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Abstract

District heating networks are commonly addressed in the literature as one of the most effective solutions for decreasing the 
greenhouse gas emissions from the building sector. These systems require high investments which are returned through the heat
sales. Due to the changed climate conditions and building renovation policies, heat demand in the future could decrease, 
prolonging the investment return period. 
The main scope of this paper is to assess the feasibility of using the heat demand – outdoor temperature function for heat demand 
forecast. The district of Alvalade, located in Lisbon (Portugal), was used as a case study. The district is consisted of 665 
buildings that vary in both construction period and typology. Three weather scenarios (low, medium, high) and three district 
renovation scenarios were developed (shallow, intermediate, deep). To estimate the error, obtained heat demand values were 
compared with results from a dynamic heat demand model, previously developed and validated by the authors.
The results showed that when only weather change is considered, the margin of error could be acceptable for some applications
(the error in annual demand was lower than 20% for all weather scenarios considered). However, after introducing renovation 
scenarios, the error value increased up to 59.5% (depending on the weather and renovation scenarios combination considered). 
The value of slope coefficient increased on average within the range of 3.8% up to 8% per decade, that corresponds to the 
decrease in the number of heating hours of 22-139h during the heating season (depending on the combination of weather and 
renovation scenarios considered). On the other hand, function intercept increased for 7.8-12.7% per decade (depending on the 
coupled scenarios). The values suggested could be used to modify the function parameters for the scenarios considered, and 
improve the accuracy of heat demand estimations.
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Abstract 

A dynamic method, comprising a two lumped-thermal-mass model and Markov Chain Monte Carlo sampler, was used to analyze 
in-situ-monitored data and estimate the thermophysical properties of two walls of different construction. This method, unlike 
maximum a posteriori approaches, estimates the parameters’ probability distributions, providing insight into the wall’s thermal 
structure. 
Total R-values were well defined for both walls, whilst constituent estimated R-values for a solid wall having layers of materials 
with similar thermal properties were anticorrelated (thermal mass locations weakly constrained), but were not correlated for an 
insulated cavity wall with thermally distinct layers (thermal mass locations strongly thermally constrained). 
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1. Introduction 

Evaluating the energy performance of buildings is key to reduce energy demand and carbon emissions of the built 
environment [1] and to achieve climate change mitigation targets [2-5]. Understanding the thermophysical structure 
and behavior of the building envelope is fundamental to inform targeted policy-making strategies; to ensure quality 
assurance of new constructions; and to inform the decision-making process prior to retrofitting interventions to deliver 
tailored and cost-effective solutions that aim to reduce energy consumption while maximizing the thermal comfort [6]. 
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In principle, the thermal properties (e.g., R-value and thermal mass) of a building element can be easily estimated 
knowing the thickness and the tabulated thermal properties (e.g., thermal conductivity, density and specific heat 
capacity) of the materials it is made of [7]. However, several studies [8-10] have shown discrepancies between the 
performance expected from lookup tables and that estimated from in-situ measurements – a phenomenon known as 
performance gap [8]. 

Thermophysical properties evaluated from tabulated values often present a number of uncertainties as only visual 
inspection or quick surveys of the element under study is common [11]. Literature values for a given material may 
present quite broad ranges, and materials with similar appearance may have quite different thermophysical behavior 
[7]. Environmental conditions, structural and situational inhomogeneities (e.g., cracks, gaps, moisture accumulation) 
[11] – which are not accounted for in tabulated values – may also influence the as-built performance of building 
elements and contribute towards the performance gap. The use of monitored data (i.e. heat flux and temperatures) 
overcomes these limitations as they account for the local environmental conditions the element is exposed to and its 
state of conservation [12], and do not require any knowledge of the stratigraphy under study. 

This paper uses the dynamic grey-box method presented by Gori et al. [6,13] to estimate the thermophysical 
properties of two walls of different construction. The method consists of a combination of a two lumped-thermal-mass 
model (used to describe the heat transfer across the element) and Bayesian-based optimization techniques with a 
Markov Chain Monte Carlo (MCMC) sampler (used to estimate the best set of parameters and the associated errors). 
Unlike the maximum a posteriori (MAP) approach, the MCMC framework also allows the full estimation of the 
probability distributions of the parameters of the model instead of just their most probable value. Additionally, the 
statistical framework enables the characterization of the errors on the estimates and the potential correlation among 
them. 

Practical advantages of the use of monitored data and the statistical framework include its suitability for any type 
of building (including historical ones) as it is non-destructive and does not require any knowledge of the stratigraphy 
of the element investigated. This enables the identification of retrofitting strategies that maximize thermal comfort and 
minimize energy use through customized insulation, heating and cooling strategies. This paper explores the potential 
applicability of this method to complement in-situ surveys and provide additional insight into the thermal structure of 
building elements using relatively cheap and non-destructive techniques (e.g., to identify whether the element is likely 
to have been already insulated). 

 
Nomenclature 

𝑅𝑅𝑛𝑛  n-th lumped thermal resistance (starting from the internal side)  [m2KW−1] 
𝐶𝐶𝑛𝑛   n-th lumped thermal mass (starting from the internal side)  [Jm−2K−1] 
𝑇𝑇C𝑛𝑛0   Initial temperature of the n-th lumped thermal mass (starting from the internal side)  [°C] 
𝑄𝑄m,in  Measured heat flux entering the internal surface of the wall  [Wm−2] 
𝑄𝑄m,out  Measured heat flux leaving the external surface of the wall  [Wm−2] 
𝑇𝑇int  Measured temperature on the internal surface of the wall  [°C] 
𝑇𝑇ext  Measured temperature on the external surface of the wall  [°C] 
𝜽𝜽  Vector of parameters of the model 
𝜽𝜽2TM  Vector of the best-fit parameters of the model 
𝐷𝐷  Measured data 
𝐻𝐻  Model 
𝑃𝑃(𝜽𝜽|𝐷𝐷, 𝐻𝐻) Posterior distribution 
𝑃𝑃(𝐷𝐷|𝜽𝜽, 𝐻𝐻) Likelihood 
𝑃𝑃(𝜽𝜽|𝐻𝐻)  Prior distribution 
𝑃𝑃(𝐷𝐷|𝐻𝐻)  Evidence 
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2. Case studies and monitoring campaign 

Two walls of different construction were investigated. The first wall, OWall, of solid-brick masonry was north-
west-facing and located on the first floor above ground of an office building in London (UK). From indoors, it 
consisted of 20±5 mm of plaster and 350±5 mm of exposed solid brick masonry for a total thickness of 370±7 mm. 

The second wall, HWall, was a north-facing cavity wall located on the ground floor of a 1970s occupied house in 
Cambridgeshire (UK). From the inside, it comprised 10±5 mm of plaster, 100±5 mm aerated concrete blocks, a 
65±5 mm thick cavity filled with urea formaldehyde foam and 100±5 mm of bricks. The total thickness was 
275±10 mm. Visual inspection suggested significant shrinkage of the original full fill of insulation. 

Both case studies were instrumented using two Hukseflux HP01 [14] heat flux plates (HFP) and two thermistors, 
each placed on opposite sides of the wall and in-line with each other. Data were averaged over 5 minute intervals using 
a Campbell Scientific 1000 [15] logger for the OWall and an Eltek Squirrel 451/L [16] for the HWall. 

3. Theory and calculation 

3.1. The grey-box dynamic method 

The thermophysical structure of each case study was investigated by means of a grey-box dynamic method 
(comprehensively described in [6,13]) using a two lumped-thermal-mass (2TM) model to describe the heat transfer 
across the building element and Bayesian-based optimization techniques with an MCMC sampler to estimate the best 
set of parameters of the model, their distributions and their associated errors. 

The 2TM model (Fig. 1) includes seven parameters, namely: three thermal resistances (𝑅𝑅𝑛𝑛), two effective thermal 
masses (𝐶𝐶𝑛𝑛), and their initial temperature (𝑇𝑇C𝑛𝑛

0 ). Measured quantities are the heat fluxes through the internal and 
external surfaces of the wall and the surface temperatures. From Bayes’ rule [17], the best-fit parameters (𝜽𝜽2TM) can 
be estimated by maximizing the posterior probability (𝑃𝑃(𝜽𝜽|𝐷𝐷, 𝐻𝐻)) as: 
 

𝜽𝜽2TM  =  arg max
𝜃𝜃

P(𝜽𝜽|𝐷𝐷, 𝐻𝐻)  = arg max
𝜃𝜃

P(𝐷𝐷|𝜽𝜽, 𝐻𝐻)P(𝜽𝜽|𝐻𝐻)
P(𝐷𝐷|𝐻𝐻)                                                                                            (1) 

 
where P(𝐷𝐷|𝜽𝜽, 𝐻𝐻) is the likelihood (i.e. a data-dependent term describing the probability of obtaining the measured 
data, D, given the model, H, and the parameters, θ), P(𝜽𝜽|𝐻𝐻)  is the prior probability (i.e. an initial probability 
distribution of the parameters of the model according to previous knowledge), and P(𝐷𝐷|𝐻𝐻) is the evidence (i.e. a 
normalization factor). The likelihood was calculated from the residuals between the measured and estimated internal 
and external heat fluxes, where the assumption of independent and identically distributed (i.i.d.) Gaussian observation 
errors was relaxed by introducing a prior on the residuals to account for their potential autocorrelation [13]. 

An MCMC sampler was used to estimate the best-set of parameters and their probability distributions. Unlike 
maximum a posteriori (MAP) approaches, where only the best-set of parameters is estimated, the MCMC framework 

Fig. 1 Schematic of the two-thermal-mass (2TM) model showing the equivalent electric circuit, the measured quantities and the seven parameters 
of the model. 
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gives additional information on the shape and the distribution of the parameters. The framework was implemented in 
Python and used the EMCEE library [18] for the MCMC sampling [13]. 

3.2. Prior probability distribution on the parameters of the model 

Large uniform priors on the parameters of the model were used in this application as the lack of information about 
the distribution of the thermophysical properties for some of the materials constituting the case studies prevented the 
implementation of more informative non-uniform priors (e.g., log-normal distributed as in [13]). 
Priors on all thermal resistances were set to the same range of 0 to 4 m2KW−1; all effective thermal masses 0 to 
2·106 Jm−2K−1 and initial temperatures of the effective thermal masses from −5 to 30 °C. These ranges encompass all 
expected values, with significant safety margin. 

4. Results and discussion 

The estimates of the thermophysical properties of the two case studies (OWall and HWall) are presented below. 
For each case study, four periods were selected from a longer monitoring campaign (respectively undertaken in winter 
2013/2014 and winter 2016) by imposing the criteria described in Section 7.1 of the BS ISO 9869-1 Standard [19] to 
ensure that the time series analyzed had stabilized. More than one monitoring period was analyzed for each case study 
to ensure that the observed behavior was typical. In the following, only the first period is described in detail (Fig. 2), 
while the others are summarized in Fig. 3. 

To facilitate comparison of the estimates, the mean of the parameter distribution was calculated. The total R-value 
(and U-value) was calculated as the sum of 𝑅𝑅𝑛𝑛 in the model, plus a correction factor that accounts for the internal 
(0.13 m2KW−1) and external (0.04 m2KW−1) air film resistances and removes the thermal resistance of the HFPs 
(6.25·10−3 m2KW−1). Detailed error analysis was performed following [13]. Only the systematic error on the U-value 
(i.e. the error due to biases in the monitoring equipment or to unmodelled physical processes) is reported as it 
dominates errors, whilst the statistical error (i.e. the error due to the data-fitting process) was smaller by an order of 

Fig. 2 Distribution of the estimates of the thermophysical parameters for the OWall (a) and the HWall (b); the estimates for the first of the four 
monitored periods are shown. 
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magnitude in all cases. The statistical errors output by the Bayesian analysis are reported for the total R-value and 
effective thermal mass estimates. 

The total R-value for the OWall (calculated from the mean of the distributions in Fig. 2) was 0.59±0.01 m2KW−1, 
resulting in a U-value of 1.66±0.15 Wm−2K−1. The effective internal and external thermal masses were respectively 
(9.90±0.27)⋅105 Jm−2K−1 and (0.44±0.03)⋅105 Jm−2K−1. Similarly, for the HWall the total R-value was 
2.04±0.02 m2KW−1 and the U-value 0.49±0.04 Wm−2K−1. The effective internal and external thermal masses were 
respectively (5.85±0.08) 104 Jm−2K−1 and (7.62±0.15) 104 Jm−2K−1. 

Fig. 2 shows the distribution of the thermophysical parameters, for both the OWall and HWall. The histograms 
along the diagonal show the marginalized distribution for each parameter, while the other panels represent the 
marginalized 2D distributions for each pair of parameters. This type of graph provides useful information about the 
correlation between parameters of the model, which can be used to gain insights into the thermal structure of the wall 
and, for example, to inform the decision-making process. When a pair of parameters is uncorrelated, the posterior 
probability is often circular or elliptical with axes parallel to the Cartesian axes. Conversely, when the pair of 
parameters is correlated, the posterior probability distribution is rotated, and the orientation of the major axis of the 
ellipsis indicates the nature of the relationship (positive or negative). Fig. 2(a) shows a negative correlation among the 
thermal resistance estimates, suggesting that the total R-value of the wall – and consequently its U-value – was 
constant but the relative magnitude of the individual lumped thermal resistances may vary (e.g., an increase in 𝑅𝑅1 
tends to be compensated by a decrease in 𝑅𝑅2). Conversely, no correlation is shown among the thermal resistances of 
the HWall (Fig. 2(b)), suggesting that the model finds these thermal resistances to be independent of each other. 

The results obtained in Fig. 2 were confirmed by the additional three periods analyzed (Fig. 3). As expected, for the 
OWall (Fig. 3(a)), the sum of the individual R-value estimates is almost constant across the four monitoring periods, 
whilst the magnitude of the constituent R-values varies. Conversely, for the HWall (Fig. 3(b)), both the sum and the 
individual R-value estimates are relatively stable across the different periods surveyed. 

The model results suggest that when the materials constituting a building element have very distinct thermophysical 
properties, like a filled cavity wall (with a high thermal resistance and low thermal mass material interposed between 
two layers of lower thermal resistance), the position of the effective thermal masses is well defined. The effective 
thermal masses are located within the masonry layers whilst the insulation between them imposes a strong physical 
constraint, and consequently a unique solution to the values of the constituent thermal masses in the model (𝑅𝑅𝑛𝑛). 
Conversely, when the thermophysical properties of the layers constituting the element are comparable, like in a 
traditional solid wall, the weak physical constraints allow several similarly probable combinations for the locations of 
the effective lumped thermal masses. Consequently, the size of the constituent thermal resistances (𝑅𝑅𝑛𝑛) will vary 
depending on the effective thermal mass position, but their total R-value is constant. 

5. Conclusions 

This paper explores the use of a dynamic grey-box method to provide insight into the thermal structure of building 
elements, which can be used to support building surveys and inform tailored retrofitting strategies. The method, 

Fig. 3 Estimates of the lumped thermal resistances and their sum for the four monitoring periods, respectively for the OWall (a) and HWall (b). 
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consisting of a two lumped-thermal-mass model and an MCMC sampler, was used to analyze in-situ measurements 
of two walls of different construction and estimate their thermophysical properties. Unlike the MAP approach, the 
MCMC framework not only provides the best-estimate of the thermophysical parameters of the model but also their 
distribution. 

The distribution of the parameters provided useful insight into the thermal structure of the elements investigated, 
which can be interpreted in the light of the building stratigraphy. Whilst the topic of future work, potential practical 
applications of this framework include its use as a tool to support non-destructive in-situ surveys and to inform the 
decision-making process, for example: to identify the most probable materials constituting a building element; to 
evaluate whether a building structure is likely to be insulated; and to propose tailored retrofitting strategies aiming at 
maximizing the thermal comfort within the indoor ambient and the thermal performance of the building, while 
minimizing the overall energy consumption. 
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