degeneration and dysfunction have been observed in an
apolipoprotein E (APOE) knockout mouse that recapitulates several
aspects of human AD (Zhou et al., 2016), although these findings
have not been replicated by other groups as yet and should thus be
interpreted with caution. These findings indicate that specific
neurodegenerative lesions in the SCN might cause circadian
deficits, a hypothesis that finds some support in human
histopathological studies (Swaab et al., 1988; Zhou et al., 1995).
However, amyloid plaques are relatively sparse in the SCN in AD
(Stopa et al., 1999), excluding bulk Aβ deposition as the cause of
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neurodegeneration. Perhaps smaller, soluble Aβ species are
responsible instead, as suggested by the transplantation of PC12
cells that express a disease-linked APP variant into rats; the
transplantation of these cells (but not of control PC12 cells) causes
circadian deficits (Tate et al., 1992). Despite the relatively mild
circadian deficits observed in murine models of AD (Coogan et al.,
2013), one study has shown that in a knock-in mouse model of
human APP/PSEN1 genes, the mice have a reduced amplitude of
endogenous Per2 mRNA oscillation in the SCN (Duncan et al.,
2012). In Drosophila, there have been similar findings, in particular
the boosting of the cleavage of APPL (theDrosophila orthologue of
APP) by β-secretase resulted in behavioural arrhythmia and reduced
the expression of the clock gene per (Blake et al., 2015). However,
fly models of human Aβ toxicity do not point to oscillatory failure in
the central clock as the primary cause of circadian dysfunction.
Instead, the data, which are also supported by similar findings in
mammals, point to defects in the clock output pathways, as
discussed in more detail in the next section.

Central clock output failure in neurodegenerative disease
Vertebrate and invertebrate models of neurodegenerative disease
have shown that robustly rhythmic central molecular clocks can
become disconnected from other brain-resident and peripheral

clocks, to result in disrupted circadian behaviour. In particular,
mouse and Drosophila models of Huntington’s disease (Pallier
et al., 2007) and AD (Chen et al., 2014; Khabirova et al., 2016;
Long et al., 2014) exhibit normal central clock function. Despite
this, they exhibit behavioural arrhythmia, including disrupted sleep
consolidation and the sleep/wake cycle (Khabirova et al., 2016). In
the case of the R6/2 mouse model of Huntington’s disease, the mice
were behaviourally arrhythmic and had severely disrupted sleep-
wake cycles, and yet the electrophysiological activity of acute SCN
brain slices from mutant mice was normal (Pallier et al., 2007).
Moreover, the molecular clock in the SCN remained essentially
intact in these mice, as recorded using an mPer1::luciferase
bioluminescence reporter construct. Although upstream factors
could affect the function of the SCN, the authors concluded that the
results were consistent with a failure of the SCN to entrain
downstream oscillators (Maywood et al., 2010; Pallier et al., 2007).
Similarly, Drosophila that express human Aβ as a model of AD
show progressive behavioural arrhythmia, despite the essentially
normal oscillation of their central molecular clock (as shown
by the use of a luciferase reporter) (Chen et al., 2014). These
behavioural deficits were accompanied by the disruption of
peptidergic neurones and of the synapses that mediate the output
from the central clock.
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tangles (image credit: Patho, Wikimedia Commons). Tauopathy, a neurodegenerative disorder related to AD, can be modelled in P301L (Lewis et al., 2000) and
R406W (Tatebayashi et al., 2002) tau transgenic mice. APOE KO mice might replicate some features of AD, such as amyloid and tau deposition, and exhibit
metabolic and circadian abnormalities (Zhou et al., 2016), although these observations require independent replication. The 3×TgAD mice also exhibit mild
circadian dysfunction, including differences in the amplitude (iv) and timing (v) of body temperature oscillations (Knight et al., 2013). (B) (i) Fruit fly models of Aβ
toxicity are typically generated by expressing the Aβ peptide downstream of a secretion signal peptide (Crowther et al., 2005; Finelli et al., 2004; Iijima et al., 2004).
(ii) In these models, intraneuronal and extracellular deposits of Aβ are visible in transverse sections of fly brain stained with anti-Aβ antibodies (red, cell
nuclei in blue; reproduced with permission from Ott et al., 2015). Scale bar: 200 µm. (iii) The expression of toxic forms of the Aβ1-42 peptide, such as the E22G
Arctic variant, elicit progressive sleep deficits as evidenced by the loss of the rhythmicity in the actimetry traces as the transgenic flies age (reproduced with
permission from Chen et al., 2014). Wild-type flies retain a youthful pattern of behaviour, resembling the 2-12 days data, at all time points shown.
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Such findings in experimental animals are complemented by
human post-mortem studies, which have compared the brains of
individuals with and without a diagnosis of AD. For example, in
human brain tissue from individuals with AD post mortem, the
expression of clock genes in the pineal, a structure that receives
central clock inputs, was found to be similar to the gene expression
changes seen in rats in which the SCN-pineal projection had been
experimentally lesioned (Wu et al., 2006). This suggests that in the
AD brains examined, the pineal gland was deprived of its normal
entraining input, which is notable because of the role of this gland in
the secretion of the sleep associated hormone, melatonin.
Additionally, Cermakian and colleagues measured clock gene
expression in various human brain structures and correlated
expression levels with the time of each individual’s death. Their
conclusion was that the central, and indeed the secondary, brain
clocks were rhythmic in healthy individuals and in those with AD,
but in the latter there were marked phase shifts, indicating changes
in their relative synchronization (Cermakian et al., 2011). This
failure of clock synchronization is caused by deficits, likely at the
synaptic level, in the communication of entrainment signals
between clocks. One consequence of disrupting the various
circadian oscillators in the brain is that sleep, the most easily
accessible circadian phenotype, is affected early and profoundly.
While sleep disruption in AD has been documented for decades,
how this condition links mechanistically to the molecular
pathogenesis of AD has become apparent only relatively recently,
as discussed below.

Sleep disruption and risk of amyloid pathology
As recounted above and elsewhere (Holth et al., 2017; Ju et al.,
2014; Musiek and Holtzman, 2016; Musiek et al., 2015),
neurodegenerative disease results in the loss of restorative sleep,
which might in turn accentuate the pathological processes that
contribute to AD. This view is partly based on studies that show that
diurnal fluctuations in Aβ levels in the cerebrospinal fluid (CSF) and
interstitial fluid (ISF) are directly associated with sleep-wake
behaviour in both mice and humans. For example, Aβ in the ISF is
higher during wakefulness in mice, representing periods of peak
neuronal activity (Bero et al., 2011), and lowest during sleep (Huang
et al., 2012; Kang et al., 2009) or under anaesthesia (Brody et al.,
2008). In humans, this circadian variability in Aβ levels declines
with age and with the progression of AD pathology (Huang et al.,
2012). Sleep restriction exacerbates protein deposits in both the
APP/PSEN1 (Kang et al., 2009) and the triple transgenic (3×TgAD)
mouse models (Di Meco et al., 2014; Rothman et al., 2013). In
healthy humans, even acute sleep deprivation is sufficient to cause
detectable neuronal damage, as reflected by the presence of markers
of neuronal and of blood-brain barrier damage in the blood of
healthy volunteers (Benedict et al., 2014).
One factor that might contribute to the circadian variation of Aβ

levels is the 60% expansion in ISF volume that occurs in the mouse
brain during sleep (Xie et al., 2013). Similar changes in the human
brain during sleep would favour the bulk flow of CSF and ISF
through the perivascular (Rennels et al., 1985) and glymphatic
drainage channels (Iliff et al., 2012; Kress et al., 2015; Tarasoff-
Conway et al., 2015). The glymphatic system (see Glossary, Box 1)
would then deliver CSF and ISF solutes, including Aβ, to the
cervical lymph nodes for disposal in the periphery. The structural
integrity of the glymphatic channels, as reported by the polarized
perivascular expression of aquaporin 4 (AQP4), declines with age
and more so when accompanied by amyloid pathology (Zeppenfeld
et al., 2017). AQP4 likely mediates water influx into the glymphatic

system, facilitating its flow, and is itself under circadian control
(Zuber et al., 2009).

Circadian oscillations in the levels of Aβ are mirrored by orexin, a
hormone released from neurones in the hypothalamus (de Lecea
et al., 1998). Orexin promotes wakefulness, and loss of its signalling
causes narcolepsy, a disorder of unwanted sleep intrusions
(Pintwala and Peever, 2017). Orexin knockout mice sleep more
than controls (Chemelli et al., 1999), and when crossed with APP/
PSEN1 mice, they exhibit a marked reduction in Aβ plaque
deposition (Roh et al., 2014). In the resulting APP/PSEN1/Or
(Hcrt)−/− mice, lentiviral-mediated expression of orexin in the
hippocampus failed to rescue the amyloid pathology, indicating that
orexin does not have a direct action on susceptible neurones. By
contrast, orexin expression in the hypothalamus, or indeed sleep
deprivation, made amyloid pathology worse in the APP/PSEN1/
Or−/− mice, as compared to mice injected with control lentivirus, or
mice that were not sleep-deprived (Roh et al., 2014). This benefit of
orexin blockade was confirmed in the Tg2576 AD mouse model, in
which treatment with an orexin receptor blocker, almorexant,
suppressed the normally elevated nocturnal levels of Aβ and
reduced plaque accumulation (Kang et al., 2009). Although these
effects are striking, the data do not conclusively show that sleep
itself is protective. In this regard, sleep-inducing GABA agonists
have been shown to improve cognitive dysfunction in Drosophila
that express presenilin variants linked to AD in humans (Dissel
et al., 2015). A GABA agonist had similar benefits in the R6/2
mouse model of Huntington’s disease (Pallier et al., 2007).

Taken together, the combination of reduced Aβ production,
increased Aβ clearance and an increase in the volume of ISF makes
sleep a valuable process for the prevention, and clearance, of protein
aggregates, thereby reducing the risk of neurodegenerative disease.
However, the impact of circadian dysfunction reaches beyond the
central components of the circadian clock. As we discuss below, the
breakdown of peripheral metabolic rhythms might also contribute
materially to the pathogenesis of AD.

Peripheral clock arrhythmia and diabetes
Disturbed clocks in the brain have deleterious consequences for the
whole organism, disrupting directly, or indirectly, the concerted
hormonal, autonomic and metabolic functioning of various organ
systems (Delezie and Challet, 2011; Reddy and Maywood, 2007)
(Fig. 4). The negative effects of chronic circadian misalignment is
evident in shift workers, who have an increased risk for obesity, type
2 diabetes and cardiovascular disease (Antunes et al., 2010; Haus
and Smolensky, 2006; Pan et al., 2011; Scheer et al., 2009).

Central to metabolic health is the synchronization of gut, liver and
muscle metabolic cycles and their interplay with the glucocorticoid
hormones secreted by the hypothalamus-pituitary-adrenal axis (see
Glossary, Box 1) (Dickmeis, 2009; Gamble et al., 2014; Reddy
et al., 2007). In health, a host of hepatic genes, including many
involved in metabolism (Schmutz et al., 2010), exhibit circadian
transcriptional regulation (Delezie and Challet, 2011). However,
most require clock mechanisms local to the liver to sustain their
oscillations, rather than relying entirely on signals from the SCN.
This was demonstrated in a mouse model in which the liver clock
was specifically suppressed, resulting in all but a handful of genes
losing their circadian regulation (Kornmann et al., 2007). By
contrast, in the presence of functioning peripheral clocks, centrally
derived signals, such as glucocorticoid hormones, are sufficient to
entrain efficiently most circadian gene expression in tissues (Reddy
et al., 2007). In entrained mice, the subsequent loss of central clock
signals, for example by experimental lesioning of the SCN, does not
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destroy tissue-specific peripheral clocks; rather they continue to
function but become progressively desynchronized, both between
tissues within one animal, and between animals (Yoo et al., 2004).
The desynchronization of peripheral clocks may also be induced

by feeding rodents during the day, when they are normally sleeping.
For example, Yasumoto and colleagues found that the daytime
feeding of mice with a high fat and high sucrose diet resulted in the
desynchronization of peripheral clocks, as measured by a range of
hormones and metabolites that normally show circadian oscillation.
The loss of synchrony occurs as different tissues re-entrain to the
new feeding schedule at different rates. At the end of the week-long
study, the daytime-fed mice gained more adipose tissue, were less
physically active, exhibited increased levels of plasma insulin, and
accumulated more triglycerides and cholesterol in their liver as
compared to mice fed the same diet but during their active phase
(Yasumoto et al., 2016). Such outcomes resemble the features of the
metabolic syndrome (Sperling et al., 2015), characterized in humans
by insulin resistance, abdominal obesity, abnormal lipids and
hypertension, which is linked to type II diabetes. In humans, poor
sleep patterns, even in the absence of overt neurodegenerative
disease, are a risk factor for the metabolic syndrome and for
subsequent type II diabetes (Bass and Takahashi, 2010; Pan et al.,
2011; Spiegel et al., 2009; Yaggi et al., 2006).
In population-based studies, diabetes is an established risk factor

for accelerated age-related cognitive decline (Allen et al., 2004), for
dementia as a syndrome (Biessels et al., 2006) and for AD in
particular (Huang et al., 2014; Kopf and Frölich, 2009; Wang et al.,
2012). Indeed, individuals with type II diabetes who also carry the

ε4 APOE allele are over five times more likely to develop AD than
are those with neither diabetes nor the ε4 allele (Peila et al., 2002).
Post-mortem human studies have indicated that the insulin
resistance that occurs peripherally in type II diabetes is also seen
in the brain of AD patients (Kleinridders, 2016; Talbot et al., 2012).
In particular, several studies have found that insulin receptor and
also insulin-like growth factor 1 receptor are expressed at lower
levels on the surface of neurons in the brains of individuals with AD.
These changes are accompanied by phosphorylation of the
corresponding signalling proteins, such as the insulin receptor
substrate 2 (Irs2), which is a hallmark of suppressed insulin
signalling (Holscher, 2014a; Kleinridders, 2016; Moloney et al.,
2010a; Rivera et al., 2005; Steen et al., 2005; Talbot et al., 2012).
The downregulation of Irs2 signalling has been modelled by
knocking out the Irs2 gene in the mouse. The resulting animals
show decreased brain size accompanied by an increase in tau
phosphorylation (Schubert et al., 2003), an observation that is
concordant with the tau hyperphosphorylation observed in the
brains of AD patients. In the mouse, elevated glucose levels are
observed to interact with both age and Aβ pathology by increasing
the levels of the Aβ peptide in the hippocampal ISF; the induced Aβ
elevation was most marked in aged mice that had extensive plaque
pathology (Macauley et al., 2015).

In diabetes, Aβ pathogenesis might also be enhanced as a
consequence of endoplasmic reticulum (ER) stress (Cretenet et al.,
2010; Maillo et al., 2017), and by the associated oxidative and
glycation damage that promotes a neuroinflammatory response,
which is likely mediated by activated microglia (Catrysse and van

Brain clocks

Peripheral clocks
Clock
output

Central
clock 

SCN
synchronization

Alzheimer’s
disease

Sleep-wake
cycle

Metabolic
synchrony

� Inflammation
� Oxidation
� ER stress

Alternative zeitgebers:
• Temperature cycling
• Regular meal times
• Social interactions

Light as primary zeitgeber 

• Melatonin
• Orexin

• Glucocorticoid axis
• Thermal cycling
• Behavioural e.g. feeding
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Defective in 
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� Aβ production
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Fig. 4. A model of how circadian biology and AD pathology might interact. Interactions between the central clock and other brain and peripheral clocks
occur via the clock output pathway. Subsequent metabolic, behavioural and social cycles ensure the optimal functioning of the organism and might feedback to
entrain the central clock, alongside nonvisual light input (which is the primary zeitgeber). Disrupted sleep and metabolic asynchrony might predispose an
individual to AD pathology. This, in turn, might accentuate circadian deficits by damaging synaptic and other functions in the central clock mechanism and output
pathway. ER stress, endoplasmic reticulum stress caused by protein misfolding and aggregation.
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Loo, 2017; Villegas-Llerena et al., 2016). Both the presence of
amyloid aggregates and the dyslipidaemia associated with diabetes
might trigger the toll-like receptor 4 (TLR4) receptor. Activating
this mediator of innate immunity, which classically responds
to bacteria-derived lipopolysaccharide, likely enhances the
proinflammatory environment in the brain in AD (Balducci et al.,
2010; Huang et al., 2017). These pathological concepts have been
tested in vivo by crossing obese (ob/ob, also known as Lepob/Lepob)
mice, which develop a diabetic phenotype due to the leptin gene
mutation, with App mutant mice. The APP+-ob/ob mice have more
severe cognitive deterioration, neuroinflammation and more rapid
amyloid deposition in the cerebral vasculature than either of the
parental mouse strains (Takeda et al., 2010).
The concept of AD as a form of diabetes in the brain is further

supported by observations of cerebral glucose hypometabolism
from the earliest stages of AD. For example, individuals carrying
genetic risk factors for AD exhibit lower levels of 18F-
fluorodeoxyglucose uptake in the cortex during positron emission
tomography several years before the onset of clinical symptoms
(Cunnane et al., 2011). In this context, recent advances in metabolic
medicine using, for example, glucagon-like peptide 1 (GLP1, also
known as GCG) analogues to reverse insulin resistance and to
reduce neuroinflammation, should be further investigated in the
context of neurodegenerative disease (Aviles-Olmos et al., 2014;
Holscher, 2014b).
If such metabolic dysfunction does indeed occur as a

consequence of circadian desynchrony, a useful therapeutic
approach might be to resynchronize the central and peripheral
clocks. As discussed in the following section, an attractive strategy
to resynchronize circadian oscillations is to provide novel zeitgebers
or to enhance existing ones.

Re-entraining circadian clocks: light therapy and other
zeitgebers
Circadian clocks might be amenable to direct intervention in order to
benefit individuals living with AD. Considering the primary
importance of photic entrainment of the SCN, initial studies
employed light as a therapy, typically providing a bright
environment during the day and usually combined with darkness
at night (Fetveit et al., 2003; Lack et al., 2005; Pallesen et al., 2005;
Sharkey et al., 2011). As a recent meta-analysis confirmed, light
therapy is effective in improving sleep-wake deficits, at least in
women; however, the effect sizes are small (van Maanen et al.,
2016). If the output of the SCNwere defective in AD, then this result
would be expected since the light-entrained central clock would be
functional but (as discussed above) unable to communicate
effectively with other brain clocks and with the periphery.
The disappointing efficacy of light therapy has raised interest in

other, nonphotic, zeitgebers that target peripheral circadian clocks;
potential candidates include temperature (Buhr et al., 2010; Glaser
and Stanewsky, 2007), food availability (Carneiro and Araujo,
2012), exercise (Atkinson et al., 2007; Edgar and Dement, 1991;
Miyazaki et al., 2001) and social interactions (Hastings et al., 1998;
Levine et al., 2002b; Mistlberger and Skene, 2005; Simoni et al.,
2014). Although each of these zeitgebers offers a potential
intervention, entrainment to a regular feeding regimen is
particularly promising. This is because a so-called food-entrained
oscillator (FEO) can act as an alternative master clock, driving
circadian sleep and behavioural activity. Evidence of the FEO
power as an entraining factor has come from experiments in rodents
in which daytime feeding, which is antiphase in a nocturnal species,
was sufficient to entrain the animals to a new, anticipatory sleep/

wake cycle (Carneiro and Araujo, 2012). Once entrained, the rats
continue to wake early even when no food is provided and adapt
only gradually to new patterns of food provision, features that are
characteristic of an entrained circadian clock. Remarkably, this
entrainment is still possible in rats with SCN lesions, leading to the
proposal that the FEO has distinct neurological components.
However, beyond establishing that this oscillator is located
outside the SCN, the neurological basis for the clock and its
entrainment signals have yet to be determined.

There is also evidence that the FEO can re-entrain model
organisms that have been rendered arrhythmic by neurodegenerative
processes. In particular, Maywood and colleagues have shown
progressive deficits in sleep/wake rhythms in the R6/2 mouse model
of Huntington’s disease (Maywood et al., 2010). In these mice,
there is a concomitant loss of the rhythmic expression of genes
involved in liver clock function and metabolism; however, intrinsic
clock function remains intact in ex vivo cultures of liver and of other
tissue slices fromR6/2 mice. Thus, in the aged R6/2mouse, the liver
is competent to exhibit circadian oscillations in gene expression but
fails to do so. This is probably because of the loss of the central
entrainment signal from the SCN and also because of the chaotic
dietary signals generated by arrhythmic feeding patterns. Indeed, in
the same study, a temporally restricted feeding regimen successfully
restored circadian behavioural and hepatic rhythms in aged R6/2
mice (Maywood et al., 2010). Indeed, in studies of wild-type aged
mice exhibiting mild metabolic desynchrony, Tahara and colleagues
have shown that the FEO might provide a more potent entraining
signal for peripheral tissues than the SCN (Tahara et al., 2017).
Remarkably, similar studies in ageing Drosophila have shown that
daytime-only feeding consolidates the sleep/wake cycle and slows
age-related degeneration, at least in cardiac function (Gill et al.,
2015).

Our understanding of the mechanisms that regulate and operate
the FEO is incomplete. However, metabolic hormones such as
glucocorticoids, ghrelin, leptin, insulin, glucagon and glucagon-like
peptide-1 (GLP1), which exhibit daily rhythms of synthesis and
secretion, are all proposed zeitgebers for circadian oscillators (Gil-
Lozano et al., 2014; Patton and Mistlberger, 2013). There is some
evidence that leptin and ghrelin can modulate food-entrained
rhythms, acting peripherally but also through feedback to
hypothalamic circuits in the brain (Escobar et al., 2009; Lockie,
2013). In this context, pharmacological gut peptide agonists could
act as novel zeitgebers and might offer opportunities to entrain
circadian rhythms when light and melatonin therapies fail.

Recently, liver-derived beta-hydroxybutyrate (βOHB) was
identified as an important nonphotic zeitgeber in a study that used
mice with liver- and brain-specific Per2 deletions (Chavan et al.,
2016). βOHB is the most abundant circulating ketone body and
serves as an alternative energy source for tissues, including the
brain, when glucose levels are low (Newman and Verdin, 2014).
Exploring the utility of βOHB as a potential nonphotic zeitgeber
could be particularly valuable for AD, given the deficit in brain
glucose metabolism noted above (Cunnane et al., 2011).

Sleep enhancement as therapy for AD
Sedative drugs have long been the mainstay for improving sleep/
wake rhythms in patients with neurodegenerative disorders. The
most common treatments include GABA agonists and sedating
antidepressants, such as Trazodone, and antihistamines; in difficult
cases, atypical antipsychotics can be used (McCleery et al., 2016).
However, these treatments have unwanted effects, including
excessive daytime sleepiness, anticholinergic effects, such as
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mouth dryness and urinary retention, and, in the case of
antipsychotics, increased mortality (Camargos et al., 2011, 2012,
2014; Kales et al., 2012; McCleery et al., 2016). Trazodone might
also have an unexpected beneficial role in suppressing excessive ER
stress signaling, at least in murine models of prion disease and
tauopathy (Halliday et al., 2017). Alternative approaches have
sought to intervene at the level of the circadian signals that are
thought to control, or at least to consolidate, sleep rhythms. In this
regard, melatonin has been trialled as a therapeutic for AD because
of its use, with uncertain clinical evidence, for treating insomnia and
jetlag in otherwise healthy individuals (Costello et al., 2014; Pandi-
Perumal et al., 2007). Melatonin is secreted from the pineal gland,
beginning in the early evening and reaching peak concentrations
soon after midnight (Wehr et al., 2001). In the zebrafish, it is
essential for synchronising the central clock with sleep rhythms, as
demonstrated by Gandhi and colleagues. These researchers knocked
out the zebrafish gene that encodes the melatonin biosynthesizing
enzyme, aanat2, which resulted in the complete loss of sleep/wake
rhythms when the fish were placed in constant darkness (Gandhi
et al., 2015). Unfortunately, these insights have not translated well
into the clinic because therapeutic trials of melatonin have yielded
little to no improvement in the sleep of individuals with AD
(McCleery et al., 2016; Xu et al., 2015). These data indicate
that abnormal melatonin secretion in AD is not the primary cause of
AD-associated sleep abnormalities.
Orexin, as discussed earlier, is a hormone that promotes

wakefulness. In rodent models of AD, almorexant, an antagonist
that blocks both the OXR1 and OXR2 (HCRTR1 and HCRTR2)
orexin receptors, reduces amyloid pathology (Kang et al., 2009).
Concordant with these observations, Liguori and colleagues found
that individuals with AD had elevated levels of orexin over controls,
and that these increased levels correlated positively with both sleep
deficits and cognitive decline (Liguori et al., 2014). In our view,
these data may provide ample biological justification for future trials
of orexin antagonists as a therapeutic for AD.

Conclusion
Circadian biology and the sleep cycle are disrupted in a number of
neurodegenerative diseases but the precise reasons for this remain
unknown. Nevertheless, pathology within the central clock, and the
impairment of its communication with peripheral clocks, are likely
to be important factors contributing to circadian dysfunction in
these diseases. The changes in sleep and feeding rhythms that occur
as a result of neurodegenerative disease predispose the brain to the
pathological processes that contribute to AD and to other
neurodegenerative disorders. Important predisposing factors
include reduced protein clearance from the brain, and central-
peripheral metabolic desynchrony, which likely contributes to the
prevalence of the metabolic syndrome and/or diabetes. Thus,
circadian disruption in AD can be seen as both a cause and an effect
of neurodegeneration.
Interventions that aim to re-entrain the central clock using light

have largely failed and so other therapeutic avenues are now being
investigated. The FEO is a promising target that might be susceptible
to environmental and/or to pharmacological interventions. All
clinical trials in AD are likely to be lengthy and costly; however, a
trial of simple dietary interventions that maintain a clear circadian
rhythm in individuals with early AD is feasible and should be
pursued. Pharmacological simulation of entraining signals, either
photic or dietary, have not been developed but might have utility. The
direct enhancement of sleep by modulating physiological regulators,
such as orexin, might also offer advantages over previous hypnotic

and antipsychotic approaches. Orexin antagonists are already being
investigated for treatment of primary insomnia (Kishi et al., 2015);
perhaps now they can be trialled for the bigger prize of disease
modification in neurodegenerative disease.

This article is part of a special subject collection ‘Neurodegeneration: fromModels to
Mechanisms to Therapies’, which was launched in a dedicated issue guest edited by
Aaron Gitler and James Shorter. See related articles in this collection at http://dmm.
biologists.org/collection/neurodegenerative-disorders.
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