NFaaS: Named Function as a Service

Michat Krol
University College London
m.krol@ucl.ac.uk

ABSTRACT

In the past, the Information-centric networking (ICN) community
has focused on issues mainly pertaining to traditional content de-
livery (e.g., routing and forwarding scalability, congestion control
and in-network caching). However, to keep up with future Internet
architectural trends the wider area of future Internet paradigms,
there is a pressing need to support edge/fog computing environ-
ments, where cloud functionality is available more proximate to
where the data is generated and needs processing.

With this goal in mind, we propose Named Function as a Service
(NFaaS), a framework that extends the Named Data Networking
architecture to support in-network function execution. In contrast
to existing works, NFaaSbuilds on very lightweight VMs and allows
for dynamic execution of custom code. Functions can be down-
loaded and run by any node in the network. Functions can move
between nodes according to user demand, making resolution of
moving functions a first-class challenge. NFaaSincludes a Kernel
Store component, which is responsible not only for storing func-
tions, but also for making decisions on which functions to run
locally. NFaaSincludes a routing protocol and a number of forward-
ing strategies to deploy and dynamically migrate functions within
the network. We validate our design through extensive simulations,
which show that delay-sensitive functions are deployed closer to
the edge, while less delay-sensitive ones closer to the core.

CCS CONCEPTS

« Networks — Network architectures; Network management;
Network simulations;

KEYWORDS

Networks, Network architectures, Information Centric Networking,
Mobile Edge Computing, Function Migration

ACM Reference format:

Michat Krél and Ioannis Psaras. 2017. NFaaS: Named Function as a Service.
In Proceedings of ICN ’17, Berlin, Germany, September 26—28, 2017, 11 pages.
https://doi.org/lo.l145/3125719.3125727

1 INTRODUCTION

While the current Internet handles content distribution relatively
well, new computing and communication requirements call for new

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICN 17, September 26-28, 2017, Berlin, Germany

© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-5122-5/17/09...$15.00
https://doi.org/10.1145/3125719.3125727

Ioannis Psaras
University College London
i.psaras@ucl.ac.uk

functionality to be incorporated. Powerful end-user devices and
new applications (e.g., augmented reality [1]) demand minimum
service delay, while the Internet of Things (IoT) [2] generates huge
amounts of data that flow in the reverse direction from traditional
flows (that is, from the edge towards the core for processing). As
a result, computation needs to be brought closer to the edge to
support minimum service latencies and to process huge volumes
of IoT data.

In contrast to cloud computing, edge and fog computing promote
the usage of resources located closer to the network edge to be
used by multiple different applications, effectively reducing the
transmission delay and the amount of traffic flowing towards the
network core. While offering multiple advantages, mobile edge
computing comes with many challenges, e.g., dynamic placement
of applications at edge nodes and resolution of requests to those
nodes [3] [4]. Furthermore, the application software needed to
run edge computation must be first downloaded on the edge-node,
while mobile clients request for resources from different locations.
Mobility as well as diversity in user demand makes it very difficult
to predict which functions will be requested in the future and from
where in the network.

Indeed, ICN principles can directly address some of the above
challenges. Explicitly named functions can be resolved in network
nodes, while network-layer requests (i.e., Interests) can carry input
information for edge-executable functions. Function code can be
stored in node caches and migrate across the network following
user demand.

With the exception of a few relatively early works [5] [6] [7],
there has been no focused attempt to adjust existing proposals for
Information-Centric Networks to support edge computing. Early
works in the area have enhanced the ICN stack to support service
discovery, e.g., [5][6] [8]. However, these works do not support
dynamic service instantiation or system adaptation to user demand.
Functions are static and are executed at one node (each), while their
resolution relies on central controllers ([6]) failing to exploit the
stack’s full potential. As a result, edge-nodes can get overloaded
in case of increased demand for some function, while the system
cannot adapt to user mobility by migrating functions to other parts
of the network. We argue that any service should be able to run at
any node in the network, migrate to the most optimal node based
on the user’s location, replicate in case of increased demand and
dissolve when demand for some function declines.

Closer to our work Named Function Networking (NFN) builds
on A-functions [7] to allow services to be executed anywhere in
the network. Being restricted to basic A-functions included in the
Interest name, NFN is constrained by the number of services it
can support. In many scenarios, nodes require more sophisticated
processing, custom code and libraries, which is difficult to express
only through A-functions, and acquiring additional function code
presents new challenges.

https://doi.org/10.1145/3125719.3125727
https://doi.org/10.1145/3125719.3125727

ICN ’17, September 26-28, 2017, Berlin, Germany

In this work we assume very lightweight Virtual Machines (VMs)
in the form of unikernels [9], which are explicitly named. We as-
sume network nodes have: i) storage capacity to cache unikernels
(i.e., function code) and ii) computation capacity to execute those
functions.! Moreover, edge nodes can store more unikernels than
they can run simultaneously.

We introduce the concept of Named Function as a Service (NFaaS),
whereby rich clients, containing most of the application logic, re-
quest for named functions through Interests [10]. The structure
of NDN Interests is modified to request for function execution (as
opposed to merely requesting for static content only) and include
information that acts as input for the requested function. In addi-
tion to the Content Store, NFaaS nodes also have the Kernel Store,
which is responsible not only for storing function code, but also
for making decisions as to which functions to execute. Depending
on user demand, functions move between network nodes and the
routing fabric is updated to resolve moving functions.

According to the resulting framework, network nodes (or clusters
of them) in some specific part of the network domain specialise in
executing specific functions. Although these nodes then become the
reference point for those functions, this does not prevent functions
from executing elsewhere in the network too. Nodes send Interest
packets with the name of the function to execute. Any node in the
network can run the service and return results. Decisions on which
function to execute are based on a unikernel score function, whose
purpose is to identify and download the most popular functions.
We base our system on the serverless architecture [11] [12], thus,
removing state information from the hosting node. This allows
us to migrate services much easier without any costly handover
procedure and adapt to the current demand.

We implement NFaaSas an extension to the NDN stack [13].
Our system remains fully compliant with the original NDN im-
plementation and does not require all nodes to support the ex-
tension. For simplicity, we assume two main types of functions:
i) functions for delay-sensitive applications, and ii) functions for
bandwidth-hungry applications. Our results show that the system
adapts according to our expectation: delay-sensitive functions mi-
grate and execute mostly towards the edge of the network, while
bandwidth-hungry functions execute further in towards the core of
the network, but always staying within the boundaries of the edge-
domain. To the best of our knowledge, NFaaSis the first framework
enabling this functionality without a global view of the network.

The remainder of the paper is organized as follows. Section
2 provides background information on unikernels and serverless
architecture. The design details of NFaaS along with a summary of
the main research challenges are presented in Section 3. Section 4
presents initial results evaluating the design with simulations and
a real-world prototype. In Section 5, we summarize previous work
on service invocation in information-centric networks.

!We use terms unikernels, functions and services interchangeably to refer to edge-
executable applications.

Michat Krél and loannis Psaras

2 BACKGROUND
2.1 Unikernels

Recent advances in virtualisation techniques have allowed rapid
deployment of cloud services. However, if we want to achieve sys-
tem isolation, it is required to set up a whole virtual machine for
every hosted service. A virtual machine image contains a complete
system with a full kernel, a set of drivers, system libraries and appli-
cations. Most of these components remain unused by the invoked
service. This approach makes the image big in size, slow to boot
and increases the surface of attacks. Container-based virtualisation
alleviates the problem, but solutions such as Docker, while making
the deployment process easy, require running on top of a complete
operating system and contain a significant amount of additional
components.

Unikernels [9] propose an alternative approach, whereby an ap-
plication is analysed, to determine the required system components.
Only this part is compiled, together with the application binary into
a bootable, immutable image. Unikernels have several advantages
over the classic solutions presented above. They are small in size,
introduce minimal attack surface and can operate on bare metal or
directly on a hypervisor. Their compilation model enables whole-
system optimisation across device drivers and application logic.
Multiple systems already exist that are able to turn any custom
code into unikernels [14][15][16]. Thanks to the small size (few MB)
and low overhead, unikernels can be downloaded and executed in
milliseconds. While still at an early stage of development, uniker-
nels present huge deployment potential as unikernel-based systems
show very good performance in comparison with virtual machines
and containers [17], can be easily cached and run on almost any
device. These characteristics make unikernels a great solution for
edge/fog computing environments where functions migrate within
the network. The technology is already used in projects such as
Jitsu [18], where after receiving a DNS packet, a server instantiates
a unikernel that processes the request and sends back the response
introducing delays of only few milliseconds.

2.2 Serverless architecture

Serverless architecture or Function as a Service is a recent develop-
ment in cloud client-server systems. In the traditional approach, a
thin-client request invokes some services on a server. The server
represents a monolithic unit implementing all the logic for authen-
tication, page navigation, searching and transactions. In a Serverless
architecture, we create a much richer client and decompose the
server into a set of small, event-triggered and (ideally) stateless
functions (Fig. 1). Those functions are fully managed by a 3rd party.
The state is recorded on the client or stored in a database and can be
transmitted using tokens. The client is also responsible for invoking
services in order and manages the logic of the application. Such
an approach presents several advantages. Firstly, there is no need
for dedicated hardware to support the system. Instead, all func-
tions are uploaded in the cloud and invoked if necessary. Secondly,
decomposition allows to handle traffic peaks better and use pay
as you go pricing systems. Thirdly, the system is more resilient to
DDOS attacks, as it is easier to attack a standalone server than a
distributed cloud of smaller functions. The serverless architecture is

NFaa$S: Named Function as a Service

already implemented on existing platforms such as AWS Lambda?
or Google Cloud®. We argue that the serverless approach to exe-
cuting functions as a service is a perfect fit for edge/fog computing
environments, as it increases flexibility in managing edge-clouds.

2.3 Serverless Unikernels for NDN

We argue that the Serverless Architecture is a required component
that needs to be integrated into the NDN stack to deliver edge net-
work functions. The requesting node requests functions by name,
which can then be invoked on any node while the results follow
the path established by the Interest packet. Because function state
is managed by clients, consecutive calls for the same function can
be served by different nodes without any handover process. Archi-
tectures in which services can be executed only on a given set of
nodes (Sec. 5) must find a service and then communicating de facto
with the hosting node, which is contradictory to ICN principles.
Even if service handover is supported, in traditional architectures
the process requires locating the node previously executing the
function to synchronise the state. Instead, in the serverless archi-
tecture, the initial state is attached to the Interest packet (Sec. 3.2),
while updated state (after the function execution) is sent to the
client in the resulting data packet. If maintaining state requires
large amounts of memory, the state itself can be stored as a named
data chunk in the network and be requested by the node executing
the function.

Web
Simple Client| > —

Classic Architecture
Authentication
Service
Rich Client > (Purchase) . [CNEEES
Service Database
Search Product
Service Database

Serverless Architecture
Figure 1: Serverless architecture.

3 SYSTEM DESIGN

3.1 Overview

In NFaaS, a node requesting a job, sends an interest with the ker-
nel name requesting its execution (we discuss function naming
in Sec. 3.2). A router receiving the interest, checks if it has the
unikernel stored locally. If it does and enough CPU resources are
available, it is instantiated and receives the Interest as its input (we
discuss function storage and execution in Sec. 3.3). The Interest
packet includes all the required input parameters, e.g., a state token,
or additional named-data required by the function (Sec. 3.2).

The unikernel performs the requested action and sends back
the result as a data packet. The response follows the downstream
path constructed by the input Interest and reaches the requesting
node. If more input data is required (e.g., in applications requiring

Zhttps://aws.amazon.com/
3https://cloud.google.com/

ICN ’17, September 26-28, 2017, Berlin, Germany

image processing), the instantiated unikernel sends interest packets
towards the requesting node that can provide it with the neces-
sary input. If the unikernel is not present or the router does not
have enough resources to run the function, the initial interest is
forwarded following rules described in Sec. 3.4.1. Fig. 2 presents an
overview of the system. An Interest to execute function /foo/bar
issued by node A is forwarded to node C, where the corresponding
kernel is instantiated. The resulting data is sent back following the
same path.

The main entity that manages storage and execution of named
functions is the Kernel Store (discussed in Sec. 3.3). The Kernel Store
keeps historical statistics to make decisions on which functions to
download locally and which ones to execute. The goal is to proac-
tively place delay-sensitive functions as close to the edge as possible
and push functions with relaxed delay sensitivity requirements fur-
ther towards the core.

Finally, functions are resolved based on a routing protocol and
two forwarding strategies (discussed in Sec. 3.4). The purpose of
the forwarding strategies is to find the requested functions in the
neighbourhood.

The combination of the above components: i) function naming
(Sec. 3.2), ii) function storage and execution (Sec. 3.3), and iii) function
resolution (Sec. 3.4), results in a decentralised system of executable,
mobile named-functions. Each component is described in detail in
the following sections. Under steady-state, functions are placed
according to their requirements, e.g., for delay-sensitivity, the sys-
tem load-balances computation among nodes, it adapts quickly to
changing network conditions and incures minimum control over-
head.

Fig. 3 provides a high-level overview of the operation. The node
in the middle receives an interest for a function it does not have
stored locally and hence, forwards the Interest towards the cloud
(Fig. 3b). After seeing enough requests for the same function, it
decides to download the unikernel and run the service locally (Fig.
3b). If the demand for this service exceeds the node’s capacities, the
node will start forwarding part of the Interests to the next node,
which might also decide to run the unikernel itself or forward to
its own neighbours.

Result

__/exec/foo/bar 9
— S—
/ Function Store
NDN HARDWARE

Interest
on \/execlfuo/bar

NDN

owop
lwiaxun
PUIAUN ~
jpusRIUN
Jpwaxiun
Jpwiaiun

Figure 2: System architecture.

3.2 Naming Moving Functions

In NFaaS, Interest packets can request either the function (i.e.,
unikernel) itself, or the execution of the function. While requesting
the function itself is a straightforward content request and follows
the naming structure (and consequently the routing and forwarding

https://aws.amazon.com/
https://cloud.google.com/

ICN ’17, September 26-28, 2017, Berlin, Germany

NDN 4,
o
&
<«

Kernel Store

Stored u ’ e /%c Storeé u [NDN
gets popular [l e

NDN

download @

(a) A kernel becomes popular.
the kernel.

Run -y Run @ ‘3‘

(b) Kenel Store requests to download

Michat Krél and loannis Psaras

NDN %

| V&
,‘" ¢

[Kernel Store o

Stored u | %,

3 (NDN Yo,

(2

=

NDN NDN

- [puByIUN

(c) When overloaded, Node B forwards a part
of requests towards the cloud.

Figure 3: NFaaSHigh-Level Overview

principles) of the NDN architecture, when requesting execution of
some function it is not the case. To request function execution, we
insert the /exec/ prefix in the Interest packet.

We expect that edge-network moving functions will have differ-
ent application requirements, e.g., with regard to delay-sensitivity.
Accordingly, the edge network should be able to deal with different
types of tasks having different requirements and priorities, e.g., for
each class of tasks, the system needs to make different forwarding
decisions, in order to maximise users’ Quality of Experience (QoE).
We therefore, enhance the /exec/ prefix with an extra prefix field
to indicate application requirements. For the sake of simplicity,
in this study we assume two application classes: i) delay-sensitive,
and ii) bandwidth-hungry. Delay-sensitive applications, such as
augmented reality or autonomous vehicles, have very strict delay
constraints and therefore need to be processed as close to the edge
as possible. Bandwidth-hungry applications, on the other hand,
generate large amounts of IoT data that needs processing (e.g., to
reduce bandwidth usage). To avoid shipping vast amounts of data
throughout the network to the distant cloud, edge operators can
offer to process this data within the access domain, but not nec-
essarily on the first few hops from the end device. For these two
types of applications the /exec/ prefix is complemented by an extra
delay/ or bandwidth/ component - Fig. 4. Although more appli-
cation classes can be used to manipulate function mobility, in this
paper we make use of these basic classes in order to benchmark the
main system components. Given that each execution request can be
accommodated in any node, each client appends user-specific input
information in the form of a hash (last part of name in Fig. 4). This
is a necessary step to differentiate between consecutive requests for
the same function that come from different clients. With a different
suffix, each request with new input parameters creates a separate
PIT entry.

prefix kernel name inputinfo

Name [/exec/delayl /foo/bar I Juser=1]

Figure 4: Interest packet structure

Together with the function execution request, the rich client in
a serverless architecture appends extra information in the Interest
packet in the form of optional Type-Length-Value (TLV) fields.
Clients include a task deadline, or specify a Discovery field to prevent
parallel service execution (details in Sec. 3.4). The task deadline field
is also used to set up a custom value for Pending Interest Table
(PIT) entries. Larger tasks set up higher expiry values, allowing
data to be returned for a longer period of time. If the produced
data consists of more than one chunk or takes a long time to be
generated, the executing nodes return just a unique name of the
content that will be produced. The client can then fetch it using a
separate Interest packet.

The resulting Interest (Fig. 4) includes all the required informa-
tion in order for the system to make informed forwarding decisions
in order to resolve edge-network functions (details on routing, for-
warding and resolution are given in Sec. 3.4. The data produced
by the function execution follow the same structure. It thus can be
cached and sent to subsequent users requesting function execution
with exactly the same input parameters (where possible).

3.3 Storing and Executing Moving Functions

Somewhat similar to the Content Store in the NDN architecture,
the Kernel Store (KS) is responsible for storing unikernels. The KS
has to make decisions as to which unikernels to store, given that
the unikernel population is much larger than the memory available
at each node. In addition to storing unikernels, the Kernel Store is
also responsible for deciding which unikernels to actually execute.
As mentioned earlier, we consider that a node has more storage
capacity than computation capability, i.e., a node can store more
functions than it can execute simultaneously. The Kernel Store can
mark some of the downloaded kernels as inactive. Only requests
for active services are executed.

In order to make decisions on which unikernels to store, which
to remove from storage and which ones to execute, the KS keeps
statistics from previously observed function execution requests.
The statistics are kept in the Measurements Table, a structure al-
ready existing in the NDN reference implementation [19] and is
used among other reasons to keep statistics about data prefixes in

NFaa$S: Named Function as a Service

Table 1: Measurement Table entry

Function Name /delay/foo/bar/
Deadline 120ms
Popularity | 2/10 | 7/10 | 4/10 | 3/10
Hop Count 2.43

Faces netdevl netdev2
Delay 94ms 86ms

CCN forwarding strategy. Entries are kept per unikernel, are auto-
matically removed when not refreshed. Tab. 1 presents a sample
entry with the following fields:

e Task deadline: time (in ms) to finish the task and return the data
to the requesting user. This value is recorded from the related
field in the Interest packet (Fig. 4) and is used to sort functions
based on delay-sensitivity.

o Function popularity: the percentage of requests for this function
during the last i Interests. Each node keeps historical data for
m groups of i Interests each. Each node keeps historical data
for m groups of n Interests each.

o Average hop count: the average number of hops, h; from the
requesting client. Each Interest packet contains a hop count
increased at every forwarding node. We use this information
to determine how far are nodes sending interest packets.

o Preferred faces: a list of faces on which we forward interests for
this unikernel. Based on this information, forwarding strategies
(Sec. 3.4) decide on which face should each Interest be sent.
For previously unseen unikernel requests, there is no entry
in the preferred faces field. A forwarding strategy then adds
entries based on algorithms presented in Sec. 3.4.2. Sending
interests on the same faces allows a service to become popular
in a given part of the network. The Kernel Store then makes
sure that the corresponding unikernel is present in nodes in
that neighbourhood.

o average service delay: for each preferred face, each node records
the delay between previously forwarded Interests and the cor-
responding data after the function execution. Based on this
information the router determines the average service delay
for each unikernel. Service delay variance determines whether
or not the neighbour node (indicated in the preferred faces
entry) is overloaded.

3.4 Resolving Moving Functions

Based on these measurements, the Kernel Store calculates a unikernel
score, Eq. 1, for every observed unikernel (i.e., /exec/ Interest for
some unikernel). The purpose of the unikernel score is to identify
the unikernels that are worth downloading locally into the node’s
memory.

unikernel score =

s

I}
o

Bom-n+®=m)stm)
n

L

In Eq. 1, p; represents the Function Popularity discussed above,

albeit in raw figures. That is, p; is the number of Interests that

have crossed this node for this unikernel in the last n requests.

Nodes keep record of last m epochs of n packets. h; represents

ICN ’17, September 26-28, 2017, Berlin, Germany

the average hop count of Interests, as given above and t,, is a bi-
nary tuneable parameter to distinguish between delay-sensitive and
bandwidth-hungry unikernels (positive for delay sensitive uniker-
nels and negative for bandwidth hungry ones). Finally, R is a system
parameter that represents the radius (in terms of hops) around a
node, effectively splitting the area around a node in two. The area
inside R should be kept for delay sensitive functions, while the
area outside R for bandwidth-hungry functions. Together with pa-
rameter t,, the product (R — h;) * t,,, is bigger for delay-sensitive
functions in the first R hops along the path from the client towards
the core of the network, while it gets bigger for bandwidth-hungry
functions as the request moves further away.

If a node becomes overloaded with incoming Interests (has a
unikernel, but cannot execute it because of the number of other
requests) it can reduce the number of active kernels. The KS deacti-
vates the least popular kernels one by one based on Eq. 1. If a kernel
becomes inactive, its image is still kept in the store, but it is not in-
stantiated and corresponding interests are forwarded to neighbour
nodes. The process is stopped and progressively reversed when the
node is able handle the incoming traffic for its active kernels. If a
node becomes overloaded, it can also be detected by other nodes
through variation in service delay.

The calculated score allows a quick reaction to unikernels becom-
ing popular (the most recent n requests have the highest weights),
while avoiding too sudden changes in the KS by keeping historical
data on past requests. When increasing m, nodes keep more histor-
ical data. It prevents downloading new images too frequently, but
slows down reaction to new, popular kernels. Increasing n assures
more fluent score evolution, with the cost of increased memory con-
sumption. The ultimate purpose of the unikernel score is to encour-
age nodes closer to the edge to download and activate delay-sensitive
functions, indirectly leaving storage and computation capacity for
bandwidth-hungry applications towards the core of the domain. In
doing so, the domain is vaguely split in unikernel-specific areas,
where groups of nodes focus on specific function requirements.
This effect is further magnified by reducing the amount of active
kernels.

Central to the design of a distributed edge computing system
is resolution of moving functions. We realise function resolution
through a combination of: i) a signalling-based routing protocol,
and ii) two separate forwarding strategies, one for each type of
service supported in this work (i.e., delay-sensitive and bandwidth-
hungry).

3.4.1 Routing Protocol. We use the standard NDN routing pro-
tocol, NLSR [20] as implemented in the NDN reference imple-
mentation, which is based on prefix advertisement. In particular,
the first node in a domain that decides to download a unikernel
(based on the unikernel score in KS) becomes the reference node
for this specific unikernel and advertises the corresponding prefix
e.g., /exec/foo/bar/. Eventually, prefix advertisements propagate
throughout the network at the intra-domain level. Given that the
Kernel Store in a unikernel-based system is less dynamic than the
Content Store in terms of item replacement, a node becomes the
default execution location for the prefixes it advertises within the
domain. Note that this does not prevent other nodes from down-
loading and running an already advertised unikernel at a different

ICN ’17, September 26-28, 2017, Berlin, Germany

location. Instead, it is the job of the Forwarding Strategy to resolve
unikernels at different (than advertised) locations.

Fig. 5 presents a topology where Node C stores and can run two
unikernels. Once Node C becomes overloaded, Node A detects the
face towards C as overloaded (Sec. 3.3) and consults its Forwarding
Information Base (FIB) table for alternative routes. However, as
C advertises both unikernels, its FIB table returns the same path,
again towards Node C. To reduce the load towards itself, Node C
marks kernel 1 as “inactive” and stops advertising its name. Node
F has this function in store, spots the lack of advertisement from
Node C and can thus start advertising. Node F will now become a
new default route for this kernel in Node A’s FIB table. When Node
C stops being overloaded it can again activate the first service and
execute it locally. Node A, having now two discovered preferred
faces for the same function in its Kernel Store can perform load
balancing between them.

3.4.2 Forwarding Strategies. In NFaaS we implement two for-
warding strategies. One to forward interests for “delay sensitive”
services (with the prefix /exec/delay/ preceding the unikernel
name) and another one for “bandwidth hungry” services (with the
prefix /exec/bandwidth/ - Fig. 4). Depending on the prefix, the
corresponding forwarding strategy is invoked, if the node cannot
execute the unikernel locally. In our current implementation, Inter-
est packets are not queued waiting for the image to be downloaded,
or for computational capacity to become available. Instead, if the
node does not have the unikernel or does not have available CPU,
it immediately forwards the packet and depending on the unikernel
score (Eq. 1) the KS decides whether to download the function for
future use. Although alternative queue-based designs are possible,
diversity of execution times for different functions achieves full
utilisation of the system’s computation capacity.

Delay-sensitive forwarding strategy: By default, and if nodes
do not have “preferred faces” for the requested unikernel (i.e., faces
that point to a domain node), the Interest is forwarded towards
the cloud according to the FIB entry. At the same time, in order to
discover whether the unikernel exists in the immediate neighbour-
hood and meets its strict deadline, this strategy performs scoped
flooding of a discovery message.* The flooded interest contains a
special field indicating that it is a discovery Interest in order to avoid
actual execution of the function. Upon reception of a discovery In-
terest, if a node has and can execute the corresponding service, it
will respond with a dummy data packet. This information is then
kept at the Measurement Table of the KS for future use.

In case multiple “preferred faces” exist in a node’s Measurement
Table the node can perform load-balancing between them .Although
specific load-balancing algorithms can be deployed, they are outside
the scope of the present study. Here we simply use “round-robin”.