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ABSTRACT

Information-Centric Networking (ICN) has been proposed
as a promising solution for the Internet of Things (IoT),
due to its focus on naming data, rather than endpoints,
which can greatly simplify applications. The hierarchical
naming of the Named-Data Networking (NDN) architecture
can be used to name groups of data values, for example, all
temperature sensors in a building. However, the use of a
single naming hierarchy for all kinds of different applications
is inflexible. Moreover, IoT data are typically retrieved from
multiple sources at the same time, allowing applications to
aggregate similar information items, something not natively
supported by NDN. To this end, in this paper we propose (a)
locating IoT data using (unordered) keywords combined with
NDN names and (b) processing multiple such items at the
edge of the network with arbitrary functions. We describe
and evaluate three different strategies for retrieving data
and placing the calculations in the edge IoT network, thus
combining connectivity, storage and computing.
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1 INTRODUCTION

The Internet of Things (IoT) is becoming a reality in smart
homes, smart buildings and smart cities [1], producing huge
amounts of sensor readings that need to be processed, pos-
sibly in order to control actuators. IoT can be applied to
multiple scenarios, such as Intelligent Transportation System
(ITS), smart grids, smart homes, health care applications or
Building Management Systems (BMS). Multiple application-
layer, cloud-based solutions have been proposed to process
the huge amounts of data items produced by IoT devices,
using IP to remotely manage IoT devices and pull data
from them, with powerful cloud servers complementing the
resource-constrained IoT edge (e.g., [2, 3]). However, cloud-
based IP solutions are associated with long Round-Trip Times
(RTTs) and are dependent on uncertain network connectivity.

*Also with, Dept. of Electrical & Electronic Engineering, University
College London (on sabbatical leave).

In our view, localized processing at the edge of the network
is the only way to offer adequate QoS for delay-sensitive appli-
cations, as well as to support applications where connectivity
to the cloud is sporadic or impossible. Local processing de-
creases bandwidth consumption and provides better security
and privacy, by avoiding the storage of sensitive data in the
cloud (see Section 5.5). Finally, sharing the cost of deploying
IoT devices in the field across different applications is very
hard when each device is only accessible to a remote cloud
server for security reasons. Current cloud-based solutions
could lead to tens of identical sensors being deployed side by
side, each to serve a different application.

Information Centric Networking (ICN) has been proposed
as a promising solution for IoT scenarios, as multiple ICN
characteristics fit the IoT space. Naming data rather than
endpoints greatly simplifies application design, also easing mo-
bility as data names can be independent of location. Named
data can be freely cached in the network, thus allowing
resource-constrained IoT devices to be represented by a proxy
gateway so as to reduce their communication needs. Different
applications can share data based on their names, by using
a security association between the application and the data,
rather than with the endpoints producing such data. More-
over, named network functions [4] can extend ICN with data
processing inside the network, enabling the aggregation of
data depending on the data consumer’s request.

The most widely accepted ICN solution, Named-Data Net-
working (NDN) is based on hierarchical names, which easily
lend themselves to naming aggregates of data. For example,
in a BMS data names may be organized by location (e.g.,
/building/...), which simplifies applications needing to
gather all data from a building. However, an application that
wants to gather all data from temperature sensors, would pre-
fer organizing names by sensor type (e.g., /temperature/...).
Ideally, each application could use its own naming scheme,
but that would require maintaining different routing state
per application, which is currently infeasible [5].

Instead of defining multiple hierarchical names for the same
data, we propose using a keyword-based naming system to
define IoT data available within an IoT domain (e.g., a com-
pany, a building, a city). Data within that domain is defined
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by an (unordered) set of keywords such as #temperature,
#RobertsBuilding, #Floor1, allowing each application to
ask for a set of keywords that best describes the appropriate
data. However, keywords cannot be aggregated as easily as
hierarchical names, therefore we propose using names that
consist of a hierarchical prefix, allowing NDN routing to be
used to reach an IoT domain, and a set of keywords as a
suffix, indicating specific data within that domain. To exploit
available computing resources at the edge for data processing
and aggregation, we propose adding a function name between
these two elements to show how the gathered data should be
processed, so as to return a single data item to the requester.

The contributions of this paper are as follows:

∙ We propose a flexible naming scheme combining
NDN names as domain identifiers, keywords to indi-
cate data sets and function names to process these
data.

∙ We propose a hybrid NDN and keyword-based rout-
ing ICN solution for IoT, combining the scalability of
hierarchical naming with the flexibility of keywords.

∙ We propose and evaluate three different strategies for
locating data and performing computations within
the edge IoT domain, offering some preliminary re-
sults.

The rest of the paper is organized as follows. In Section 2
we discuss the tag-based ICN routing scheme upon which our
work is based, while in Section 3 we describe our proposed
IoT platform. Preliminary performance results about three
proposed function placement strategies are presented in Sec-
tion 4. We consider various extensions for further research in
Section 5. We discuss related work in Section 6 and conclude
and discuss future work in Section 7.

2 TAG-BASED ICN ROUTING

Our keyword-based platform has been inspired by TagNet,
an ICN architecture using tags to name content items at the
global level, albeit without function execution facilities [6]. In
this section we present TagNet and explain how our platform
diverges from it, due to its focus on IoT and edge computing.

In TagNet, data are identified by content descriptors, while
nodes are identified by host locators. A content descriptor is
a set of location-independent tags, chosen by the application
to describe a content item. Each content descriptor is rep-
resented as a Bloom filter. In [7], Papalini et al. use 192-bit
Bloom filters with seven hash functions to store content de-
scriptors with no more than 15 tags in order to ensure that
false positives (in lookups) are extremely rare.

The matching relation in TagNet is defined as a subset
relation between sets of tags. A descriptor 𝑅 in a content
request matches a content item 𝐶 if the request includes all
tags (and maybe more) of the publication (𝑅 ⊇ 𝐶). For exam-
ple, a request with descriptor {temperature, Floor1} would
match an item with descriptor {Floor1}. In our platform,
we use the reverse relation, that is, matching implies that
(𝐶 ⊇ 𝑅), as we want a request for {temperature} to match

a content item {temperature, Floor1}, so as to allow groups
of content items to be expressed in a compact manner.

TagNet uses trees for routing, but since using a single tree
for all routing can lead to stretched routes between some
nodes, multiple trees are used, so packets need to include a
tree identifier in their header. For each tree, a node maintains
a list of the descriptors announced by all the nodes reachable
through that neighbor, that is, a list of Bloom filters. When
a router receives a packet with a request descriptor 𝑅, it for-
wards the packet towards each neighbor that has announced
a matching descriptor, making sure that the total fanout of
the request will not exceed a limiting factor 𝑘. The goal is to
find a single item matching the request. In our platform, we
expect to receive multiple content items with a single request
for further processing, therefore matching uses the reverse
rule than TagNet, which leads to more matches, and we do
not limit the fanout - we can potentially reach the entire tree.

When a content request reaches a matching data item, the
item needs to be returned to the requester. While in NDN
requests leave breadcrumbs behind them, in TagNet they
are forwarded over the same tree used for the request. To
achieve this, the nodes in each tree are labeled using the TZ
algorithm [8], which allows any node to forward a packet
using only the TZ-label of that node and the TZ-label of the
destination. In TagNet then, each request carries the TZ-label
of the requester, called the host locator of that node, to allow
data items to be returned without maintaining per request
state in the network. In our platform, we only use a single
tree rooted at the border router between the IoT domain
and the Internet, with requests traveling down the tree and
responses traveling up the tree, leading to simplified routing
and no need to carry TZ-labels.

3 KEYWORD-BASED ICN-IOT

In this section we provide a description of our keyword-based
ICN-IoT platform. We describe the naming scheme developed
for our platform, the forwarding operation for requests and
responses, three different strategies for data retrieval and
processing, and provide a step-by-step example.

3.1 Naming scheme

Hierarchical
Part⏞  ⏟  

/a/b/c/⏟  ⏞  
Domain loca-
tion

⊕
Function tag⏞  ⏟  

f:tag⏟  ⏞  
Network function

⊕
Hashtags⏞  ⏟  

#tag1, #tag2⏟  ⏞  
IoT information

Figure 1: Keyword-based Names

Our naming scheme needs to (a) locate an IoT domain
across the Internet, (b) identify (individual or groups of)
data values within that domain and (c) express processing
requirements over these values. Taking these features into
account, names are composed of three parts (see Figure 1):

Hierarchical Part. It uniquely names the IoT do-
main that the information belongs to, using the hi-
erarchical naming scheme of NDN; as NDN matches
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prefixes, it offers compatibility with NDN outside
the IoT domain. Network administrators can define
their own hierarchical name spaces, enabling commu-
nication between different campuses or networking
domains e.g., /ucl/london/bloomsbury/.

Function tag. It consists of a single (mandatory) func-
tion tag, which describes the function that should
process the set of IoT data described by the hashtags.
If no processing is desired, an identity function tag
is used.

Hashtags. It comprises a set of hashtag-like keywords,
which are used to describe the IoT data that need
to be retrieved for processing by the function. The
semantics of the hashtags depend on the data pro-
vided by the local sensors; we can even have tags
describing processed data, rather than the raw data
produced by the sensors.

In the example of the BMS application, the complete
name included in a user request can have the fixed hierarchi-
cal part /ucl/london/bloomsbury naming the UCL London
campus, the function name f:average and the hashtags
#RobertsBuilding, #Temperature; these indicate that we
want to get the average of the temperature sensors in the
Roberts Building. The corresponding data items are gathered
and processed by the network, and the requester eventually
receives the average value. A similar naming scheme with
hierarchical and tag-based components has been used in the
context of mobile computing for naming applications and
their parameters [9].

3.2 Request and content routing

The routing operation in our platform is a hybrid, based on
a modified version of the tag-based routing of TagNet [7]
for the local IoT domain and regular NDN forwarding [10]
outside that domain. The modifications assume that the goal
of the system is processing a set of IoT data in the local
domain, before a result is sent to the Internet, using a flexible
and scalable keyword-based naming scheme.

Using the hybrid naming scheme introduced above, out-
side an IoT domain, requests for content, called Interests
in NDN, are routed using normal NDN forwarding, using
the hierarchical prefix of the full name; the hierarchical part
is advertised by the border router between the IoT domain
and the Internet. Once an Interest reaches the border router,
the hierarchical part is ignored and the Interest is routed
based on the tags included in the name after the hierarchical
prefix. If no function tag is included in the request, the bor-
der router could use a default function such as f:any (i.e.,
return any data matching the requested tags). If no hashtags
are included in the request, or there are no matching data
in the IoT domain, the border router will send a negative
acknowledgment towards the consumer.

Routing takes place over a single tree, with its root being
the border router. If the physical topology is not a tree,
a spanning tree algorithm is used to create a tree on top
of the actual topology. Furthermore, we assume that all

content requests originate from the root (border router) and,
therefore, all final responses need to be returned to the root.
This means that each node only needs to know which of its
links lead to the root in order to return any results.

To locate content items, we reuse the TagNet scheme, that
is, each content item is labeled with a Bloom filter that
indicates the keywords it is associated with, and each node
in the tree maintains a predicate for each of its downstream
links, that is, a list of Bloom filters, indicating what content
items are available via this link. Unlike TagNet, a request
in our scheme matches a content item if its Bloom filter
is a subset of the item’s Bloom filter. This allows merging
Bloom filters in the upstream direction (they become more
permissive), at the cost of introducing false positives. In
contrast, if Bloom filters were merged in TagNet, they could
lead to false negatives (they would become more restrictive).
Any content item matched, whether at its origin node or an
intermediate cache, is returned towards the root, by following
the links leading to the root at each node. Note that we use
neither breadcrumbs nor TZ-labels for this. In contrast to [11]
which proposes an elaborate scheme for gathering multiple
responses to a single query, since we do not maintain per
request state in the IoT domain, we can gather any number of
results after a query; this is sensible in a system where sensors
may fail or get disconnected. By implication, functions need
to be able to process an arbitrary number of arguments.

Note that we do not maintain the one Interest-one Data
(i.e., hop-by-hop flow balance) principle of NDN within the
IoT domain, where only keyword-based routing is used. How-
ever, a single data packet is returned from the IoT domain
for each arriving Interest, maintaining the one-in, one-out
principle for the NDN-based portion of the network.

Data can be cached anywhere in the tree of the IoT domain,
both in processed and raw data form, to satisfy further
requests for the same information. However, for processed
data, the matching should be exact and include all hashtags
and the same function tag, since in this case we should send
back a single, specific data item and not a set of matching
data to be processed.

3.3 Function placement and execution

In current cloud-based systems, all data required to execute
a function like Average need to be individually fetched from
IoT nodes to a cloud server, so that the function may process
them. In our platform, the obvious place to execute a function
would be the border router, since all data items converge there
in our routing scheme; also, this allows returning a single
piece of data over the NDN compatible part of the network,
rather than a set of values. Therefore the first strategy called
Naive is the most straightforward one: process everything in
the root node of the IoT domain.

However, even in a simple IoT domain, like a university
campus, we may have many levels in the routing tree, for
example, building, floor, area, gateway, sensor: many simple
sensors can connect to a gateway node (e.g., a Raspberry
Pi), with the gateway connecting over short range radio (e.g.,
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UWB or Bluetooth) to an area controller, and so on until
the root. It therefore makes sense to push calculations closer
to the source of the data, to avoid fetching large numbers of
content items to the border router. Assuming that all nodes
are capable of computing a function, the second strategy
named Minimum transfer executes the calculation at the
lowest level node where requests are branching in multiple
directions. Starting from the root, if more than one down-
stream links match the request, then the calculation will be
performed there; if only one link matches though, we repeat
this procedure at the child node reachable via this link. This
placement decision can be trivially made as the request prop-
agates from the root towards the leaves. The node chosen for
the calculation is indicated in the request and as data items
are returned up the tree, when they reach that node they are
stored temporarily. When the function executes, its results
are pushed upstream to the root.

Although pushing calculations downstream reduces the
bandwidth consumed by content item transmissions, it is
reasonable to expect that nodes closer to the edge will have
fewer resources available (e.g., Raspberry Pis at the lowest
levels, with OpenWRT access points at higher levels). Such
provisioning of hierarchically increasing resources has been
proposed for edge-clouds to better cope with fluctuating
demand [12]. We could thus consider how loaded a node is,
by examining the expected completion time of the desired
function at that node. Therefore, we propose a third strategy
named Least congested for function placement and execution,
as a simple modification of the previous algorithm, that
calculates this metric at each candidate node as we go down
the tree, including in the request the currently least loaded
node. This is done in order to not overload the root node
under the naive strategy. As a result, the calculation will
take place at the least loaded node between the root and
the first branching node of the request, reducing completion
time but increasing bandwidth overhead. Data and function
results are returned upstream as in the previous algorithm.

Similar strategies that consider data transfer [13] and
computational congestion [14] costs have been proposed in
the context of request dispatching and service placement in
edge-clouds.

3.4 An example

We can now provide a complete example of how our system
would operate, referring to the simple topology shown in
Fig. 2, depicting the three strategies.

(1) An application issues an interest with the hierarchi-
cal prefix of the IoT domain plus a function tag and
the data hashtags describing the IoT data, which in-
dicates that it wants the average temperature at the
UCL campus of the first floor of a certain building.

(2) The NDN nodes (not shown) forward the interest
towards the IoT domain following the regular NDN
longest-prefix match rule towards the /ucl/campus

IoT domain.

Figure 2: Keyword-based multi-data retrieval and
processing in an IoT domain

(3) The interest reaches the border router of the IoT
domain, which keeps the pending interest in its PIT
and creates a request including the function tag
(f:average) and the content tags (#temperature,
#building1, #room1) into the IoT domain.

(4) As multiple gateways have temperature sensors for
the tags included, the request branches at the Floor
1 node. Depending on the evaluation strategy, either
the identifier of the root node (Naive strategy), the
first branching node (Minimum transfer strategy),
or the node that would complete the calculation first
between the root and the first branching node (Least
congested strategy) will be entered into each request.

(5) Each node with data matching the keywords returns
its latest temperature value and pushes the request
towards the root. Nodes with no data send a negative
acknowledgment to avoid using timers. The tags are
used to match data in the reverse manner than in
TagNet, that is, a less specific request matches a
more specific entry (the request’s Bloom filter is a
subset of the routing entry’s Bloom filter).

(6) All data are gathered for processing at the node
included in the request, where the Average function
is executed and the result is returned up the tree to
the Border router.

(7) The border router uses its PIT to return the request
to the originating node, encapsulating the result in
an NDN data packet that includes all the parameters
of the request in the hierarchical name.

4 PRELIMINARY RESULTS

We now present a preliminary evaluation of the three mecha-
nisms proposed in Section 3.3 for the retrieval and processing
of IoT data. We evaluate these three strategies using a packet-
level, discrete time event simulator based on Icarus [15], which
is publicly available.1

We simulate the three strategies using a border router
node attached to a regular tree topology with a height of

1https://github.com/oascigil/icarus iot
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(c) Load distribution

Figure 3: Simulation topology results

three and a branching factor of ten (for example, one build-
ing with ten floors, ten areas per floor and ten devices per
area). The resulting tree topology contains a total of 1111
nodes. The leaf nodes act as gateways that collect and store
data. We assume that all nodes in the topology have compu-
tational power to execute functions. We use a betweenness
centrality metric to distribute computational resources (for
the execution of functions) in terms of number of cores to
the internal nodes of the tree, assigning only a single core
to the gateway nodes, which are assumed to be low-power
devices. With this assignment, the internal nodes that are
higher up in the hierarchy obtain larger numbers of cores.
More specifically, we initially assign a single core to each node
in the topology including the gateway nodes (i.e., leaf nodes),
and then distribute a total of 50 additional cores according
to the betweenness centrality of the nodes. The root node
obtains the maximum number of cores in the topology with a
total of 16 cores, and the rest of the internal nodes share the
remaining 34 cores. We assume that all cores in the nodes
are identical and offer the same execution times for identical
tasks.

We assume 100 applications sending requests, each request-
ing data from up to five randomly selected sets of gateways.
We further assume that requests from the same application
require the same execution time, and that function executions
are not parallelizable; therefore, a single core handles each
individual application request. We randomly generate the
execution times of each of the 100 applications with a mean
of 100 ms. In this simulation, we ignore the data sizes and
only consider propagation delays; each link in the topology
has a propagation delay of 3 ms. The nodes execute functions
using a thread pool model with each core picking up a task
from an incoming task queue as it becomes available. The
main source of latency in our simulations is the waiting time
of requests in the task queues of nodes.

We assume that each application sends requests to the
gateway node at the same rate. When evaluating the individ-
ual strategies, we set the average aggregate request rate of all
the applications to be approximately the same as the average
service time of the root node (i.e., ≈ 160 requests/sec). This
is done in order to not overload the root node under the naive
strategy, which can only schedule functions in that node. We
compare the strategies based on two metrics, namely the
completion time and the overhead. The completion time is

the average time it takes for the requests to complete, i.e.,
fetch data from gateways to one location, execute the func-
tion, and return results to the gateway node. The overhead
metric is the average number of hops that data travel from
gateways to the node executing the function.

In Figure 3, we demonstrate the performance of the three
strategies. In Figure 3(a) we can observe the average comple-
tion time for each request in ms, in Figure 3(b) the overhead
in number of hops, and in Figure 3(c) the load distribution
in number of functions processed for each level of the tree.
Note that there are 4 levels from the Border router (level 0)
to the gateways (level 3). As expected, the completion time
and overhead of the naive strategy is the worst, while the
least congested strategy achieves slightly higher completion
time under the same load. On the other hand, the minimum
transfer strategy moves data through the least number of
hops, causing the least overhead among the three.

In Figure 3(c) we see that the minimum transfer strategy
moves some load from the root node to the gateways, with
a very low load in intermediate nodes. This is due to the
fact that it is very unlikely to retrieve data only from one
subtree (especially at lower levels), when there is more than
one randomly chosen gateway involved. The random choice
process does not consider locality, therefore it can pick any
one of the 1000 gateways. The execution takes place in the
gateways only when a single gateway is involved in the re-
quest. On the other hand, the least congested node strategy
puts more load in the root node than the minimum transfer
strategy, since this node is more powerful than the rest and
can allocate more processing power. As a result, even when it
is possible to process the information closer to the source, the
root node pulls most of the load. Depending on the objective
and the load, the network can choose among the minimum
transfer and the least congested node strategy. For instance,
for lighter loads, the minimum transfer strategy can achieve
sufficiently good performance. We plan to extend this work
in the future with an optimal strategy, which will jointly
optimize the completion time and overhead.

5 DISCUSSION

In the following, we include a discussion of some aspects that,
although not specifically addressed in this paper, are relevant
for our scheme, and could be the target of further research.
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5.1 IoT domain sizing

Although we have not made any specific assumptions on the
size of the IoT domains so far, for security and administrative
purposes it would not make sense for IoT domains to span
the entire Internet. Normally, we would expect domains to
belong to the same operator or owner, for example, a single
organization, which would also ease the management of the
keyword name space used, as well as simplify the mapping
of domains to NDN names. The other limiting factor is
the scalability of the routing system and, in particular, the
information that needs to be maintained in order to perform
matching based on keywords. Due to the tree topology used,
nodes at higher levels would have to maintain more state.
In [7], it is shown that the much more complex TagNet scheme
with its multiple trees can scale across very large networks.
In addition, while in TagNet each node must maintain all the
individual content descriptors available over each outgoing
link, as, if these descriptors were aggregated, it could lead
to false negatives, in our scheme we can merge descriptors,
at the cost of introducing some false positives. This allows
our scheme to do limited merging of content descriptors (for
example, as long as no more than a specific number of 1’s
is in each Bloom filter). Also, false positives do not make
our scheme fail, but just perform suboptimally: we may send
requests down redundant paths and branch at a higher level
than needed, thus pushing calculations closer to the root.

5.2 Routing scheme limitations

The tree-based routing scheme we have adopted, and in
particular the use of a single tree, means that in a non-tree
topology some routing paths may be stretched due to the
need to follow the tree. In practice however, IoT deployments
do have the form of a tree, that is, there are no cross links
between IoT gateways, therefore using a single tree would
not affect performance. As we do not use the TZ-labels of
TagNet, packets can only travel from or to the root. In the
schemes we have devised for function execution placement,
we always use an ancestor of the nodes providing the actual
data, so returning data naturally converge there. A more
advanced placement scheme could choose other nodes, both
for complexity and transport efficiency reasons. For example,
if most of the data points in a query come from a single
building, it would make more sense to gather there data
points from the other buildings and execute the function,
rather than to an ancestor node, to save on transmission
bandwidth. To achieve this, we could adopt the TZ-labeling
scheme to allow data to be routed to arbitrary tree nodes,
with minimal cost in state (just the TZ-label of the current
node).

5.3 Information time tags

How to deal with time when processing IoT information is
a complex issue that, to the best of our knowledge, has not
been finally settled in the ICN literature. Some solutions
name processed data by using the timestamp of the oldest
data value in the time interval [16]. In the IoT context and

for our specific scheme, a reasonable means for the retrieval
of processed information based on time would be to add
more hashtags to the raw data items, reflecting the time of
measurement. For instance, a raw data value could include
multiple timing-related tags, such as #year, #month, #day,
#hour, #minute and so on, including as many tags as required
for a specific timing granularity. In the request, a consumer
could include as many tags as required to process the required
information (e.g., by month, by day or by our) and the
processed information would be cached including the timing
tags included in the request. This solution limits the interval
times of the processed information that can be requested, but
can easily name and match timing information in both raw
data and processed form. Note that it is still possible to issue
multiple requests to retrieve data over multiple time intervals
and combine them, as NDN would do to in order retrieve
multiple IoT information items, even for a single interval.

5.4 In-network data aggregation

Although our scheme is relatively simple to implement, we do
not expect it to be used in very limited IoT devices. We in-
stead expect designated network nodes (i.e., gateways, access
points, routers) close to the sensors and actuators within an
IoT domain to act as data aggregation points. Our tag-based
routing is not used beyond those data aggregation points; this
is why we assumed that all nodes are capable of executing
functions. Sensor data can either be pushed to or can be
periodically pulled by the aggregation points, using protocols
specifically designed for constrained devices. In particular,
we envision special network functions to be used to fetch
sensor data and make them available in advance (e.g., for
commonly requested information) or to activate actuators,
instead of processing/aggregating data on-demand. Such net-
work functions can subscribe to the raw data (e.g., required
for an actuator decision) using a pub/sub model. For exam-
ple, a network function could subscribe to any information
items containing #BuildingName,#SmokeDetector, in order
to automatically activate the fire extinguishers and trigger
the fire alarm when necessary.

5.5 Privacy and security considerations

We argue that local processing of data within an edge IoT
domain can provide better privacy and security compared
to cloud-based systems that perform both storage and pro-
cessing in the cloud. To that end, we envision a proxy re-
encryption (PRE) based access control scheme similar to the
one proposed by Fotiou et al. [17], which would allow encryp-
tion of processed IoT data before sending it to untrusted
parties for better privacy and security. Using the proxy re-
encryption mechanism, a delegator (e.g., local processing
node) can enforce the data access control policies of the IoT
domain at an untrusted delegatee (e.g., remote storage ser-
vices) when encrypted data are shared. More specifically, the
delegator first encrypts the data using her public key and
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then provides both the ciphertext and a set of re-encryption
keys to the delegatee. The delegatee uses the re-encryption
keys to transform the ciphertext in a way that only authorised
users can decrypt using their private keys. A downside of this
scheme is the encryption cost placed at the edge, although
not at end IoT devices. We leave a detailed investigation of
an edge IoT domain access control scheme for future work.

6 RELATED WORK

Many cloud-based solutions for IoT and smart cities exist, for
example, AWS-IoT [2, 18] is a solution based on Amazon Web
Services. IBM has its own cloud-based solution for IoT using
the IBM Watson IoT plaftorm [3]. ICN has received more
attention in recent years, as it offers interesting features for
IoT solutions due to its in-network caching and computing,
de-centralization or energy efficiency (e.g., [19–21]).

In particular, NDN has been studied as a feasible solution
to develop IoT solutions in [22, 23]. Implementing NDN for
constrained devices can be a challenge, so multiple projects
focused on implementing IoT solutions and prototypes based
on NDN [24] for sensors and IoT devices, also providing
libraries to easily deploy NDN solutions in wireless sensors
[25, 26]. Existing work in NDN for IoT includes different IoT
scenarios and experiments, such as Building Management
Systems (BMS) and Smart Homes [16, 27–30]. Some effort has
been also focused on enabling multi-source data retrieval in
NDN [11], an interesting feature for IoT communications, and
also to enable push communications natively in NDN [31, 32],
which are suitable for IoT scenarios based on producer-driven
events.

Mobile Edge computing on the other hand, has been stud-
ied for IoT and smart cities [1] aiming at improved QoS,
reduced latency and offloading traffic, pushing computing at
the edge of the network. However, there is also some work on
enabling edge computing for ICN, via the Named Function
Networking (NFN) scheme [4], with recent work focusing on
using NFN over IoT scenarios [33].

Nevertheless, there has been no previous attempt to com-
bine the benefits of edge computing and keyword-based ICN
for IoT, using tag-based routing and function execution at the
edge to deal locally with the huge amounts of IoT data, offer-
ing high flexibility and improving overall resource utilization
and efficiency.

7 CONCLUSIONS AND FUTURE
WORK

The ICN community has recently been exploring the feasibil-
ity of ICN solutions, especially those based on NDN, for IoT.
Some of these works have focused on multi-data retrieval,
breaking the one interest - one data rule, or deploying NDN
in resource-constrained devices. However, there is no exist-
ing solution for the limitations placed by NDN hierarchical
names to IoT applications, so as to allow more flexibility in
terms of naming. In this paper we have presented an ICN
solution based on keywords and network functions that tar-
gets IoT data retrieval and local processing. We presented a

BMS use case and we evaluated three different strategies to
fetch and process IoT data using our ICN-IoT platform. Our
preliminary results show that a least congested node strategy
is better in terms of latency, but a minimum tranfer strategy
creates less overhead.

This work is a first step in the investigation of keyword-
based and edge computing ICN solutions for IoT. We have
started the discussion on multiple areas upon which our
future work will focus, such as timing issues for network
functions, plus routing, scalability and security issues. We
also plan to extend our work with further investigation on
strategies to optimize both the completion time and overhead
when processing data in the IoT domain.
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