
NFaaS: Named Function as a Service
Michał Król

University College London
m.krol@ucl.ac.uk

Ioannis Psaras
University College London

i.psaras@ucl.ac.uk

ABSTRACT
In the past, the Information-centric networking (ICN) community
has focused on issues mainly pertaining to traditional content de-
livery (e.g., routing and forwarding scalability, congestion control
and in-network caching). However, to keep up with future Internet
architectural trends the wider area of future Internet paradigms,
there is a pressing need to support edge/fog computing environ-
ments, where cloud functionality is available more proximate to
where the data is generated and needs processing.

With this goal in mind, we propose Named Function as a Service
(NFaaS), a framework that extends the Named Data Networking
architecture to support in-network function execution. In contrast
to existing works, NFaaSbuilds on very lightweight VMs and allows
for dynamic execution of custom code. Functions can be down-
loaded and run by any node in the network. Functions can move
between nodes according to user demand, making resolution of
moving functions a first-class challenge. NFaaSincludes a Kernel
Store component, which is responsible not only for storing func-
tions, but also for making decisions on which functions to run
locally. NFaaSincludes a routing protocol and a number of forward-
ing strategies to deploy and dynamically migrate functions within
the network. We validate our design through extensive simulations,
which show that delay-sensitive functions are deployed closer to
the edge, while less delay-sensitive ones closer to the core.

CCS CONCEPTS
• Networks → Network architectures; Network management;
Network simulations;

KEYWORDS
Networks, Network architectures, Information Centric Networking,
Mobile Edge Computing, Function Migration

ACM Reference format:
Michał Król and Ioannis Psaras. 2017. NFaaS: Named Function as a Service.
In Proceedings of ICN ’17, Berlin, Germany, September 26–28, 2017, 11 pages.
https://doi.org/10.1145/3125719.3125727

1 INTRODUCTION
While the current Internet handles content distribution relatively
well, new computing and communication requirements call for new

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICN ’17, September 26–28, 2017, Berlin, Germany
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5122-5/17/09. . . $15.00
https://doi.org/10.1145/3125719.3125727

functionality to be incorporated. Powerful end-user devices and
new applications (e.g., augmented reality [1]) demand minimum
service delay, while the Internet of Things (IoT) [2] generates huge
amounts of data that flow in the reverse direction from traditional
flows (that is, from the edge towards the core for processing). As
a result, computation needs to be brought closer to the edge to
support minimum service latencies and to process huge volumes
of IoT data.

In contrast to cloud computing, edge and fog computing promote
the usage of resources located closer to the network edge to be
used by multiple different applications, effectively reducing the
transmission delay and the amount of traffic flowing towards the
network core. While offering multiple advantages, mobile edge
computing comes with many challenges, e.g., dynamic placement
of applications at edge nodes and resolution of requests to those
nodes [3] [4]. Furthermore, the application software needed to
run edge computation must be first downloaded on the edge-node,
while mobile clients request for resources from different locations.
Mobility as well as diversity in user demand makes it very difficult
to predict which functions will be requested in the future and from
where in the network.

Indeed, ICN principles can directly address some of the above
challenges. Explicitly named functions can be resolved in network
nodes, while network-layer requests (i.e., Interests) can carry input
information for edge-executable functions. Function code can be
stored in node caches and migrate across the network following
user demand.

With the exception of a few relatively early works [5] [6] [7],
there has been no focused attempt to adjust existing proposals for
Information-Centric Networks to support edge computing. Early
works in the area have enhanced the ICN stack to support service
discovery, e.g., [5][6] [8]. However, these works do not support
dynamic service instantiation or system adaptation to user demand.
Functions are static and are executed at one node (each), while their
resolution relies on central controllers ([6]) failing to exploit the
stack’s full potential. As a result, edge-nodes can get overloaded
in case of increased demand for some function, while the system
cannot adapt to user mobility by migrating functions to other parts
of the network. We argue that any service should be able to run at
any node in the network, migrate to the most optimal node based
on the user’s location, replicate in case of increased demand and
dissolve when demand for some function declines.

Closer to our work Named Function Networking (NFN) builds
on λ-functions [7] to allow services to be executed anywhere in
the network. Being restricted to basic λ-functions included in the
Interest name, NFN is constrained by the number of services it
can support. In many scenarios, nodes require more sophisticated
processing, custom code and libraries, which is difficult to express
only through λ-functions, and acquiring additional function code
presents new challenges.

https://doi.org/10.1145/3125719.3125727
https://doi.org/10.1145/3125719.3125727

ICN ’17, September 26–28, 2017, Berlin, Germany Michał Król and Ioannis Psaras

In this work we assume very lightweight Virtual Machines (VMs)
in the form of unikernels [9], which are explicitly named. We as-
sume network nodes have: i) storage capacity to cache unikernels
(i.e., function code) and ii) computation capacity to execute those
functions.1 Moreover, edge nodes can store more unikernels than
they can run simultaneously.

We introduce the concept of Named Function as a Service (NFaaS),
whereby rich clients, containing most of the application logic, re-
quest for named functions through Interests [10]. The structure
of NDN Interests is modified to request for function execution (as
opposed to merely requesting for static content only) and include
information that acts as input for the requested function. In addi-
tion to the Content Store, NFaaS nodes also have the Kernel Store,
which is responsible not only for storing function code, but also
for making decisions as to which functions to execute. Depending
on user demand, functions move between network nodes and the
routing fabric is updated to resolve moving functions.

According to the resulting framework, network nodes (or clusters
of them) in some specific part of the network domain specialise in
executing specific functions. Although these nodes then become the
reference point for those functions, this does not prevent functions
from executing elsewhere in the network too. Nodes send Interest
packets with the name of the function to execute. Any node in the
network can run the service and return results. Decisions on which
function to execute are based on a unikernel score function, whose
purpose is to identify and download the most popular functions.
We base our system on the serverless architecture [11] [12], thus,
removing state information from the hosting node. This allows
us to migrate services much easier without any costly handover
procedure and adapt to the current demand.

We implement NFaaSas an extension to the NDN stack [13].
Our system remains fully compliant with the original NDN im-
plementation and does not require all nodes to support the ex-
tension. For simplicity, we assume two main types of functions:
i) functions for delay-sensitive applications, and ii) functions for
bandwidth-hungry applications. Our results show that the system
adapts according to our expectation: delay-sensitive functions mi-
grate and execute mostly towards the edge of the network, while
bandwidth-hungry functions execute further in towards the core of
the network, but always staying within the boundaries of the edge-
domain. To the best of our knowledge, NFaaSis the first framework
enabling this functionality without a global view of the network.

The remainder of the paper is organized as follows. Section
2 provides background information on unikernels and serverless
architecture. The design details of NFaaS along with a summary of
the main research challenges are presented in Section 3. Section 4
presents initial results evaluating the design with simulations and
a real-world prototype. In Section 5, we summarize previous work
on service invocation in information-centric networks.

1We use terms unikernels, functions and services interchangeably to refer to edge-
executable applications.

2 BACKGROUND
2.1 Unikernels
Recent advances in virtualisation techniques have allowed rapid
deployment of cloud services. However, if we want to achieve sys-
tem isolation, it is required to set up a whole virtual machine for
every hosted service. A virtual machine image contains a complete
system with a full kernel, a set of drivers, system libraries and appli-
cations. Most of these components remain unused by the invoked
service. This approach makes the image big in size, slow to boot
and increases the surface of attacks. Container-based virtualisation
alleviates the problem, but solutions such as Docker, while making
the deployment process easy, require running on top of a complete
operating system and contain a significant amount of additional
components.

Unikernels [9] propose an alternative approach, whereby an ap-
plication is analysed, to determine the required system components.
Only this part is compiled, together with the application binary into
a bootable, immutable image. Unikernels have several advantages
over the classic solutions presented above. They are small in size,
introduce minimal attack surface and can operate on bare metal or
directly on a hypervisor. Their compilation model enables whole-
system optimisation across device drivers and application logic.
Multiple systems already exist that are able to turn any custom
code into unikernels [14][15][16]. Thanks to the small size (fewMB)
and low overhead, unikernels can be downloaded and executed in
milliseconds. While still at an early stage of development, uniker-
nels present huge deployment potential as unikernel-based systems
show very good performance in comparison with virtual machines
and containers [17], can be easily cached and run on almost any
device. These characteristics make unikernels a great solution for
edge/fog computing environments where functions migrate within
the network. The technology is already used in projects such as
Jitsu [18], where after receiving a DNS packet, a server instantiates
a unikernel that processes the request and sends back the response
introducing delays of only few milliseconds.

2.2 Serverless architecture
Serverless architecture or Function as a Service is a recent develop-
ment in cloud client-server systems. In the traditional approach, a
thin-client request invokes some services on a server. The server
represents a monolithic unit implementing all the logic for authen-
tication, page navigation, searching and transactions. In a Serverless
architecture, we create a much richer client and decompose the
server into a set of small, event-triggered and (ideally) stateless
functions (Fig. 1). Those functions are fully managed by a 3rd party.
The state is recorded on the client or stored in a database and can be
transmitted using tokens. The client is also responsible for invoking
services in order and manages the logic of the application. Such
an approach presents several advantages. Firstly, there is no need
for dedicated hardware to support the system. Instead, all func-
tions are uploaded in the cloud and invoked if necessary. Secondly,
decomposition allows to handle traffic peaks better and use pay
as you go pricing systems. Thirdly, the system is more resilient to
DDOS attacks, as it is easier to attack a standalone server than a
distributed cloud of smaller functions. The serverless architecture is

NFaaS: Named Function as a Service ICN ’17, September 26–28, 2017, Berlin, Germany

already implemented on existing platforms such as AWS Lambda2
or Google Cloud3. We argue that the serverless approach to exe-
cuting functions as a service is a perfect fit for edge/fog computing
environments, as it increases flexibility in managing edge-clouds.

2.3 Serverless Unikernels for NDN
We argue that the Serverless Architecture is a required component
that needs to be integrated into the NDN stack to deliver edge net-
work functions. The requesting node requests functions by name,
which can then be invoked on any node while the results follow
the path established by the Interest packet. Because function state
is managed by clients, consecutive calls for the same function can
be served by different nodes without any handover process. Archi-
tectures in which services can be executed only on a given set of
nodes (Sec. 5) must find a service and then communicating de facto
with the hosting node, which is contradictory to ICN principles.
Even if service handover is supported, in traditional architectures
the process requires locating the node previously executing the
function to synchronise the state. Instead, in the serverless archi-
tecture, the initial state is attached to the Interest packet (Sec. 3.2),
while updated state (after the function execution) is sent to the
client in the resulting data packet. If maintaining state requires
large amounts of memory, the state itself can be stored as a named
data chunk in the network and be requested by the node executing
the function.

Figure 1: Serverless architecture.

3 SYSTEM DESIGN
3.1 Overview
In NFaaS, a node requesting a job, sends an interest with the ker-
nel name requesting its execution (we discuss function naming
in Sec. 3.2). A router receiving the interest, checks if it has the
unikernel stored locally. If it does and enough CPU resources are
available, it is instantiated and receives the Interest as its input (we
discuss function storage and execution in Sec. 3.3). The Interest
packet includes all the required input parameters, e.g., a state token,
or additional named-data required by the function (Sec. 3.2).

The unikernel performs the requested action and sends back
the result as a data packet. The response follows the downstream
path constructed by the input Interest and reaches the requesting
node. If more input data is required (e.g., in applications requiring
2https://aws.amazon.com/
3https://cloud.google.com/

image processing), the instantiated unikernel sends interest packets
towards the requesting node that can provide it with the neces-
sary input. If the unikernel is not present or the router does not
have enough resources to run the function, the initial interest is
forwarded following rules described in Sec. 3.4.1. Fig. 2 presents an
overview of the system. An Interest to execute function /foo/bar
issued by node A is forwarded to node C, where the corresponding
kernel is instantiated. The resulting data is sent back following the
same path.

The main entity that manages storage and execution of named
functions is the Kernel Store (discussed in Sec. 3.3). The Kernel Store
keeps historical statistics to make decisions on which functions to
download locally and which ones to execute. The goal is to proac-
tively place delay-sensitive functions as close to the edge as possible
and push functions with relaxed delay sensitivity requirements fur-
ther towards the core.

Finally, functions are resolved based on a routing protocol and
two forwarding strategies (discussed in Sec. 3.4). The purpose of
the forwarding strategies is to find the requested functions in the
neighbourhood.

The combination of the above components: i) function naming
(Sec. 3.2), ii) function storage and execution (Sec. 3.3), and iii) function
resolution (Sec. 3.4), results in a decentralised system of executable,
mobile named-functions. Each component is described in detail in
the following sections. Under steady-state, functions are placed
according to their requirements, e.g., for delay-sensitivity, the sys-
tem load-balances computation among nodes, it adapts quickly to
changing network conditions and incures minimum control over-
head.

Fig. 3 provides a high-level overview of the operation. The node
in the middle receives an interest for a function it does not have
stored locally and hence, forwards the Interest towards the cloud
(Fig. 3b). After seeing enough requests for the same function, it
decides to download the unikernel and run the service locally (Fig.
3b). If the demand for this service exceeds the node’s capacities, the
node will start forwarding part of the Interests to the next node,
which might also decide to run the unikernel itself or forward to
its own neighbours.

Figure 2: System architecture.

3.2 Naming Moving Functions
In NFaaS, Interest packets can request either the function (i.e.,
unikernel) itself, or the execution of the function. While requesting
the function itself is a straightforward content request and follows
the naming structure (and consequently the routing and forwarding

https://aws.amazon.com/
https://cloud.google.com/

ICN ’17, September 26–28, 2017, Berlin, Germany Michał Król and Ioannis Psaras

(a) A kernel becomes popular. (b) Kenel Store requests to download
the kernel.

(c) When overloaded, Node B forwards a part
of requests towards the cloud.

Figure 3: NFaaSHigh-Level Overview

principles) of the NDN architecture, when requesting execution of
some function it is not the case. To request function execution, we
insert the /exec/ prefix in the Interest packet.

We expect that edge-network moving functions will have differ-
ent application requirements, e.g., with regard to delay-sensitivity.
Accordingly, the edge network should be able to deal with different
types of tasks having different requirements and priorities, e.g., for
each class of tasks, the system needs to make different forwarding
decisions, in order to maximise users’ Quality of Experience (QoE).
We therefore, enhance the /exec/ prefix with an extra prefix field
to indicate application requirements. For the sake of simplicity,
in this study we assume two application classes: i) delay-sensitive,
and ii) bandwidth-hungry. Delay-sensitive applications, such as
augmented reality or autonomous vehicles, have very strict delay
constraints and therefore need to be processed as close to the edge
as possible. Bandwidth-hungry applications, on the other hand,
generate large amounts of IoT data that needs processing (e.g., to
reduce bandwidth usage). To avoid shipping vast amounts of data
throughout the network to the distant cloud, edge operators can
offer to process this data within the access domain, but not nec-
essarily on the first few hops from the end device. For these two
types of applications the /exec/ prefix is complemented by an extra
delay/ or bandwidth/ component - Fig. 4. Although more appli-
cation classes can be used to manipulate function mobility, in this
paper we make use of these basic classes in order to benchmark the
main system components. Given that each execution request can be
accommodated in any node, each client appends user-specific input
information in the form of a hash (last part of name in Fig. 4). This
is a necessary step to differentiate between consecutive requests for
the same function that come from different clients. With a different
suffix, each request with new input parameters creates a separate
PIT entry.

Figure 4: Interest packet structure

Together with the function execution request, the rich client in
a serverless architecture appends extra information in the Interest
packet in the form of optional Type-Length-Value (TLV) fields.
Clients include a task deadline, or specify aDiscovery field to prevent
parallel service execution (details in Sec. 3.4). The task deadline field
is also used to set up a custom value for Pending Interest Table
(PIT) entries. Larger tasks set up higher expiry values, allowing
data to be returned for a longer period of time. If the produced
data consists of more than one chunk or takes a long time to be
generated, the executing nodes return just a unique name of the
content that will be produced. The client can then fetch it using a
separate Interest packet.

The resulting Interest (Fig. 4) includes all the required informa-
tion in order for the system to make informed forwarding decisions
in order to resolve edge-network functions (details on routing, for-
warding and resolution are given in Sec. 3.4. The data produced
by the function execution follow the same structure. It thus can be
cached and sent to subsequent users requesting function execution
with exactly the same input parameters (where possible).

3.3 Storing and Executing Moving Functions
Somewhat similar to the Content Store in the NDN architecture,
the Kernel Store (KS) is responsible for storing unikernels. The KS
has to make decisions as to which unikernels to store, given that
the unikernel population is much larger than the memory available
at each node. In addition to storing unikernels, the Kernel Store is
also responsible for deciding which unikernels to actually execute.
As mentioned earlier, we consider that a node has more storage
capacity than computation capability, i.e., a node can store more
functions than it can execute simultaneously. The Kernel Store can
mark some of the downloaded kernels as inactive. Only requests
for active services are executed.

In order to make decisions on which unikernels to store, which
to remove from storage and which ones to execute, the KS keeps
statistics from previously observed function execution requests.
The statistics are kept in the Measurements Table, a structure al-
ready existing in the NDN reference implementation [19] and is
used among other reasons to keep statistics about data prefixes in

NFaaS: Named Function as a Service ICN ’17, September 26–28, 2017, Berlin, Germany

Table 1: Measurement Table entry

Function Name /delay/foo/bar/
Deadline 120ms
Popularity 2/10 7/10 4/10 3/10
Hop Count 2.43

Faces netdev1 netdev2
Delay 94ms 86ms

CCN forwarding strategy. Entries are kept per unikernel, are auto-
matically removed when not refreshed. Tab. 1 presents a sample
entry with the following fields:
• Task deadline: time (inms) to finish the task and return the data

to the requesting user. This value is recorded from the related
field in the Interest packet (Fig. 4) and is used to sort functions
based on delay-sensitivity.

• Function popularity: the percentage of requests for this function
during the last i Interests. Each node keeps historical data for
m groups of i Interests each. Each node keeps historical data
form groups of n Interests each.

• Average hop count: the average number of hops, hi from the
requesting client. Each Interest packet contains a hop count
increased at every forwarding node. We use this information
to determine how far are nodes sending interest packets.

• Preferred faces: a list of faces on which we forward interests for
this unikernel. Based on this information, forwarding strategies
(Sec. 3.4) decide on which face should each Interest be sent.
For previously unseen unikernel requests, there is no entry
in the preferred faces field. A forwarding strategy then adds
entries based on algorithms presented in Sec. 3.4.2. Sending
interests on the same faces allows a service to become popular
in a given part of the network. The Kernel Store then makes
sure that the corresponding unikernel is present in nodes in
that neighbourhood.

• average service delay: for each preferred face, each node records
the delay between previously forwarded Interests and the cor-
responding data after the function execution. Based on this
information the router determines the average service delay
for each unikernel. Service delay variance determines whether
or not the neighbour node (indicated in the preferred faces
entry) is overloaded.

3.4 Resolving Moving Functions
Based on thesemeasurements, theKernel Store calculates a unikernel
score, Eq. 1, for every observed unikernel (i.e., /exec/ Interest for
some unikernel). The purpose of the unikernel score is to identify
the unikernels that are worth downloading locally into the node’s
memory.

unikernel score =
m∑
i=0

pi
n

∗ (m − i) + (R − hi) ∗ tm (1)

In Eq. 1, pi represents the Function Popularity discussed above,
albeit in raw figures. That is, pi is the number of Interests that
have crossed this node for this unikernel in the last n requests.
Nodes keep record of last m epochs of n packets. hi represents

the average hop count of Interests, as given above and tm is a bi-
nary tuneable parameter to distinguish between delay-sensitive and
bandwidth-hungry unikernels (positive for delay sensitive uniker-
nels and negative for bandwidth hungry ones). Finally, R is a system
parameter that represents the radius (in terms of hops) around a
node, effectively splitting the area around a node in two. The area
inside R should be kept for delay sensitive functions, while the
area outside R for bandwidth-hungry functions. Together with pa-
rameter tm , the product (R − hi) ∗ tm is bigger for delay-sensitive
functions in the first R hops along the path from the client towards
the core of the network, while it gets bigger for bandwidth-hungry
functions as the request moves further away.

If a node becomes overloaded with incoming Interests (has a
unikernel, but cannot execute it because of the number of other
requests) it can reduce the number of active kernels. The KS deacti-
vates the least popular kernels one by one based on Eq. 1. If a kernel
becomes inactive, its image is still kept in the store, but it is not in-
stantiated and corresponding interests are forwarded to neighbour
nodes. The process is stopped and progressively reversed when the
node is able handle the incoming traffic for its active kernels. If a
node becomes overloaded, it can also be detected by other nodes
through variation in service delay.

The calculated score allows a quick reaction to unikernels becom-
ing popular (the most recent n requests have the highest weights),
while avoiding too sudden changes in the KS by keeping historical
data on past requests. When increasingm, nodes keep more histor-
ical data. It prevents downloading new images too frequently, but
slows down reaction to new, popular kernels. Increasing n assures
more fluent score evolution, with the cost of increased memory con-
sumption. The ultimate purpose of the unikernel score is to encour-
age nodes closer to the edge to download and activate delay-sensitive
functions, indirectly leaving storage and computation capacity for
bandwidth-hungry applications towards the core of the domain. In
doing so, the domain is vaguely split in unikernel-specific areas,
where groups of nodes focus on specific function requirements.
This effect is further magnified by reducing the amount of active
kernels.

Central to the design of a distributed edge computing system
is resolution of moving functions. We realise function resolution
through a combination of: i) a signalling-based routing protocol,
and ii) two separate forwarding strategies, one for each type of
service supported in this work (i.e., delay-sensitive and bandwidth-
hungry).

3.4.1 Routing Protocol. We use the standard NDN routing pro-
tocol, NLSR [20] as implemented in the NDN reference imple-
mentation, which is based on prefix advertisement. In particular,
the first node in a domain that decides to download a unikernel
(based on the unikernel score in KS) becomes the reference node
for this specific unikernel and advertises the corresponding prefix
e.g., /exec/foo/bar/. Eventually, prefix advertisements propagate
throughout the network at the intra-domain level. Given that the
Kernel Store in a unikernel-based system is less dynamic than the
Content Store in terms of item replacement, a node becomes the
default execution location for the prefixes it advertises within the
domain. Note that this does not prevent other nodes from down-
loading and running an already advertised unikernel at a different

ICN ’17, September 26–28, 2017, Berlin, Germany Michał Król and Ioannis Psaras

location. Instead, it is the job of the Forwarding Strategy to resolve
unikernels at different (than advertised) locations.

Fig. 5 presents a topology where Node C stores and can run two
unikernels. Once Node C becomes overloaded, Node A detects the
face towards C as overloaded (Sec. 3.3) and consults its Forwarding
Information Base (FIB) table for alternative routes. However, as
C advertises both unikernels, its FIB table returns the same path,
again towards Node C. To reduce the load towards itself, Node C
marks kernel 1 as “inactive” and stops advertising its name. Node
F has this function in store, spots the lack of advertisement from
Node C and can thus start advertising. Node F will now become a
new default route for this kernel in Node A’s FIB table. When Node
C stops being overloaded it can again activate the first service and
execute it locally. Node A, having now two discovered preferred
faces for the same function in its Kernel Store can perform load
balancing between them.

3.4.2 Forwarding Strategies. In NFaaS we implement two for-
warding strategies. One to forward interests for “delay sensitive”
services (with the prefix /exec/delay/ preceding the unikernel
name) and another one for “bandwidth hungry” services (with the
prefix /exec/bandwidth/ - Fig. 4). Depending on the prefix, the
corresponding forwarding strategy is invoked, if the node cannot
execute the unikernel locally. In our current implementation, Inter-
est packets are not queued waiting for the image to be downloaded,
or for computational capacity to become available. Instead, if the
node does not have the unikernel or does not have available CPU,
it immediately forwards the packet and depending on the unikernel
score (Eq. 1) the KS decides whether to download the function for
future use. Although alternative queue-based designs are possible,
diversity of execution times for different functions achieves full
utilisation of the system’s computation capacity.

Delay-sensitive forwarding strategy: By default, and if nodes
do not have “preferred faces” for the requested unikernel (i.e., faces
that point to a domain node), the Interest is forwarded towards
the cloud according to the FIB entry. At the same time, in order to
discover whether the unikernel exists in the immediate neighbour-
hood and meets its strict deadline, this strategy performs scoped
flooding of a discovery message.4 The flooded interest contains a
special field indicating that it is a discovery Interest in order to avoid
actual execution of the function. Upon reception of a discovery In-
terest, if a node has and can execute the corresponding service, it
will respond with a dummy data packet. This information is then
kept at the Measurement Table of the KS for future use.

In case multiple “preferred faces” exist in a node’s Measurement
Table the node can perform load-balancing between them .Although
specific load-balancing algorithms can be deployed, they are outside
the scope of the present study. Herewe simply use “round-robin”. As
mentioned earlier, a face is marked as overloaded if the delay from
the most recent data packet is higher than the average previously
experienced for this service. If an interest sent on a face times out
or the data is sent with a delay higher than a threshold, the face
will be removed from the preferred faces set.

Algorithm 1 presents the pseudocode for the delay-sensitive for-
warding strategy.

4According to [21], a scope equal to two achieves the right tradeoff between efficiency
and signalling overhead, hence, we use this value in our evaluation.

Data: Interest packet
Result: Output face
outFace = null;
while face = prefferedFaces.hasNext() do

if !face.isOverloaded() then
score = loadBalancer.calculateScore(face) if
score > maxScore then

maxScore = score;
outFace = face;

end
end

end
if outFace == null then

sendDiscoveryPackets(interest);
outFace = FIB.getCloudFace();

end
return outFace

Algorithm 1: Delay constrained forwarding strategy

Bandwidth-hungry forwarding strategyThis forwarding strat-
egy deals with services with high bandwidth usage and softer delay
constraints. In this case, it is important to keep the task within the
edge-domain, but not necessarily close to the requesting node. If
the strategy does not find a preferred face to forward the interest,
this forwarding strategy does not use the discovery mechanism.
Instead, it directly forwards the Interest to the next hop towards
the advertising node or the cloud, as indicated by the FIB table.

Algorithm 2 presents the pseudocode for the bandwidth-hungry
forwarding strategy.

Data: Interest packet
Result: Output face
outFace = null;
while face = prefferedFaces.hasNext() do

if !face.isOverloaded() then
score = loadBalancer.calculateScore(face) if
score > maxScore then

maxScore = score;
outFace = face;

end
end

end
if outFace == null then

FIB.getPrefixFace();
end
if outFace == null then

FIB.getCloudFace();
end
return outFace;
Algorithm 2: Bandwidth hungry forwarding strategy

3.5 Security Considerations
The addition of function execution in ICN opens many security
issues. Each unikernel should be signed by its publisher and only

NFaaS: Named Function as a Service ICN ’17, September 26–28, 2017, Berlin, Germany

Figure 5: Prefix advertisement mechanism.

trusted images should be considered for execution. Recent hypervi-
sors provide a solid isolation layer protecting the hosting OS and
its filesystem, unless misconfigured. To protect against DoS (Denial
of Service) attacks and allow charging for execution, the Interests
should also be signed. However, including the signature in the name
(as it is currently done in the NDN stack) breaks the caching. On the
other hand, keeping it out allows a malicious user to block requests
from a valid one, because of the Interest integration in the PIT. In
many scenarios, the input parameters as well as the resulting data
should be keep private. An efficient system for key distribution,
integrating private data into the caching system and truly secure
communication between clients and executing nodes are topics of
our future work.

4 EVALUATION
To evaluate the performance of NFaaSwe ran extensive simulations
and created a real-world prototype. We also make our implementa-
tion available to the research community. 5

4.1 Simulations
All simulations were performed using ndnSIMv2.3 [22] - an NDN
simulator based on ns-3 and using the most recent releases of the
NFD daemon and the ndn-cxx library6. All presented values are an
average of at least 5 consecutive runs.

Fist, we illustrate the behaviour of the Kernel Store function
presented in Eq. 1. Fig. 7 presents the evolution of the score on two
different nodes. Node 1, located close to the Interest origin (hc = 0)
and Node 2, located further away (hc = 3). We consider Range of 2
hops (R = 2) and gather popularity statistics for 3 groups (m = 3)
of 3 packets. We send Interests for two functions of different types:
“delay-sensitive” (D) “and bandwidth-hungry” (B). We start with
no statistics for any kernel. X-axis shows the times of arrival for
packets of each type. When first 3 packets are received, the score
for kernel D starts to rise on both nodes. However, since Node 1 is
located closer to the source, the score rises faster up to the value
of 13. With consecutive Interests, the score remains stable. When
Interests for kernel B are received, its score on Node 2 quickly rises
up to the value of 8. Because Node 1 is close to the source, it keeps
the score for B low. When the 7th Interest arrives, the weight of
already collected data is decreased and the score for two kernels
drops on both nodes. The unikernel score can differentiate between

5https://gitlab.com/mharnen/edge_computing/
6https://github.com/named-data/

“delay sensitive” and “bandwidth hungry” tasks and quickly react
to new Interests while taking into account historical data.

4.1.1 Small Topology. For our initial tests, we create a small
topology containing 16 nodes. Nodes 1, 2, 4, 5, 7, 8 become sources
where interests are generated and Node 16 has a direct connection
to the cloud (Fig. 6). Each link introduces a 10ms delay, while the
connection to the cloud is 50ms. After being invoked, tasks run
for 100ms before returning the data. All nodes have the same CPU
power and execute up to 2 tasks in parallel. We consider a domain
of 20 services, half of which are “delay sensitive” and the other
half are “bandwidth hungry”. Each node can store up to 10 kernels
unless specified differently.

With our first simulations, we investigate the specialization pro-
cess. We want the “delay sensitive” tasks to be executed closer to
the sources and minimize their delay, while keeping the “bandwidth
hungry” further away. At the same time, if the size of the KS is
lower than the kernel domain, we want nodes to execute a fixed
group of services. Otherwise, they constantly have to download
new images, producing additional overhead.

Fig. 6 presents the ratio of executed tasks of two types for each
node. The source nodes execute almost exclusively “delay sensitive”
tasks. The Kernel Store calculates a high score for these services
because of the low hop count (Eq. 1). For nodes located further away
from the sources, this impact is reduced and “bandwidth hungry”
tasks are executed more frequently. Finally, nodes located close to
the gateway, host mainly this type of services.

We then investigate the number of executions for each function
on different nodes. Fig. 9 presents the results when each node can
store all requested functions in the network. In this case, nodes
perform a similar number of executions for a vast palette of kernels.
When the size of the KS is reduced so that each node can down-
load images for only 25% of services, we observe a much higher
specialization (Fig. 10). Nodes located close to the sources execute
5 types of tasks with the highest score. Their interests are thus not
forwarded deeper in the network, making them less popular on
the other nodes. The process continues so that all the functions
are being executed and each node continues to run the same types
of tasks. According to our design goals, this means that the con-
tent of the KSs remains stable and new images are not frantically
downloaded.

We continue by observing the success rate, the average delay
and the amount of tasks executed locally. A “delay sensitive” task
is considered satisfied if its RTT is lower than 50ms. A “bandwidth
hungry” task is satisfied if its executed anywhere within the domain.

https://gitlab.com/mharnen/edge_computing/
https://github.com/named-data/

ICN ’17, September 26–28, 2017, Berlin, Germany Michał Król and Ioannis Psaras

Figure 6: “Delay sensitive” and “band-
width hungry” functions placement.

 0

 2

 4

 6

 8

 10

 12

 14

 16

D D D D B B D B B B

S
co

re

Node 1 Kernel D
Node 1 Kernel B
Node 2 Kernel D
Node 2 Kernel B

Figure 7: Score function evolution.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 10 20 30 40 50 60 70 80 90 100

A
ve

ra
g
e
 D

e
la

y

System Load

Edge
Edge - delay

Edge - bandwidth
Cloud

Figure 8: Average delay for different sys-
tem load values.

 0

 2

 4

 6

 8

 10

 12

 14

N
o
d
e
s

E
xe

cu
ti

o
n
s

Figure 9: Function executions on differ-
ent nodes with 100% KS storage size.

 0

 2

 4

 6

 8

 10

 12

 14

N
o
d
e
s

E
xe

cu
ti

o
n
s

Figure 10: Function executions on
different nodes with 25% KS storage size.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

Ta
sk

 e
xe

cu
te

d
 l
o
ca

lly
[%

]

Kernel Store size[% of kernel domain]

25% load
50% load
75% load

100% load

Figure 11: Locally executed tasks for dif-
ferent KS storage size values.

We test the delay between sending an Interest packet and re-
ceiving the corresponding data for different values of system load.
Results are shown in Fig. 8 with the KS size equal to 25% of the
kernel domain. The average response time increases with load, as
nodes located closer to the cloud get involved introducing addi-
tional delay. Up to 28% load, NFaaSis able to execute all generated
tasks directly at the edge nodes introducing almost no delay, apart
from the function execution time (100ms). For higher system load
values, NFaaShosts the “delay sensitive” tasks close to the sources,
keeping their average RTT below 50ms even for full system load.
On the other hand, the “bandwidth hungry” tasks are pushed deeper
into the network, resulting in higher delay values of up to 250ms.

We then directly test the task satisfaction rate. Fig. 12 shows the
importance of differentiating tasks by the KS (Eq. 1). Without this
mechanism, the satisfaction rate drops to 64% for the full system
load. This is mostly due to delayed “delay sensitive” tasks, that are
executed on random nodes in the network. When the mechanism
is applied, these tasks are kept closer to the sources reducing the
delay.

To investigate the impact of the KS size on the system perfor-
mance, we run simulations for different system loads (Fig. 11).
Choosing the right KS size is a crucial task; we want to execute all
the tasks at the edge, while minimizing the storage footprint. For
all the scenarios, increasing the size of the KS causes more tasks
to be executed locally. When each node can store 20% of services,
the edge is able to execute 80% of the tasks. The effect of further
incrementing the KS size is much lower. Increasing the load does
not have a significant impact on the execution rate. We observe
that NFaaS is able to distribute tasks evenly and fully utilize the
network resources.

This observation is further confirmed by directly investigating
the load share. Fig. 14 shows the CPU power utilisation for each
node when the KS size is equal to 25% of the task domain. Even for
low system load (20%) the tasks are spread equally in the network.
Nodes close to the sources have enough power to execute most of
the tasks, but do not have all the images. As shown previously (Fig.
10), each KS specializes in several services, requiring the whole
network to be involved. The proportions are kept also for higher
system load values. Equal load share is beneficial, especially in IoT
scenarios, when it determines equal energy consumption.

We then measure the response time to traffic changes to verify
how fast the system can react if new types of tasks are requested.We
keep the background traffic from previous experiments (50% system
load) and introduce a source of new interest that will jump between
source nodes (1, 2, 4, 5, 7, 8) every second. Fig. 13 presents the results
for introduced “delay-sensitive” and “bandwidth-hungry” tasks.
Both services start by being executed in the cloud, as the images are
not present at the edge. Once they are download, the delay drops
to 101ms and 146ms respectively. The “delay-sensitive” task resides
now at the closest node to the source while the “bandwidth-hungry”
- 3 hops further away. When the tasks are switched to Node 2
(1s), the “delay-sensitive” is initially forwarded again to the cloud,
resulting in higher delay. However, the scoped-flooding mechanism
discovers the kernel present on Node 1 and redirects the traffic there.
Finally, the task image is download on Node 2 and the delay drops
to the minimal value. During the shift, the “bandwidth-hungry”
task is not forwarded to the cloud, but to the node advertising the
kernel prefix. This results in much smaller jitter. The delay drops
further when the image is moved closer to the new source (Node
2). For the “bandwidth-hungry” task, each transition results in a
similar delay change. However, when the “delay-sensitive” task

NFaaS: Named Function as a Service ICN ’17, September 26–28, 2017, Berlin, Germany

migrates from Node 2 to Node 3, the scoped-flooding is not able to
find the previous node executing the service. All the requests must
be thus forwarded to the cloud until the corresponding image is
downloaded. For all our scenarios, NFaaSis able to download and
instantiate new services in the most optimal places within 400ms.

4.1.2 RocketFuel topology. We continue the evaluation on a
large network using the RocketFuel 1239 - Sprintlink topology [23],
containing 319 nodes. We choose routers having only one link as
request sources (31 nodes) and one with the highest number of links
(54 links) as a gateway towards the cloud. We consider a domain of
10 000 services, and that each node can store up to 2000 kernels.

We measure the percentage of satisfied tasks and present the
results in Fig. 15. For small values of system load, NFaaSis able to
satisfy all the generated requests. However, with the bigger and less
regular topology the “delay sensitive” tasks start to be delayed even
with 30% system load. The scoped flooding mechanism is not able
to reach a large part of the network and the interests are directly
forwarded to the cloud. However, in this topology, the majority
of nodes are located closer to the core of the network, making it
impossible to satisfy all the “delay sensitive” requests even with
an optimal solution. On the other hand, “bandwidth hungry” tasks
get satisfied even for the highest system load values. The prefix
advertisement mechanism is able to distribute the interests between
multiple parts of the network.

We continue by verifying the impact of increasing the KS size (Fig.
16). Similarly to the tests with the small topology, increasing the size,
increases also the amount of tasks executed at the edge. However,
the positive effect is much smaller. We observe a significant impact
of the system load on the results that was not visible in the small
topology. Executing more than 80% tasks locally is possible only for
the scenario with 25% load. Again, the majority of tasks forwarded
to the cloud are “delay sensitive”.

The same problems influence the delay (shown on Fig. 17). For
system load up to 20% the network is able to execute all the “delay-
sensitive” tasks close to the sources. However, when the load in-
creases more and more Interest packets are forwarded towards the
cloud increasing the average deadline. The prefix advertisement
mechanism performs better, distributing tasks to a greater num-
ber of nodes. Because of that, “bandwidth-hungry” functions, even
being kept further from the sources, can achieve a lower average
delay.

In summary, scoped flooding achieves extremely low delays
and good satisfaction rates for small and regular topologies, but
struggles in bigger and less regular ones. Prefix announcement
offers slightly higher delays, but remains a much more flexible
solution for keeping tasks at the edge. Nevertheless, NFaaSexecutes
the majority of the requested tasks at the edge in all our scenarios
and significantly reduces the delay.

4.2 Prototype
To confirm the system performance we created a real-world pro-
totype of our system deployed on 2 nodes (Dell XPS13 laptops).
NFaaSimplementation was written using the most recent release of
the NDN stack (v. 0.5.1). We create our unikernels using Rumprun
[14]. The system is based on Unix systems and can compile sources

written in the most popular languages into unikernels, including
only the required system components.

Each of the created services is written in C, takes a corresponding
interest as an input, stays busy for a period of time indicated in the
packet and sends a data packet as an output. Unikernels are run
directly on XEN hypervisor. Each image requires 19MB of storage
and takes 36ms to be instantiated when the image is already loaded
into RAM and has a dedicated core. Transferring an image on top
of Gigabit Ethernet between two, directly connected nodes takes
up to 200ms. The instantiation time lowers with each new release
of Rumprun and is expected to be further reduced. On a standard
512GB hard driver, we are able to store 26947 unikernels.

5 RELATEDWORK
ICN was designed as an alternative to the current Internet routing
architecture. Its emphasis is on building a data-centric network
infrastructure. Instead of the classic point-to-point communication
paradigm, ICN proposes accessing and disseminating content by
name and offers universal, native caching natively at the routing
layer. Initially ICN allowed naming only static content [24]. How-
ever, with the recent advance in cloud computing and virtualisation
technologies, multiple proposals for ICN-based service invocation
emerged.

Shanbhag et al. presents SoCCer [5] - a control layer on top of
CCN for the manipulation of the underlying Forwarding Informa-
tion Base (FIB) so that it always points to the best service instance
at any point in time. Braun et al. introduce Service-Centric Net-
working [6], an ICN stack enhancement for service execution. The
authors use uniform naming of services and content by using an
object-oriented approach that introduces object names for both
services and content. Users can thus request service execution that
will be routed towards the closest server hosting them. These solu-
tions focus on bringing an execution interest to the closest hosting
server. However, in many scenarios the closest node can still be
many hops away introducing a significant overhead and services
cannot be easily migrated on demand. What is more, scalability
remains an issue. One server can be overloaded by requests, while
another one will remain idle.

Another approach consist of enhancing the network to support
λ-expressions [7]. The names are extended from identifying only
static content, to orchestrate computations. The system allows also
for creating complex recipes involving many sub-operations. This
empowers the network to select internally places for fulfilling user
expression using forwarding optimization and routing policies.

To tackle the scalability problem, several works focus on ser-
vice migration outside the ICN stack. SCAFFOLD is an architecture
that provides flow-based anycast with (possibly moving) service
instances. SCAFFOLD allows addresses to change as end-points
move, in order to retain the scalability advantages of hierarchical
addressing [25]. The authors of “Service Oriented Networking” [26]
propose a multi-tier architecture for environments with multiple
cloudlets. The system has a global view of the topology, can mi-
grate services and route packets to the optimal server. However,
the project focuses on a different, more managed environment with
inter-domain routing. Similar to NDN, Serval [27]resides above the

ICN ’17, September 26–28, 2017, Berlin, Germany Michał Król and Ioannis Psaras

 0

 20

 40

 60

 80

 100

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Ta
sk

 s
a
ti

sfi
e
d

[%
]

Load

with differentiating
without differentiating

without differentiating delay-sensitive
without differentiating bandwidth hungry

Figure 12: Task satisfaction rate for
different system load values.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 1 2 3 4 5 6

Ti
m

e
[s

]

Average delay

Moving task - delay
Moving task - bandwidth

Background traffic

Figure 13: Delay evolution for moving
tasks.

 0

 20

 40

 60

 80

 100

 120

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

E
xe

cu
te

d
 t

a
sk

s

20% load
50% load

100% load

Figure 14: Tasks executed on different
nodes.

 0

 20

 40

 60

 80

 100

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Ta
sk

 s
a
ti

sfi
e
d

[%
]

Load

whole traffic
delay-sensitive

bandwidth hungry

Figure 15: Task satisfaction rate for
different system load values.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

Ta
sk

 e
xe

cu
te

d
 l
o
ca

lly
[%

]

Kernel Store size[% of kernel domain]

25% load
50% load
75% load

100% load

Figure 16: Locally executed tasks for
different KS storage size values.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 10 20 30 40 50 60 70 80 90 100

A
ve

ra
g
e
 D

e
la

y

System Load

Edge
Edge - delay

Edge - bandwidth
Cloud

Figure 17: Average delay for different
system load values.

unmodified IP network layer and enables applications to communi-
cate directly on service names. Serval connects clients to services
via diverse discovery and allows end-points to seamlessly change
network addresses, migrate flows across interfaces, or establish
additional flows for efficient service access.

Finally, an approach similar to ours is proposed by Sathiasee-
lan et al. [28]. SCANDEX is a Service Centric Networking frame-
work, albeit for challenged decentralised networks. The system also
represents services as unikernels that can be easily migrated and
executed on any node. However, the authors propose a DNS-like
system of brokers to keep track of all deployed services in the local
network. It forces nodes to resolve service IDs before contacting
the hosting node introducing additional delay and control traffic
required by the registration process.

Wang et al. propose “C3PO” - a computation congestion man-
agement system [29]. The authors consider a scenario in which
incoming tasks should be distributed between nodes. The paper
evaluates two strategies: i) a passive one (where a node does as
much as it can and when overloaded, it passes tasks to its neigh-
bour) ii) a proactive one (introducing cooperation between nodes).
“C3PO” does not deal with other aspects of service execution, but
can be a valuable addition to our framework in the future.

6 CONCLUSION
We introduced the concept of Named Function as a Service (NFaaS),
which we argue is ripe to become a main building block of the
NDN architecture as we move to an era where the network is seen
as a computer and computation moves closer to the network edge.
NFaaSenables seamless execution of stateless microservices, which
can run at any node in the network. We argue that the newly-
proposed serverless architecture is the right vehicle to realise named

functions at the network edge, given that state is kept at rich end-
clients.

The resulting platform includes new components, such as the
Kernel Store, which stores function code and also makes decisions
on which functions to execute. The KS also incorporates (currently
two) forwarding strategies in order to resolve the functions as
they migrate in the network of edge-computing nodes. Although
more forwarding strategies can be incorporated in NFaaS, the ones
introduced here present promising first results.

We ran extensive simulations of our system, created a real-world
prototype and made the implementation available to the research
community.

According to the two forwarding strategies (on delay-sensitive
and bandwidth-hungry services), functions move to the right di-
rection (i.e., the majority of delay-sensitive towards the very edge
of the network, while bandwidth-hungry towards the core). Our
prototype implementation of NFaaSindeed validates our design
goals: services can be instantiated in less than 40ms, while the KS
can store tens of thousands of functions.

To the best of our knowledge, NFaaSis the first framework en-
abling to migrate functions closer to the user in ICN environment
without a global view of the network.

REFERENCES
[1] J. Rodriguez, Fundamentals of 5G mobile networks. John Wiley & Sons, 2015.
[2] J. Rivera and R. van der Meulen, “Gartner says the internet of things installed

base will grow to 26 billion units by 2020,” Stamford, conn., December, vol. 12,
2013.

[3] P. Garcia Lopez, A. Montresor, D. Epema, A. Datta, T. Higashino, A. Iamnitchi,
M. Barcellos, P. Felber, and E. Riviere, “Edge-centric computing: Vision and
challenges,” ACM SIGCOMM Computer Communication Review, vol. 45, no. 5, pp.
37–42, 2015.

[4] A. Ahmed and E. Ahmed, “A survey on mobile edge computing,” in Intelligent
Systems and Control (ISCO), 2016 10th International Conference on. IEEE, 2016,

NFaaS: Named Function as a Service ICN ’17, September 26–28, 2017, Berlin, Germany

pp. 1–8.
[5] S. Shanbhag, N. Schwan, I. Rimac, andM. Varvello, “Soccer: Services over content-

centric routing,” in Proceedings of the ACM SIGCOMM workshop on Information-
centric networking. ACM, 2011, pp. 62–67.

[6] T. Braun, A. Mauthe, and V. Siris, “Service-centric networking extensions,” in
Proceedings of the 28th Annual ACM Symposium on Applied Computing. ACM,
2013, pp. 583–590.

[7] M. Sifalakis, B. Kohler, C. Scherb, and C. Tschudin, “An information centric
network for computing the distribution of computations,” in Proceedings of the
1st international conference on Information-centric networking. ACM, 2014, pp.
137–146.

[8] M. Arumaithurai, J. Chen, E. Monticelli, X. Fu, and K. K. Ramakrishnan,
“Exploiting icn for flexible management of software-defined networks,” in
Proceedings of the 1st ACM Conference on Information-Centric Networking,
ser. ACM-ICN ’14. New York, NY, USA: ACM, 2014, pp. 107–116. [Online].
Available: http://doi.acm.org/10.1145/2660129.2660147

[9] A.Madhavapeddy andD. J. Scott, “Unikernels: Rise of the virtual library operating
system,” Queue, vol. 11, no. 11, p. 30, 2013.

[10] J. Spillner, “Snafu: Function-as-a-service (faas) runtime design and implementa-
tion,” arXiv preprint arXiv:1703.07562, 2017.

[11] N. Dragoni, I. Lanese, S. T. Larsen, M. Mazzara, R. Mustafin, and L. Safina, “Mi-
croservices: How to make your application scale,” arXiv preprint arXiv:1702.07149,
2017.

[12] S. Hendrickson, S. Sturdevant, T. Harter, V. Venkataramani, A. C. Arpaci-Dusseau,
and R. H. Arpaci-Dusseau, “Serverless computation with openlambda,” Elastic,
vol. 60, p. 80, 2016.

[13] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, P. Crowley, C. Papadopoulos,
L. Wang, B. Zhang et al., “Named data networking,” ACM SIGCOMM Computer
Communication Review, vol. 44, no. 3, pp. 66–73, 2014.

[14] A. Kantee and J. Cormack, “Rump kernels: No os? no problem!” USENIX.
[15] A. Bratterud, A.-A. Walla, H. Haugerud, P. E. Engelstad, and K. Begnum, “In-

cludeos: A minimal, resource efficient unikernel for cloud services,” in Cloud
Computing Technology and Science (CloudCom), 2015 IEEE 7th International Con-
ference on. IEEE, 2015, pp. 250–257.

[16] “Mirage os,” https://mirage.io.
[17] M. Plauth, L. Feinbube, and A. Polze, “A performance evaluation of lightweight

approaches to virtualization,” CLOUD COMPUTING 2017, p. 14, 2017.
[18] A. Madhavapeddy, T. Leonard, M. Skjegstad, T. Gazagnaire, D. Sheets, D. J. Scott,

R. Mortier, A. Chaudhry, B. Singh, J. Ludlam et al., “Jitsu: Just-in-time summoning
of unikernels.” in NSDI, 2015, pp. 559–573.

[19] A. Afanasyev, J. Shi, B. Zhang, L. Zhang, I. Moiseenko, Y. Yu, W. Shang, Y. Huang,
J. P. Abraham, S. DiBenedetto et al., “Nfd developer’s guide,” Technical Report
NDN-0021, NDN, 2014.

[20] A. Hoque, S. O. Amin, A. Alyyan, B. Zhang, L. Zhang, and L. Wang, “Nlsr:
named-data link state routing protocol,” in Proceedings of the 3rd ACM SIGCOMM
workshop on Information-centric networking. ACM, 2013, pp. 15–20.

[21] L. Wang, S. Bayhan, J. Ott, J. Kangasharju, A. Sathiaseelan, and J. Crowcroft, “Pro-
diluvian: Understanding scoped-flooding for content discovery in information-
centric networking,” in Proceedings of the 2nd International Conference on
Information-Centric Networking. ACM, 2015, pp. 9–18.

[22] A. Afanasyev, I. Moiseenko, L. Zhang et al., “ndnsim: Ndn simulator for ns-3,”
University of California, Los Angeles, Tech. Rep, 2012.

[23] N. Spring, R. Mahajan, and D. Wetherall, “Measuring isp topologies with rock-
etfuel,” ACM SIGCOMM Computer Communication Review, vol. 32, no. 4, pp.
133–145, 2002.

[24] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs, and R. L.
Braynard, “Networking named content,” in Proceedings of the 5th international
conference on Emerging networking experiments and technologies. ACM, 2009,
pp. 1–12.

[25] M. J. Freedman, M. Arye, P. Gopalan, S. Y. Ko, E. Nordstrom, J. Rexford, and
D. Shue, “Service-centric networking with scaffold,” DTIC Document, Tech. Rep.,
2010.

[26] D. Griffin, M. Rio, P. Simoens, P. Smet, F. Vandeputte, L. Vermoesen, D. Bursz-
tynowski, and F. Schamel, “Service oriented networking,” in Networks and Com-
munications (EuCNC), 2014 European Conference on. IEEE, 2014, pp. 1–5.

[27] E. Nordström, D. Shue, P. Gopalan, R. Kiefer, M. Arye, S. Y. Ko, J. Rexford,
and M. J. Freedman, “Serval: An end-host stack for service-centric networking,”
in Proceedings of the 9th USENIX conference on Networked Systems Design and
Implementation. USENIX association, 2012, pp. 7–7.

[28] A. Sathiaseelan, L. Wang, A. Aucinas, G. Tyson, and J. Crowcroft, “Scandex:
Service centric networking for challenged decentralised networks,” in Proceedings
of the 2015 Workshop on Do-it-yourself Networking: an Interdisciplinary Approach.
ACM, 2015, pp. 15–20.

[29] L. Wang, M. Almeida, J. Blackburn, and J. Crowcroft, “C3po: Computation con-
gestion control (proactive),” in Proceedings of the 2016 conference on 3rd ACM
Conference on Information-Centric Networking. ACM, 2016, pp. 231–236.

http://doi.acm.org/10.1145/2660129.2660147
https://mirage.io

	Abstract
	1 Introduction
	2 Background
	2.1 Unikernels
	2.2 Serverless architecture
	2.3 Serverless Unikernels for NDN

	3 System Design
	3.1 Overview
	3.2 Naming Moving Functions
	3.3 Storing and Executing Moving Functions
	3.4 Resolving Moving Functions
	3.5 Security Considerations

	4 Evaluation
	4.1 Simulations
	4.2 Prototype

	5 Related Work
	6 Conclusion
	References

