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ABSTRACT 

Purpose: We recently reported that high thymidine phosphorylase (TP) expression is accompanied by 

low tumor thymidine concentration and high 3′-deoxy-3′-[18F]fluorothymidine ([18F]FLT) uptake in four 

untreated lung cancer xenografts. Here, we investigated whether this relationship also holds true for a 

broader range of tumor models. 

Procedures: Lysates from n = 15 different tumor models originating from n = 6 institutions were tested 

for TP and thymidylate synthase (TS) expression using western blots. Results were correlated to 

[18F]FLT accumulation in the tumors as determined by positron emission tomography (PET) 

measurements in the different institutions and to previously published thymidine concentrations. 

Results: Expression of TP correlated positively with [18F]FLT SUVmax ( = 0.549, P < 0.05). 

Furthermore, tumors with high TP levels possessed lower levels of thymidine ( = -0.939, P < 0.001).  

Conclusions: In a broad range of tumors, [18F]FLT uptake as measured by PET is substantially 

influenced by TP expression and tumor thymidine concentrations. These data strengthen the role of 

TP as factor confounding [18F]FLT uptake. 
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INTRODUCTION 

Imaging of tumor metabolism is important in characterizing the viable active tumor and monitoring 

response to therapy. As a thymidine analog, the positron emission tomography (PET) tracer 3′-deoxy-

3′-[18F]fluorothymidine ([18F]FLT) is a potential biomarker for imaging of tumor proliferation at baseline 

and in response to therapy. In analogy to thymidine, [18F]FLT is transported into cells, primarily via the 

human equilibrative nucleoside transporter 1 (hENT1, [1]), where it is phosphorylated by thymidine 

kinase 1 (TK1). As an alternative thymidine-to-DNA pathway, phosphorylated thymidine can be 

generated by methylation of deoxyuridine monophosphate by thymidylate synthase (TS) (Fig. 1).  

Even though numerous studies demonstrate a good correlation of [18F]FLT with cellular proliferation in 

tumors [2, 3], several reports show that factors like thymidine kinase 1 [4, 5] or thymidine [6] also 

affect uptake of this radiotracer. Recently, we demonstrated that [18F]FLT uptake cannot be directly 
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related to proliferation, as determined by immunohistochemistry of Ki67 or 5-bromo-2′-deoxyuridine 

(BrdUrd) in four non-small cell lung cancer (NSCLC) xenograft models. We showed that high [18F]FLT 

accumulation was detectable in tumors with high thymidine phosphorylase (TP) expression [7]. This 

was in agreement with a study, demonstrating an association of TP immunohistochemical score and 

[18F]FLT retention in a clinical setting [8]. In our preclinical study, the presence of TP was 

accompanied by the corresponding enzymatic activity [7], which results in degradation of thymidine 

[9]. [18F]FLT is resistant to the catabolic activity of TP [10, 11]. Hence, in tumors with high TP activity 

thymidine is degraded. Consequently, lower amounts of thymidine compete with [18F]FLT for cellular 

uptake and retention, resulting in higher [18F]FLT accumulation, as schematically depicted in Fig. 1. 

The relationship between the enzyme and [18F]FLT retention has already been demonstrated by 

infusion of TP in a preclinical model in vivo [12] and by TP inhibition in vitro [8], whereas in the latter 

setting, it was shown that TP inhibition does not alter TK1 or hENT1 activity. 

Here, we aimed to identify whether the relationship of TP expression, thymidine levels and [18F]FLT 

uptake can be detected in a broad range of untreated tumors. Hence, we investigated various tumor 

models from different institutions with respect to their expression of thymidine metabolism proteins, 

and compared these data with respective [18F]FLT uptake and published thymidine concentrations.  

 

 

MATERIALS AND METHODS 

Animal models and study design 

Data were analyzed from n = 6 institutions. These institutions are members of the preclinical work-

package of the Innovative Medicine Initiative Joint Undertaking project QuIC-ConCePT (grant 

agreement N° 115151). The institutions are: AstraZeneca, Macclesfield, UK (AZ); CRUK Cambridge 

Institute, Cambridge, UK (CI); Imperial College London, London, UK (IC); Radboud University Medical 

Centre, Nijmegen, The Netherlands (Radboudumc); Westfälische Wilhelms-Universität Münster, 

Münster, Germany (WWU); INSERM, Paris, France (INSERM); and Sanofi Oncology, Vitry-sur-Seine, 

France (Sanofi), performing the PET imaging for the INSERM tumors.  

All animal experiments were carried out by the members of the consortium in accordance with the EU 

Directive 2010/63/EU and the NCRI Guidelines for the welfare and use of animals in cancer research 

[13]. The tumor models were chosen in each institute as appropriate for their future evaluation of 

response to specific therapies. Here, only untreated animals were used to assess [18F]FLT 
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confounding factors at baseline. Study designs differed for the different institutions, and cohorts used 

for western blot analysis, [18F]FLT PET scans, and thymidine analysis partly overlap, so that in total 

n = 209 animals were included in this study. All tumors were grown as subcutaneous xenografts or 

allografts, except for the CC531 liver metastasis model from Radboudumc. Details about the models 

are listed in Table 1.  

 

Western blot analysis 

Immediately after excision, tumors were frozen in liquid nitrogen, stored at -80 °C, and shipped to 

WWU on dry ice for analysis of thymidine metabolism proteins. Tumor tissue was homogenized in 

RIPA buffer (Cell Signaling) by a micro-dismembrator and 20 µg per sample were subjected to 

western blot analysis. The PVDF membrane was incubated overnight at 4 °C with specific primary 

antibodies. Afterwards the membrane was probed with appropriate peroxidase-coupled secondary 

antibodies for 1 hour at room temperature. See Supplementary Table 1 for antibody details. Protein 

bands were visualized with Pierce ECL Plus Western Blotting Substrate (Pierce Biotechnology).  

Band intensities were quantified by ImageJ (National Institutes of Health), using the “gel analyzer” 

function, and normalized to the actin loading control. To normalize for unequal exposures of different 

blots, all band intensities were expressed relative to a control sample (an H1975 lysate) that was 

loaded on all gels. 

 

[18F]FLT PET imaging of small animals 

The scanning procedures of each institution are listed in Table 2. The animals were not fasted. For 

quantification, standardized uptake values (SUVmax and SUVmean) were determined. 

 

Statistics 

Data are expressed as mean ± standard deviation. Numerical values, as well as number of samples 

analyzed, are depicted in Supplementary Table 2. Spearman correlations were calculated 

(SigmaPlot 13.0) and P-values < 0.05 were considered statistically significant. 
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RESULTS 

Tumor lysates from untreated rodents were analyzed for TP and TS expression. The representative 

western blot as well as the quantification revealed large differences between tumors (Fig. 2). We 

related the TP and TS expression levels to [18F]FLT uptake in the respective tumors and detected a 

statistically significant correlation between [18F]FLT SUVmax and TP levels ( = 0.549, P < 0.05, Fig. 3). 

Also SUVmean was significantly correlated with TP levels ( = 0.582, P < 0.05, Supplementary Fig. 1). 

No relation between TS and [18F]FLT or TS and TP was observed. 

When relating TP expression to respective previously published tumor thymidine concentrations [14] 

(confirmation of assay robustness presented in Supplementary Fig. 2), we observed a significant 

correlation ( = -0.939, P < 0.001, Fig. 4A). Moreover, tumor thymidine was inversely correlated with 

[18F]FLT SUVmax (Fig. 4B) and [18F]FLT SUVmean (Supplementary Fig. 3).  

 

 

 
DISCUSSION 

Defining the molecular and cellular determinants of [18F]FLT uptake and retention in tumors helps to 

determine the potential value of this tracer in clinical oncology. Here, we demonstrate that in various 

tumor models [18F]FLT accumulation is influenced by the presence of the enzyme TP, which accounts 

for degradation of endogenous thymidine. We observed a statistically significant correlation of TP 

expression with [18F]FLT uptake (Fig. 3B and Supplementary Fig. 1). Moreover, we were able to 

compare the TP data of ten tumor models with tumor thymidine data published previously [14]. As 

expected, TP expression negatively correlated with thymidine levels and these thymidine 

concentrations negatively correlated with [18F]FLT (Fig. 4). The thymidine data strengthen the TP 

results presented here, as they provide a link between protein expression and activity. Of note, the 

data analyzed by Heinzmann et al. [14] only partly overlap with the data presented here, explaining 

slight differences in the results. 

For some tumor models, plasma thymidine levels were available. This parameter would be more 

easily accessible in the clinical setting. Although these plasma thymidine values weakly correlated with 

tumor thymidine values in this subset of models, no direct relation of this parameter with TP 

expression or [18F]FLT uptake could be detected (Supplementary Fig. 4). However, as the sample 

size for some of the models is low, these data should be treated with caution.  
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In our setup, immunohistochemistry, [18F]FLT PET measurements and the thymidine assay were only 

partly performed using the same animals. When looking at overlapping datasets on a per-tumor-basis, 

available from a total of n = 54 tumors, a significant correlation of [18F]FLT with TP and thymidine, as 

well as TP with thymidine can also be detected (Supplementary Fig. 5), strengthening the 

conclusion, that these factors are related. 

In addition to the single institution studies published so far, covering only a limited spectrum of models 

[7, 8, 12], our data provide evidence that the relationship of [18F]FLT, thymidine and TP can be 

detected in a wider range of tumors in a multi-center setting. This reinforces the role of TP as a factor 

affecting [18F]FLT uptake. This is of importance for the implementation of this tracer as imaging 

biomarker for tumor therapy follow up, potentially improving therapy in clinical cancer research. 

Ex vivo analysis of TP expression might potentially help in determining the utility of [18F]FLT PET for a 

specific tumor model. Some high proliferating tumors might have low [18F]FLT uptake at baseline due 

to low TP expression and are not good candidates for [18F]FLT response studies. Accordingly, some of 

the tumors analyzed here, showing high TP expression and high [18F]FLT uptake, could be 

successfully utilized for preclinical monitoring of tumor therapies [15, 16].  

As the moderate correlation coefficient between TP and [18F]FLT SUVmax suggests ( = 0.549, 

P < 0.05), other factors also influence [18F]FLT uptake. It is well recognized that nucleoside 

transporters and TK1 are involved in [18F]FLT accumulation. Consequently, care must be taken when 

employing therapies targeting [18F]FLT modulating factors, as shown already for TS-inhibitors [3]. Our 

study provides evidence that the same might hold true for agents modulating TP or thymidine 

concentrations. For instance, taxol and oxaliplatin can increase TP levels [17, 18]. Hence, TP and 

thymidine should be considered when employing [18F]FLT PET in combination with a novel treatment 

approach. If a treatment does not affect an [18F]FLT confounding component, changes in [18F]FLT 

uptake can still reflect treatment response, as described in a range of systematic reviews [3, 19]. 

In our study, [18F]FLT uptake was determined in different institutions with different scanners and in 

different rodent models. Therefore, it is even more striking that a statistically significant correlation of 

[18F]FLT uptake with TP could be observed. These variables also differ in the clinical situation. Hence, 

we speculate that this relation could also be detected in clinical specimens. Lee et al. have 

demonstrated an association of [18F]FLT and TP immunohistochemistry score in a cohort of 58 non-

small cell lung cancer patients. However, no thymidine analysis was performed [8]. It is known that 

plasma thymidine levels in humans are much lower than in rodents [6, 20] and that TP levels vary 
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between clinical tumor specimens [21]. Whether this variation is related to thymidine and [18F]FLT in 

the respective tumors remains to be determined. 

One limitation of the present study is the fact that protein expression, as determined here, is not 

necessarily directly related to enzymatic activity. Furthermore, quantification of expression levels via 

western blot densitometry is only semi-quantitative [22]. Of note, TP western blot results are in line 

with TP levels determined by immunohistochemistry, as we reported previously [7]. This is of 

importance, as immunohistochemistry is a more clinically accessible method. 

 

CONCLUSION 

[18F]FLT accumulation in tumors can be influenced by competition with endogenous thymidine, which 

might be controlled by TP. Hence, our data provide further evidence that TP is a major factor 

influencing [18F]FLT uptake, which should be taken into account when employing this radiotracer in 

tumor therapy follow up studies.  
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FIGURES 

 
Fig. 1 Schematic illustration of the competition between uptake of [18F]FLT and thymidine and the 

influence of TP. When thymidine is degraded by TP, as indicated by dotted lines, less of this 

nucleoside competes with [18F]FLT for uptake into cells, or the phosphorylation (indicated by a black 

dot) via TK1. hENT1, as the major transporter, and TS, as the key enzyme of the alternative 

thymidine-to-DNA pathway, are also shown.  
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Fig. 2 Western blot analysis revealed varying amounts of thymidine metabolism proteins in different 

tumor models. Actin was used as loading control (a). Quantification of TP (b) and TS (c) expression 

was performed via densitometric analysis. The TS band of the rodent K8484 and CC351 tumors is 

slightly shifted, which can probably be attributed to species-specific differences in the protein 

sequence. The TP antibody used is not optimized for rodent samples. Hence, these samples were 

excluded from any correlations. 
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Fig. 3 TP expression was significantly correlated to [18F]FLT uptake in the tumor models investigated. 

[18F]FLT SUVmax was determined by PET measurements in the different institutions (a). Correlation 

was assessed by the Spearman method (b). 

 
Fig. 4 Correlation of TP, thymidine and [18F]FLT. We related our findings of western blot and PET 

analyses to tumor thymidine levels. Thymidine contents were inversely correlated to TP levels (a) and 

[18F]FLT uptake was inversely correlated with thymidine concentrations (b). 
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TABLES 

Table 1. Information on investigated tumor models.  

Institution Cell line Tumor origin Model type Host (supplier) 

AZ A431 human epidermis  Xenograft AP ONU mouse (AZ) 

 PC9 human lung Xenograft AP CB17 SCID mouse (AZ) 

 H1975 human lung Xenograft AP ONU mouse (AZ) 

CI AsPC-1 human pancreas Xenograft CB17 SCID mouse (CR)  

 K8484 murine pancreas Syngeneic allograft PC mouse (p53R172H; Pdx1- 

Cre) (CRUK CI) 

 MiaPaCa-2 human pancreas Xenograft CB17 SCID mouse (CR) 

IC HCT116 human colorectum Xenograft BALB/c nu mouse (CR) 

Radboudumc CC531 rat colorectum Syngeneic liver  

metastasis 

Wag/Rij rats (CR) 

WWU A549 human lung Xenograft NMRI nu (Janvier) 

 HTB56 human lung Xenograft NMRI nu (Janvier) 

 EBC1 human lung Xenograft NMRI nu (Janvier) 

 H1975 human lung Xenograft NMRI nu (Janvier) 

INSERM / 

Sanofi 

HCT116 human colorectum Xenograft CB17 SCID (CR) 

CR-IC-O13M- 

Cetux1 

human colon – 

hepatic metastasis 

Xenograft CB17 SCID (CR) 

 CR-IC-O13M human colon Xenograft CB17 SCID (CR) 

CR = Charles River 
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Table 2. PET imaging and analysis parameters 

Institution PET scanner 
imaging time 
(min) 

injected dose 
(MBq) 

ROIs defined on 
reconstruction 
method 

voxel size (mm) 
matrix size 
(pixel) 

AZ Inveon (Siemens)  50-60 ~10 PET 2D-FBP  0.77 x 0.77 x 0.80  128 x 128 x 159 

CI NanoPET/CT (Mediso) 60-90  ~ 8.3  CT 3D OSEM 0.4 x 0.4 x 0.4 255 x 255 x 236 

IC Inveon (Siemens) 50-60  ~3.7 CT 3D-OSEM/MAP 0.8 x 0.8 x 0.8 128 x 128 x 159 

Radboudumc Inveon (Siemens)  60-75  10 - 12  PET 3D-OSEM 0.43 x 0.43 x 0.8 256 x 256 x 159 

WWU 
quadHIDAC (Oxford 
Positron Systems) 

70-90  ~10  CT 3D-OPL-EM 0.4 x 0.4 x 0.4 150 x 150 x 300 

Sanofi/ 
INSERM 

Inveon (Siemens)  75-90  ~7  PET 3D-OSEM 0.30 x 0.30 x 0.796 256 x 256 x 97 

 

 


