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Abstract 
The profitability of chemical processes strongly depends on their control systems. The design of a 

control system involves selection of controlled and manipulated variables, known as control structure 

selection. Systematic generation and screening alternative control structures requires optimization. 

However, the size of such an optimization problem is much larger when candidate controllers and 

their parameters are included and it rapidly becomes intractable. This paper presents a novel 

optimization framework using the notion of perfect control, which disentangles the complexities of 

the controllers. This framework reduces the complexity of the problem while ensuring controllability. 

In addition, the optimization framework has a goal-driven multi-objective function and requires only a 

steady-state inverse process model. Since dynamic degrees of freedom do not appear in a steady-state 

analysis, engineering insights are employed for developing the inventory control systems. The 

proposed optimization framework was demonstrated in a case study of an industrial distillation train. 
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1. Introduction 

Chemical process designers almost always intend to maximize the profits, while respecting 

environmental and safety regulations (Christofides and Davis  2007). However, their economic 

intentions often drive the chemical processes to operate towards their operational boundaries, such as 

maximization of the throughput, or minimization of wastes (Narraway and Perkins 1993; Edgar 

2004). The main task of a control system is realization of the process design objectives in the presence 

of uncertainties. Uncertainties during process operation may cause the control objectives that are set 

in the design stage to deteriorate. The source of these uncertainties may be changes in the quality or 

the quantity of the feedstock or the products specifications, significant changes in the ambient 

conditions, fluctuations in the utility supplies or changes in the economic parameters. The purpose of 

the control system is to compensate for such effects.  

Plant-wide Control Structure Selection concerns the decisions regarding selection of controlled 

variables (CVs), manipulated variables (MVs), and controllers which receive the measurements of the 

controlled variables and adjust the manipulated variables. A recent review of the methods for control 

structure selection is presented by Vasudevan et al. (2009). However, industrial practice still relies on 

insights and heuristics that have been developed and understood through engineering practice (Downs 

and Skogestad 2009). One way forward for more automated plant-wide control structure selection of 

large-scale chemical processes is to use an optimization framework. The main challenge, however, is 

that the number of combinations of alternative designs increases sharply with the size of the process 

and becomes intractable. This suggests that the control designer should employ a systematic method 

to reduce problem complexity.  

This paper presents a new optimization framework for optimal selection of control structures. In this 

framework, the concept of perfect control is included in the optimization formulation. The proposed 

framework distinguishes between perfect control and optimal control. The perfect control is the best 

performance that a given control structure can achieve, whereas the optimal control is the 

performance of the best performing perfect control structure. Criteria are introduced and discussed in 

Section 2.4 that can be used to screen between alternative perfect control structures. The aim of the 

proposed method is different from flexibility analysis (Grossmann and Floudas 1987) in which the 

feasible region of process operation is quantified based on active constraints. Flexibility analysis does 

not have any implication for control performance because it does not make any assumption about the 

control structure. The proposed method for optimal control structure selection is a sequential design 

strategy. In a sequential design, the process is designed first and the feasible operating region is 

already identified. Then, the method for control structure selection aims at specifying the best control 

strategy and selecting the best control structure for that process. Examples of sequential designs are 

retrofit of control systems or when process designers and control designers work separately.  

The contributions of this paper are: (i) a novel optimization framework for control structure selection 

is developed using the perfect control concept, (ii) the new optimization framework explicitly 

establishes a trade-off between conflicting and competing control objectives, (iii) state controllability 

of the process is ensured using a steady-state inversely controlled process model. In addition, the 

method is not limited to the linearization region, (iv) the proposed optimization framework features 

significant complexity reduction as the design of controllers is disentangled from the problem 

formulation, (v) engineering insights and heuristics are coupled with the optimization framework to 

ensure that the optimization results are feasible and consistent.  

Use of an inverse process model decouples control structure selection from the design of the 

controller itself. To do this, the procedure generates an optimal structure and determines that a 

controller exists in principle, which is capable of delivering the optimal performance. Hence, it 

provides an upper bound for the behavior of the controller. It then delegates the design of the 

controllers to control experts to match a practical controller as closely as possible to the benchmark. 

Thus, while the methodology systematically addresses the problem, the formulation is practicable and 

scalable.  
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The paper is organized as follows. Section 2 modifies the conventional optimization framework and 

develops a new optimization framework based on the concept of perfect control. The section explains 

why such an approach can contribute to the plant-wide control structure problem and how the 

optimization problem is formulated and solved. In Section 3, the proposed optimization framework is 

benchmarked using an industrial example of a distillation train. The results of the case study are 

presented in Sections 4. Discussion and comparison with the base case are presented in Section 5. 

2. Methodology   

Section 2.1 of the text below describes the conventional optimization framework for the selection of 

plant-wide control structures. The paper aims to improve and reduce the complexity of the 

conventional optimization framework using the notion of perfect control. The mathematical 

formulation of the conventional optimization framework is presented and modified in Section 2.2 in 

order to develop a new optimization framework. Section 2.3 discusses state controllability. Section 

2.4 explains the multi-objective function. Finally, the optimized control structure must be combined 

with the inventory controls, as explained in Section 2.5. 

2.1. Conventional optimization framework 

The prior literature on design of control structures for chemical process involves structural decisions 

regarding the selection of controlled variables, manipulated variables, type of controller, and 

parametric decisions regarding controller parameters. These decisions have impacts on the 

performance of that process and a systematic framework is needed in order to generate and screen the 

alternative control structures. A variety of different optimization and synthesis tools has been 

suggested by researchers for the selection of control structures. Sakizlis et al., (2004) classified these 

studies based on the employed objective function which could be (i) a multi-objective steady-state 

objective function or (ii) a single dynamic objective function. Most of these approaches can be 

describe schematically by Fig. 1. However, these methods differ in the details of modeling and the 

suggested objective functions.  

 

Fig. 1. The conventional optimization framework for the optimization of control structures 

Ideally, the optimization framework should include a superstructure for the control system. This 

superstructure is shown by the dotted envelope in Fig. 1 and appears as sets of equality and inequality 

constraints in the optimization formulation. The superstructure enables all possible combinations of 

decisions for that control structure. The control design decisions include selection of controlled 

variables, manipulated variables, and partitioning (or in the case of single-input single-output control 

systems, pairing) them. In addition for each partition, a controller should be designed and its tuning 

parameters need to be optimized. The information flow of the conventional optimization framework 

(Fig. 1) is as follows: 
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1. In each iteration of the optimization search, the trial values of the optimization variables are 

decided. These values are imported and the corresponding variables are fixed in the superstructure. 

2. By fixing the optimization variables, the superstructure will be reduced into a combined model of 

the process and its control system. 

3. Then, this design must be benchmarked against the disturbance scenarios in order to evaluate its 

performance. The control system detects the effects of the disturbances on the process through 

measuring the selected controlled variables. Then, the selected manipulated variables are adjusted 

in order to reject the undesirable effects of the disturbances.  

4. The performance of the control system strongly depends on the above-mentioned decisions 

regarding the selections of the manipulated variables, the controlled variables and the controllers. 

This performance may be described by different criteria such as deviation of controlled variables 

from their setpoints, changes in the manipulation variables, or the economic losses due to 

disturbances. Based on these criteria, the value of the performance is calculated and reported to the 

optimization algorithm. 

5. Based on the value of the objective function the optimization algorithm decides on improving the 

optimization variables or terminating the calculations. 

In the conventional framework of Fig. 1, the most challenging decisions concern the design of the 

controllers. This is because there is no general agreement between researchers on the criteria for the 

selection of the controller type. Some researchers (e.g. Luyben 2004) emphasize the simplicity and 

robustness of the conventional multi-loop control systems and criticize the reliability and costs of 

modern types. On the other side of this discussion, other researchers (Rawlings 2008; Stephanopoulos 

2000) argue the economic advantages of model-based control systems and their systematic approach 

for handling constraint violations. In addition, they criticize the economic disadvantages of the 

constant-setpoint policy in decentralized control systems. Furthermore, the practical difficulty is that 

there is no straightforward method for considering alternative controller types in the optimization 

formulation. Often, the type of the controllers is fixed and only the tuning parameters of those 

controllers are included in the optimization variables. The other difficulty is that considering 

controllers in the optimization framework requires a dynamic model for the process and control 

superstructure, which can be relatively expensive and time-consuming to develop.  

In the following Sections 2.2-2.4, a new optimization framework is developed based on the inverse of 

the steady-state process model. The design of controllers is disentangled from the optimization 

framework and an upper bound of the process performance is calculated for the selected controlled 

and manipulated variables.  

2.2. Mathematical formulation 

In the following, Section 2.2.1 reviews the mathematical formulation of the conventional optimization 

framework, which uses a combined model of the process and its controllers. Section 2.2.2 modifies 

the conventional framework and a steady-state Inversely Controlled Process Model (ICPM) is 

embedded in the new optimization framework in order to reduce the problem complexity. 

2.2.1. Conventional optimization framework for integrated design and control of 

chemical processes 

The conventional optimization framework for selection of control structures (Fig.1) can be formulated 

as a stochastic mixed-integer dynamic optimization problem using a set of differential algebraic 

equation (DAEs) as follows (Sakizlis et al. 2004): 

http://www.sciencedirect.com/science/article/pii/S0098135411003449


Please cite the following paper at: 

Sharifzadeh M, Thornhill NF, (2012). Optimal selection of control structures using a steady-state 

inversely controlled process model. Computers & Chemical Engineering, 38 (5), 126–138, (Link). 

5 | P a g e  

 

 

                                   𝑚𝑖𝑛 𝐸{ 𝐽(𝝑, 𝝌𝒄 , 𝝁(𝑡))}                 Problem I 

Subject to:                                

𝒇[�̇�(𝑡), 𝒙(𝑡), 𝒛(𝑡), 𝒖(𝑡), 𝒚(𝑡), 𝝌𝒑, 𝒑, 𝒛(𝑡)] = 0 

𝒉[𝒙(𝑡), 𝒛(𝑡), 𝒖(𝑡), 𝒚(𝑡), 𝝌𝒑 , 𝒑] = 0 

𝒈[𝒙(𝑡), 𝒛(𝑡), 𝒖(𝑡), 𝒚(𝑡), 𝝌𝒑 , 𝒑] ≤ 0 

𝜽[̇(𝑡), (𝑡), 𝜸(𝑡), 𝒙(𝑡), 𝒛(𝑡), 𝒚(𝑡), 𝒖(𝑡), 𝝌𝒄, 𝝑] = 0 

𝝋[𝒙(𝑡), 𝒖(𝑡), 𝒚(𝑡), (𝑡), 𝜸(𝑡), 𝝌𝒄, 𝝑] = 0 

𝜓[𝝁(𝑡)] = 0 

In the above, 𝒙(𝑡) is the vector1 of process differential variables, 𝒛(𝑡) is the vector of process 

algebraic variables, 𝒖(𝑡) is the vector of candidate manipulated variables, 𝒚(𝑡) is the vector of 

candidate controlled variables, 𝒑 is the vector of process parameters, (𝑡) is the vector of control 

differential variables, 𝜸(𝑡) is the vector of control algebraic variables, 𝝑  is the vector of control 

parameters, 𝝁(𝑡) is the vector of stochastic disturbance variables, 𝝌𝒑 is the vector of structural process 

variables, 𝝌𝒄 is the vector of structural control variables. While 𝝌𝒑 and 𝝌𝒄 are vectors of integer 

variables, the rest of variables are continuous.   

In addition, 𝒇[ ] = 0 is the vector of process differential equations, 𝒉[ ] = 0 is the vector of process 

algebraic equations, 𝒈[ ] ≤ 0 is the vector inequality constraints, 𝜽[ ] = 0 is the vector of control 

differential equations, 𝝋[ ] = 0 is the vector of control algebraic equations, Ω[ ] = 0 is the vector of 

equations for disturbances. The expected value 𝐸{} of the objective function 𝐽[ ] should be minimized. 

Examples of objective functions are given in Section 2.4. 

In a sequential design, where the process design is already decided, the decisions left for the control 

designer are 𝝌𝒄 the vector of structural control variables, 𝝑 the vector of controller parameters and the 

control law equations 𝜽[ ] and 𝝋[ ] . The proposed framework simplifies the above formulation using 

a steady-state inversely controlled process model, discussed in the next section.   

2.2.2. Mathematical formulation of the inversely controlled process model 

In order to disentangle the design of controllers, their algebraic and differential equations           

(𝜽[] = 0 and 𝝋[] = 0) must be replaced by perfect control equations, which ensure that the selected 

controlled variables are constant at their desired values:  

𝑦𝑖(𝑡) = 𝜂𝑖                       (1) 

where 𝑦𝑖(𝑡) is the selected controlled variable and 𝜂𝑖 is the corresponding desired setpoint. 

Furthermore, using the steady-state assumption, the time dependency of the variables is ignored and 

the differential variables are set equal to zero in the formulation of Problem I. Therefore, Problem II 

consists of only algebraic equations (AEs). Since the control structure is being decided, different 

controlled variables may be selected during the optimization search, which represent different perfect 

controls. Therefore, each candidate control structure corresponds to a different set of AEs. The other 

issue is that for a specific set of perfect control equations some constraints should be implemented in 

order to ensure that a consistent set of degrees of freedom is chosen. Therefore, the modified 

formulation of the optimization framework can be expressed as follows: 

                                                           
 

1 In this article, bold characters are reserved for vectors, and italic characters are scalar.   
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                       𝑚𝑖𝑛 𝐸{ 𝐽(𝝌𝒄, 𝝁)}                Problem II 

subject to:                                               

𝒇[𝒙, 𝒛, 𝒖, 𝒚, 𝝌𝒑, 𝒑] = 0 

𝒉[𝒙, 𝒛, 𝒖, 𝒚, 𝝌𝒑, 𝒑] = 0 

𝒈[𝒙, 𝒛, 𝒖, 𝒚, 𝝌𝒑, 𝒑] ≤ 0 

𝜓[𝝁] = 0 

𝝌𝒄,𝒌 × (𝑦𝑖 − 𝜂𝑖) = 0              

                                     𝜴(𝝌𝒄,𝒌) ≥ 0                          𝑘 ∈ 𝐾 

In the above, 𝝌𝒄,𝒌 are binary variables for selection of controlled variables.  The value of 𝜒𝑐,𝑘 =
1 includes the corresponding perfect control equation in the optimization constraints. The value of 

𝜒𝑐,𝑘 = 0 excludes the corresponding perfect control equation from the optimization constraints. 𝜴( ) 

represents vector of inequality constraints which may correspond to degrees of freedom or the 

requirement for a specific control strategy (e.g. composition control). The complexity reduction 

described above limits the optimization variables to structural variables 𝝌𝒄 only. Problem II can be 

solved using integer programming methods including Genetic Algorithm.  

The constraints in Problem II represent a time-independent mathematical model in which the values 

of manipulated variables are calculated from the desired values of the controlled variables, hence the 

process model is inverted. The above optimization framework conforms to the results from Halvorsen 

et al. (2003), which state that when a disturbance scenario realizes itself, the optimal values of 

manipulated variables should be calculated from the desired value of controlled variables.  

Fig. 2 shows the concept of the inversely controlled process model. The model of the controller has 

been replaced with an equation representing perfect control which enables the directions of the 

information flows in the optimization framework to be reversed from the controlled variables (CVs) 

to the manipulated variables (MVs).   

 

Fig. 2. The proposed optimization framework for optimal selection of control structures using an inversely 

controlled process model 

Firstly, the optimization algorithm decides on candidate values of the structural optimization 

variables. These are integer variables which concern structural decisions, i.e., which variable is going 

to be controlled and which variable is going to be manipulated. When disturbances occur, the values 

of controlled variables are maintained constant using perfect control equations, while the values of the 

manipulated variables are adjusted in order to reject the disturbances. Then, the objective function and 
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constraints can be evaluated and reported to the optimization algorithm. The advantage of the 

proposed framework in Problem II is significantly lower modelling effort over conventional 

approaches in Problem I, and therefore the new framework is more scalable to large industrial 

applications. Furthermore, the application of a steady-state inversely controlled process model ensures 

the ability to bring the system from initial steady-state to final steady state within an finite time which 

conforms to the notion of state controllability.(Yuan et al. 2010). In the new framework the selection 

of controlled variables, expected disturbance portfolio, and the manipulated variables used to reject 

the disturbances are the primary decisions that need to be considered.   

2.3. State controllability 

The application of a steady-state inversely controlled process model in the new optimization 

framework ensures the ability to bring the system from initial steady-state to final steady state within 

an finite time which conforms to the notion of state controllability.(Garcia 1982;Yuan et al. 2010). 

However, a question may arise that in the case where the inversion of the process model is not 

possible, the optimization will encounter problems in its calculations. Perkins and Wong (1985) 

summarized the scenarios in which the inversion of a process model is limited. These are right half 

plane zeros, model uncertainties, manipulated variables constraints and time delays. Fortunately, none 

of these concerns limits the application of steady-state inverse process model. Since the process model 

is represented as inequality and equality constraints in the optimization framework, if the inversion of 

the process model is not possible, these constraints are violated, which directs the optimization 

algorithm toward the required changes in order to make that process functionally controllable. In 

addition, the time delays do not appear in the steady-state analysis. 

The task of detailed design and implementation of the controller is deferred to the control engineering 

practitioners. The structure and target closed loop performance are specified from the optimization 

framework. It is then for the control engineer to set up that structure and then devise a controller 

which most closely meets the performance from the range of control types available to him or her. 

The above design philosophy is consistent with the approaches developed over the last 20 years 

towards control loop performance assessment for already-operating control loops (Qin 1998; Jelali 

2006). Typically, a control loop is benchmarked against the best achievable performance, for example 

using the minimum variable controller benchmark. The control practitioners are then responsible for 

the engineering and tuning work to meet that target performance. 

2.4. Objective functions and optimization variables 

As discussed, there are many alternative perfect control systems. Establishing criteria for selection 

between these alternatives is an elusive task. Edgar (2004) recognized the modern control systems as 

vital elements of production planning, emphasizing the fact that design of these control systems need 

to have a tangible relation to the production economy. Luyben (2004) discussed that improving the 

steady-state economy of the production reduces the dynamic performance of the process. In order to 

minimize the energy consumption and improve economy, the chemical processes must approach 

reversible conditions, in which entropy production is minimized. However, reversible processes 

requires negligible driving forces (such as difference in compositions or temperatures), and small 

driving forces lower the ability of the control system to reject disturbances. Hence, reversibility 

degrades the dynamic performance of the process. In summary, the utopian design, in which the 

process economics and dynamic performance are simultaneously at their maximum values, is 

infeasible and the optimal design should establish a compromise between economics and dynamic 

performance of the process.  

The solving strategies can be classified based on the chosen objective function as steady state or 

dynamic, single objective or multi-objective (Sakizlis et al. 2004). In this research, a multi-objective 

function is considered that requires only the steady-state process model, while the state controllability 

of the process is ensured. The proposed objective functions are listed in Table 1. As will be discussed 

in the following, it is possible to extract information about performance from a steady-state model, in 

order to establish a tradeoff between control and economic objectives.  
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Table 1 

Objective functions for optimization of the control structures 

𝐽1 = minimization of the deviations in the quality and quantity of products 

𝐽2 = minimization of the deviations in manipulated variables 

𝐽3 = minimization of the deviations in the state variables of process 

𝐽4 = minimization of the economic losses due to disturbances 

The implication of the first objective, 𝐽1 , is that maintaining the controlled variables at their setpoints 

must minimize changes in the quality and quantity of products. Under perfect control, their deviations 

from setpoints are zero. However, often quality and quantity are controlled inferentially by 

maintaining other controlled variables (typically temperature) constant. In that case, the main question 

is to determine which variable best represents the original controlled variable. The first objective has 

another implication; if the disturbance scenarios result in violation of constraints, this objective 

minimizes the required back-off from constraints (Perkins 1996). 

The second objective, 𝐽2 , aims to minimize changes in manipulated variables in response to 

disturbances or setpoint changes. The suppression of changes in the manipulated variables is desirable 

to avoid valve saturation (thus, maintaining controllability), to minimize the consumption of resources 

associated with manipulated variables (e.g. utilities, feedstock, or solvents), to reduce the interaction 

between controllers, and to minimize the required time for disturbance rejection (Qin and Badgwell 

2003; McAvoy 1999). 

The third objective, 𝐽3 , measures the response of the state variables in a perfectly controlled process 

to disturbances when the controlled variables are maintained at their setpoints. An example of this 

objective is the change in the temperature profile of a distillation column when flow or composition of 

feed is disturbed.  

The fourth objective, 𝐽4 , concerns steady-state economic losses, i.e. the decrease in the profitability 

due to disturbances. The origin of this objective refers to the notion of self-optimizing control and its 

implication is that maintaining the optimal controlled variables at their setpoints must minimize 

economic losses in the presence of disturbances, (Skogestad 2000). 

The difficulty associated with multi-objective optimization of control structure selection is that the 

different economic or performance objectives are incommensurable, i.e. it is difficult to aggregate 

their value as a single objective value. In this research, a goal objective function is programmed 

(Jones 2010). In goal programming, each objective function is given a goal or target value. The 

deviation from these target values are then minimized as follows: 

𝑚𝑖𝑛(𝑚𝑎𝑥 [𝐽𝑤 − 𝑇𝑎𝑟𝑔𝑒𝑡𝑤])                       𝑤 = 1 … 4      (2) 

Selection of target values for the objective functions of Table 1. is straight forward, because these 

targets have ideally the value of zero: 

𝑇𝑎𝑟𝑔𝑒𝑡𝑤 = 0                                                𝑤 = 1 … 4      (3) 

 In each iteration of the optimization search, the min-max operator minimizes the objective function 

which has the largest deviation from its target value. Substitution of equation (2) in Problem II results 

in the following problem formulation: 

                                                                     𝑚𝑖𝑛(𝑚𝑎𝑥[𝐽𝑤])               Problem III 

subject to:  

                                                            𝐽𝑤(𝝌𝒄) = 𝐸{ 𝐽′𝑤(𝝌𝒄, 𝝁)}                 𝑤 = 1 … 4       

𝒇[𝒙, 𝒛, 𝒖, 𝒚, 𝝌𝒑, 𝒑] = 0 

𝒉[𝒙, 𝒛, 𝒖, 𝒚, 𝝌𝒑, 𝒑] = 0 

𝒈[𝒙, 𝒛, 𝒖, 𝒚, 𝝌𝒑, 𝒑] ≤ 0 
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𝜓[𝝁] = 0 

𝝌𝒄,𝒌 × (𝑦𝑖 − 𝜂𝑖) = 0 

                                     𝛺(𝝌𝒄,𝒌) ≥ 0                          𝑘 ∈ 𝐾 

In problem III, 𝐽𝑤  (𝑤 = 1, … ,4) are the expected values of corresponding objective values 𝐽′𝑤  for 

different disturbance scenarios, and is constructed by adding these objective values weighted by the 

likelihood of each disturbance scenario, (Sahinidis 2004). The objectives of Problem III, 𝐽𝑤(𝝌𝒄), has 

only integer variables in their arguments. All the continuous variables are implicit and included in the 

optimization constraints and can be handled using an algebraic equation solver as will be discussed in 

section 3.3.1.The reason is that the problem of control structure selection concerns about the effects of 

disturbances on the same process when different sets of controlled and manipulated variables are 

selected.  

2.5. Engineering insights and heuristics: dynamic degrees of freedom and design 

of inventory control systems 

Luyben (1999) presented a review of the heuristics and engineering insights for inventory controls, 

developed during decades of engineering practice. In summary, these rules suggest firstly designing 

the throughput manipulator for the plant and then the inventory control systems radiate from this 

point, i.e., are in the opposite direction of the flow in the upstream and in the direction of the flow in 

the downstream of the throughput manipulation point (Georgakis and Price 1993; Georgakis et al. 

1994). Downs (1992) emphasized that the inventory control analysis must be considered for each 

chemical component throughout the process. Luyben (1994) recommended that a flow in the recycle 

stream must be fixed in order to eliminate the possibility of the snowball effect, i.e. coordinated 

disturbances to the mass or energy flows around the recycle.  

Since liquid levels and gas inventories do not appear in a steady-state model, these variables must be 

included separately in the control structure. The application of an inverse steady-state process model 

decomposes the problem of control structure selection into two smaller sub-problems. One sub-

problem is addressing the task of designing inventory controls, and the other sub-problem 

systematically addresses the steady-state optimizing control system. A question may arise about 

whether these sub-problems can be addressed independently. The answer is to some extent negative. 

Since the available manipulated variables are shared between steady-state controlled variables and 

inventory controlled variables, the set of candidate steady-state controlled variables must be arranged 

in such a way that, if any of the candidate controlled variables are selected by the optimization 

algorithm, the required manipulated variables are available and none of inventory variables will be 

left uncontrolled. Otherwise, the infeasible controlled variable must be removed from the set of 

candidate controlled variables and the optimization program should be run again.   

3. Case study: optimal control structure selection for a distillation trains 

The proposed optimization framework is applied to the case of an industrial distillation train in an 

olefin plant. The aim of this case study is to illustrate the implementation of framework and to 

demonstrate its performance. The process description is presented in Section 3.1. The software tools 

used in implementation of the proposed optimization framework are presented in Section 3.2. The 

optimization variables and constraints corresponding to degree of freedom analysis and the 

requirement for composition control are presented in Section 3.3. The case study is adapted from the 

olefin plant of Arak Petrochemical Co., Arak, Iran. 

3.1. Process description of pyrolysis gasoline hydrogenation (PGH) plant 

The process description for the overall olefin plant is available in the literature (Kirk-Othmer 2007). A 

section of this process concerns the treatment of pyrolysis gasoline from which the case study of this 

paper is selected. This section is called pyrolysis gasoline hydrogenation (PGH) section and is shown 

in Fig. 3.  
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In the olefin processes, the products of the cracking reactions of the liquid feedstock include a blend 

with properties very similar to gasoline. The disadvantage of this product is that the dissolved light 

olefins are highly reactive with risk of polymerization stored untreated. Therefore, this blend must be 

saturated by hydrogenation reactions. The reaction conditions are 24bar and 140oC. The 

incondensable components that mostly consist of hydrogen are separated in a series of two separator 

drums which are operated in hot and cold conditions. The overhead vapors of the first separator are 

cooled using an air-cooler and a cooling water heat exchanger in order to minimize the hydrocarbon 

loss in the fuel gas stream. Then, the condensates from the bottom of these two separator drums will 

be resolved in a distillation train into 𝐶5, 𝐶6, 𝐶7
+ and heavy-ends products. The distillation train is 

studied in this paper and its schematic is shown by the dotted envelope on the right hand side of Fig. 

3.  

 

Fig. 3. PGH plant; the framed part of the flowsheet is selected for the case study. 

The first distillation column is the depentanizer column. This column has a partial reflux 

configuration and the gaseous overhead product is mostly hydrogen. The main product is the 𝐶5 cut, 

and is withdrawn as the side stream. The bottom stream is fed to the dehexanizer column. The 𝐶6 cut 

is produced in the overhead of the dehexanizer column and the bottom stream is fed to the rerun 

column which is operated under vacuum conditions. This column resolves its feed to 𝐶7
+ and heavy-

ends streams. 

3.2. Optimization variables and constraints  

As discussed in Section 2.2.2. the new optimization framework (Fig. 2), limits the optimization 

variables to structural variables 𝝌𝒄 . In the following, the inventory design methods described in 

Section 2.6 are applied to the case study and technical consideration of composition control is spelled 

out.  
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Table 2.  

List of binary optimization variables for the PGH case study.  

 

𝝌𝒄𝒋𝑻𝒕 : a binary variable which 

represents selection of the temperature 

of a column tray as a controlled 

variable, and corresponds to a specific 

perfect control equation in Problem II 

𝝌𝒄𝒋,𝑭𝒍𝒐𝒘  : a binary variable which 

represents selection of a flow, a flow-

ratio or a heat duty as a controlled 

variable, and corresponds to a specific 

perfect control equation in Problem II 

Depentanizer: 

𝐶5 
{𝜒𝑐5,𝑇1 … 𝜒𝑐5,𝑇46 } 

𝜒𝑐5,𝐷, 𝜒𝑐5,𝐵, 𝜒𝑐5,𝑆, 𝜒𝑐5,𝑅 , 𝜒𝑐5,𝑄𝐻
, 

𝜒𝑐5,𝐷/𝐹 , 𝜒𝑐5,𝐵/𝐹 , 𝜒𝑐5,𝑠/𝐹 , 𝜒𝑐5,𝑅/𝐹 , 𝜒𝑐5,𝑅/𝐷  

Dehexanizer: 

𝐶6 
{𝜒𝑐6,𝑇1 … 𝜒𝑐6,𝑇40 } 

𝜒𝑐6,𝐷 , 𝜒𝑐6,𝐵, 𝜒𝑐6,𝑅 , 𝜒𝑐6,𝑄𝐻
, 

𝜒𝑐6,𝐷/𝐹 , 𝜒𝑐6,𝐵/𝐹 , 𝜒𝑐6,𝑅/𝐹 , 𝜒𝑐6,𝑅/𝐷  

Rerun: 

 𝐶7 
{𝜒𝑐7,𝑇1 … 𝜒𝑐7,𝑇24 } 

𝜒𝑐7,𝐷 , 𝜒𝑐7,𝐵, 𝜒𝑐7,𝑅 , 𝜒𝑐7,𝑄𝐻
, 

𝜒𝑐7,𝐷/𝐹 , 𝜒𝑐7,𝐵/𝐹 , 𝜒𝑐7,𝑅/𝐹 , 𝜒𝑐7,𝑅/𝐷  

Table 2 lists the optimization variables. In the steady-state inversely controlled process model, these 

are the candidate variables to be selected as controlled variables and maintained constant. The rational 

choice of these candidate variables is based on the available measurements. The index 𝑗 = 5,6,7 

represents depentanizer, dehexanizer and rerun columns respectively. The notation 𝝌𝒄𝒋,𝑻𝒕 refers to the 

temperature of tray number 𝑡 in the 𝑗𝑡ℎ column. The notation 𝝌𝒄𝒋,𝑭𝒍𝒐𝒘  refers to a flowrate in column 

𝑗 . The notations 𝑅, 𝐷, 𝐵, 𝑆 represent reflux, distillate, bottom, and side streams respectively. 𝑄𝐻 refers 

to reboiler heat duty. These notations also hold for flow ratios, for example 𝜒𝑐6,𝐵/𝐹  represents the 

ratio of bottom flowrate to feed flowrate in dehexanizer column.  

3.2.1. Design of inventory control systems 

Throughput manipulation is assumed to be present upstream and the inventory in the distillation train 

is controlled in the direction of flow (Georgakis and Price 1993; Georgakis et al. 1994). The 

implication of this assumption is that the feed of the distillation train is assumed as the disturbance 

source and varies independently.  

The second (dehexanizer) and third (rerun) distillation columns are total reflux columns and there are 

five potential manipulated variables; these are the reboiler heating duty, the condenser cooling duty, 

the reflux flow, and the flow rates of the overhead and bottom products. However, controlling the 

overhead and bottom level of liquid inventories, and column pressure which represents the vapor 

inventory consume three manipulated variables, and two manipulated variable remain to be included 

in the optimization variables.  

The first distillation column uses a partial condenser due to the presence of the incondensable 

components. The flow of the overhead vapor is used for controlling the column pressure and the 

condenser duty is used for the overhead liquid inventory. The side-product stream has an extra degree 

of freedom because the side-draw flow rate is a potential manipulated variable. This degree of 

freedom in addition to partial reflux flowrate and bottom flowrate provide three degrees of freedom. 

3.2.2. Composition control and inferential temperature control  

With liquid level and pressure control loops closed, the distillation column is still unstable due to 

composition drift (Hori and Skogestad 2007; Skogestad 2007). Ideally, composition should be 

measured directly. However, composition measurements can be expensive and slow. An alternative 

might be to specify the set point of a temperature controller (Luyben 2006). The idea behind is that 

changes in the selected temperature must represent the changes in the column product composition 

and maintaining the temperature at its setpoint will ensure that product specifications are met. The 

instability issue makes the composition or inferential temperature loop a top priority in a distillation 

column. However, if any further degree of freedom is available, it can be assigned to control a second 

temperature. Therefore, a set of constraints must ensure selection of at least a temperature as a 

controlled variable in each column. The corresponding constraints for the above discussion about 

inventory and composition control can be represented by following constraints: 
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𝜒𝑐5,𝑇1 + ⋯ + 𝜒𝑐5,𝑇46 + 𝜒𝑐5,𝐷 +  𝜒𝑐5,𝐵 + 𝜒𝑐5,𝑆 + 𝜒𝑐5,𝑅 + 𝜒𝑐5,𝐷/𝐹 +𝜒𝑐5,𝐵/𝐹 +𝜒𝑐5,𝑠/𝐹 +                   

+𝜒𝑐5,𝑅/𝐹+𝜒𝑐5,𝑅/𝐷 + 𝜒𝑐5,𝑄𝐻
= 3                                                                                              (4a) 

𝜒𝑐6,𝑇1 + ⋯ + 𝜒𝑐5,𝑇39 + 𝜒𝑐6,𝐷 +  𝜒𝑐6,𝐵 + 𝜒𝑐6,𝑅 + 𝜒𝑐6,𝐷/𝐹 + 𝜒𝑐6,𝐵/𝐹 + 𝜒𝑐6,𝑅/𝐹 +𝜒𝑐6,𝑅/𝐷 +            

+𝜒𝑐6,𝑄𝐻
= 2                                                                                                                                               (4b) 

𝜒𝑐7,𝑇1 + ⋯ + 𝜒𝑐5,𝑇24 𝜒𝑐7,𝐷 + 𝜒𝑐7,𝐵 + 𝜒𝑐7,𝑅 + 𝜒𝑐7,𝐷/𝐹 + 𝜒𝑐7,𝐵/𝐹 +𝜒𝑐7,𝑅/𝐹 +𝜒𝑐7,𝑅/𝐷 +                   

+𝜒𝑐7,𝑄𝐻
= 2                                                                                                                                                (4c) 

𝜒𝑐5,𝑇1 + 𝜒𝑐5,𝑇2 + ⋯ + 𝜒𝑐5,𝑇45 + 𝜒𝑐5,𝑇46 ≥ 1                                                                            (5a) 

𝜒𝑐6,𝑇1 + 𝜒𝑐6,𝑇2 + ⋯ + 𝜒𝑐5,𝑇39 + 𝜒𝑐5,𝑇40 ≥ 1                                                                            (5b) 

𝜒𝑐7,𝑇1 + 𝜒𝑐7,𝑇2 + ⋯ + 𝜒𝑐5,𝑇23 + 𝜒𝑐5,𝑇24 ≥ 1                                                                            (5c) 

Constraint (4a-c) ensures that a correct degree of freedom is selected for each distillation column. 

Constraint (5a-c) ensures that at least a temperature controlled variable (representing the composition 

control) is selected in each distillation column. 

3.3. Implementation tools and considerations 

3.3.1. Simulation-optimization programming technique 

The simulation-optimization programming technique used in this research conformed to the 

optimization with implicit constraints, which has been proved efficient in process optimization using 

simulators (Sharifzadeh and Thornhill 2011; Caballero et al 2007; Odjo et al 2011). The process 

simulator has an input-output black-box relationship to the optimizer. The optimization is performed 

in the outer loop and the simulation is solved in the inner loop. The advantage of this method is that 

the number of optimization variables is limited to the degree of freedom of the simulation, (i.e., the 

number of independent variables which should be specified independently to run the simulator). For 

fixed values of the optimization variables, the equation solver of the simulator is able to calculate the 

remaining variables. By the convergence of the simulator’s equation solver, the value of the objective 

function is evaluated. The disadvantage of this method is that evaluation of the objective function is 

computationally expensive because for each evaluation, the equation solver needs to converge.   

3.3.2. Process modeling and disturbance scenarios  

In this research, the simulation was performed using Aspen-HYSYS® and the optimization algorithm 

was the Genetic Algorithm (GA®) toolbox of MATLAB®. The two software tools where integrated 

using COM® automation interface. The mathematical modeling is performed using the distillation 

blocks of the Aspen-HYSYS simulator. The underlying equations can be found in the documentation 

of the software (Aspen-HYSYS document 2009a). The pyrolysis gasoline was estimated by 34 real 

components, and its estimated properties were in a good agreement with the data from the plant. The 

modified Peng-Robinson equation of state was employed for thermodynamic calculations (Aspen-

HYSYS document 2009b). The accuracy of the results depends on the applied modelling and 

optimization methods.The developed model featured a high degree of rigorousness because built-in 

distillation blocks and a high fidelity property package from the simulator library were used for the 

modeling. Furthermore, Genetic Algorithm is a stochastic global optimization method based on 

evolution of a population of optimization solutions and is less likely to become entrapped in local 

optimums, (Edgar 2001; Mitchell 1998). 

The feed stream to the depentanizer column is assumed a disturbance. The feed can be represented as 

the mixture of four cuts of hydrocarbons: 𝐶5, 𝐶6, 𝐶7
+ and heavy-ends. In each disturbance scenario, the 

amount of each of these cuts in the feed stream is changed by ±5%. The combination of these, 

changes results in sixteen disturbance scenarios, which represent the operational conditions 

thoroughly. These disturbance scenarios are equally likely. 

http://www.sciencedirect.com/science/article/pii/S0098135411003449


Please cite the following paper at: 

Sharifzadeh M, Thornhill NF, (2012). Optimal selection of control structures using a steady-state 

inversely controlled process model. Computers & Chemical Engineering, 38 (5), 126–138, (Link). 

13 | P a g e  

 

 

3.3.3. Constructing a steady-state inversely controlled process model in the simulator 

The distillation block in Aspen-HYSYS provides the option for defining “column specifications.” 

These are the specifications that the equation solver tries to meet during the simulation, and are in fact 

the degrees of freedom of the simulation. For each specification, a desired value was set according to 

the operating conditions of the base-case process. Activating or deactivating these specifications 

provides the opportunity to add or remove perfect equations (1) and to construct the corresponding 

steady-state inversely controlled process model.  

3.3.4. Simulation-optimization information flow 

Fig. 4 shows the information flow of the simulation-optimization. The left-hand side block and the 

right-hand side block are the GA toolbox and Aspen-HYSYS simulator, respectively. The middle 

block is an m.file coded in MATLAB, which integrates the two software tools. In each optimization 

iteration, GA decides on the value of the optimization variables (Table 2). By satisfaction of 

constraints (4a-c), (5a-c), only seven optimization variables are equal to one and the rest are zero. The 

integrating code receives the value of the optimization variables, activates the corresponding column 

specifications, and constructs the steady-state inversely controlled process model as described in 

Section 3.3.3. Then, the current choice of the optimization variables must be benchmarked against 

disturbance scenarios. The integrating code imposes the disturbances to the inversely controlled 

process model by changing the feed flowrate and composition as described in Section 3.3.2. For each 

disturbance scenario, the corresponding values of the objective functions (Table 1) are evaluated. The 

value of the multi-objective function (equation 2) is constructed as explained in section 2.4 and is 

reported back to the GA algorithm. The GA algorithm evaluates the termination criteria and decides 

on improving optimization variables. 

 
Fig. 4. Information flow of the simulation-optimization programming. 

4. Results of the case study 

4.1 Optimized control structure 

The results of the optimization of the proposed case study of PGH distillation train are presented in 

this section. The implications of the optimization results and their implementation in the optimized 

control structure are discussed as follows. 

Table 3.  
The optimal controlled variables selected for the three distillation columns by the optimization framework 

Depentanizer Column Dehexanizer Column Rerun column 

Type of the 

controlled 

variable 

Column pressure Column pressure Column pressure Inventory 

Overhead liquid level Overhead liquid level Overhead liquid level Inventory 

Bottom liquid level Bottom liquid level Bottom liquid level Inventory 

Temperature of the 45th tray Temperature of the 24th tray Temperature of the 6th tray Steady-state 

Temperature of the 33rd tray Reflux/Feed flow ratio Reflux flow rate Steady-state 

Temperature of the 10th tray none none Steady-state 

Activating/ deactivating simulation specifications.

The value of the 

multi--objective 

function

The changes imposed by each disturbance scenario 

The values

of the 

structural 

variables

The required 

information for 

evaluating the 

objective functionsIntegrating 

code 

Steady-state inversely 

controlled process model

(Aspen-HYSYS simulation)

Genetic  Algorithm

(MATLAB GA 

Toolbox)
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Table 3. presents the results. The controlled variables associated with inventory designs are included 

in the top three rows. The bottom three rows report the controlled variables which are selected by the 

optimization framework. It is noteworthy that in the third column the optimizer chose to fix a degree 

of freedom, i.e. reflux flowrate. Therefore, the flowrate of reflux in the third (rerun) column is 

constant and this degree of freedom will not be available for the controller design. 

In Fig. 5, the available manipulated variables are shown using control valve symbols. The controlled 

variables selected by the optimization algorithm are shown using dotted circles. The liquid (level) and 

vapor (pressure) inventory controlled variables are shown using the solid squares. These are the 

results of the optimization framework in conjunction with heuristics for the design of the inventory 

control system. These results could be directly used in a multivariable control design. However, if a 

multi-loop control system is being designed an appropriate pairing method such as RGA and its 

variants or process knowledge and insights can be employed in order to develop the overall control 

structure.  

 

Fig. 5. The selected controlled variables using the optimization framework (dotted circles), and the inventory 

controlled variables (solid circles) 

As discussed earlier, the detailed control system design is delegated to the process control engineers. 

An example of a possible multi-loop control structure for the selected controlled variables is shown in 

Fig. 6. Here, the controlled variables and the available manipulated variables are paired using the 

process insights described by Skogestad (2007) and Luyben (2006). 

In the first distillation column, which has a partial condenser, the overhead vapor is used for 

controlling the column pressure. In the second and third distillation columns, which have total 

condensers, the condenser duty is paired with column pressures. These are common engineering 

practices for partial and total reflux columns. All of the liquid inventories are controlled by the 

corresponding outgoing liquid streams except the liquid inventory of the first column, in which the 

level of the overhead liquid inventory is controlled using the condenser duty. In addition, the design 

of flow controllers does not require pairing. The temperature controllers are paired with the remaining 

manipulated variables. 
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Fig. 6. The control structure for the distillation train of the PGH Process (Tray-numbering is bottom-

up) 

4.2 Performance comparisons 

The sixteen disturbance scenarios included a wide range of changes in the flow and the composition 

of the feed. Table 4. shows the average values of the objective functions for the optimized structure 

and compared with the base-case unoptimized structure that will be described in Section 5. The target 

of the optimization is that the deviations should be zero when the disturbances are applied. The table 

shows an improvement over the base-case and demonstrates the trade-off between different 

competing objective functions, which is established by the optimization algorithm. Although the 

objective functions of Table 1 are competing and conflicting objectives, the optimal solution exhibits 

desirable properties. While the manipulated variables (Third column) are preserved from excessive 

movement in different disturbance scenarios, the profit losses are minimized (second column). The 

product specifications are met (fifth and sixth columns) and a minor change in average temperature 

profiles indicates short trajectories between different process steady states (fourth column). 

Table 4.  

The average of optimal values of the objective functions in different disturbance scenarios  

 

Average 

changes in 

net profit 

[%] 

Average 

changes in 

manipulated 

variables [%] 

Average 

changes in the 

tempreature of 

trays [oC] 

Average changes 

in product 

molecular weight 

[%] 

Average 

changes in 

product 

density [%] 

Optimized control 

structure 
-0.041 1.47 0.18 0.81 0.28 

Base-case control 

structure (Section 5) 
-0.223  0.72  1.17  9.706  0.837 

Fig. 7.a. shows the temperature profiles of the first distillation column for the 16 disturbance 

scenarios. Since three temperature controllers are used in the first distillation column, the temperature 

profiles are very similar in this column. Temperature profiles in the second and third distillation 

columns are shown in Figs. 7b-c, which demonstrate a satisfactory control of temperature (and 

inferentially composition) over the range of the 16 disturbances. 
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Fig. 7.a. The temperature profiles of the depentanizer column for the sixteen disturbance scenarios for the 

optimized control structure 

 
Fig. 7.b. The temperature profiles of the dehexanizer column for the sixteen disturbance scenarios for the 

optimized control structure 

 
Fig. 7.c. The temperature profiles of the rerun column for the sixteen disturbance scenarios for the optimized 

control structure 
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5. Comparison and discussion 

In this section, the effects of the same disturbances scenarios as described in Section 3.1. are 

presented for a base-case (unoptimized) process. The base-case control structure is shown in Fig. 8. 

Key differences are in the first column, depentanizer, in which the heat duty of condenser, 

temperature of the side stream and the temperature of the reboiler are being controlled in the base-

case design. By contrast, three inside temperatures corresponding to columns trays are being 

controlled in the optimized control structure. This strategy results in significant improvements of the 

performance of the optimized control structure, which can be investigated by comparing Fig. 7a. and 

Fig. 9a. The main advantage of the optimized control structure is that it minimizes the loss of 

hydrocarbon product with the overhead fuel-gas purge stream in the first column. In addition, for the 

proposed disturbance scenarios, the optimized control structure remains operable while the base-case 

control structure would lose its control action in some certain disturbance scenario, as shown by Fig. 

9.a. the base-case design requires such a low temperatures that is not achievable using cooling water. 

This would show itself as saturation control valve and loss of valuable product from overhead stream.   

The difference between the two structures is less pronounced in the second and third columns. The 

optimized control structure of the second column uses reflux/feed ratio compared to reflux flowrate in 

the base-case control structure. In addition, the temperature of a tray is controlled in the optimized 

control structure in comparison to the reboiler temperature in the base case design. The control 

structure of the last column only differs in the number of temperature tray.  

 

Fig. 8. The base-case control structure 

Fig. 9.a. shows the effects of the disturbances scenarios on the temperature profile of the depentanizer 

distillation column. In this column, heat duty of condenser, temperature of the C5 stream and the 

temperature of the reboiler are controlled. A comparison of this figure with Fig. 9.a. demonstrates the 

advantage of the new control structure over the base-case. The required temperature of the condenser 

in Fig. 9.a. is very low, which shows that in some disturbance scenarios achieving perfect control 

using the cooling water is impossible. In these scenarios the control valve of the cooling water 

becomes saturated which results in loss of a control action.  
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Fig. 9.a. The temperature profiles of the depentanizer column for the sixteen disturbance scenarios for the base-

case control structure. 

 
Fig. 9.b. The temperature profiles of the dehexanizer column for the sixteen disturbance scenarios for the base-

case control structure. 
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Fig. 9.c. The temperature profiles of the rerun column for the sixteen disturbance scenarios for the base-case 

control structure. 

Temperature profiles for the dehexanizer and rerun columns are illustrated in Figs. 9.b. and 9.c. which 

can be compared to Figs. 7.b. and 7.c. In the dehaxanizer column, the reflux flowrate and the 

temperature of the reboiler are controlled. The task of this column is to separate the product from 

overheads. A comparison of Fig. 7.b. with Fig 9.b. demonstrates superior performance of the 

optimized control structure because the product is withdrawn from column overhead and this part of 

column is less affected in the optimized control structure by disturbances. In the rerun column, the 

optimized control structure and base-case control structure differ only in the number of the 

temperature tray. The optimized control structure shows better performance in the column bottom 

product.  

The values of the objective functions of the base-case control structure are compared to the optimized 

control structure in Table 3. In all objectives, the optimized control structure performs better. 

However, the optimized control structure manipulates the input variables more. It is because in the 

base case design, some of the manipulated variables are selected as controlled variables and their 

flowrates are constant for different disturbance scenarios. 

6. Conclusion 

This article has presented a novel optimization-simulation framework for the optimal selection of 

control structures. It makes use of the notions of perfect control and inversion of the process model 

(Garcia 1982). The inverse of the process model represents perfect control, i.e. it outperforms any 

controller with the same control structure (Yuan 2010). The advantage of this optimization framework 

is that it postpones the design of controllers and reduces the size of the problem significantly, thus the 

proposed methodology is scalable and practical for application to larger industrial cases. The 

proposed framework decomposes the problem into two sub-problems. One sub-problem concerns 

steady-state controlled variables, the other address the inventory control systems. The second sub-

problem is addressed using engineering insights and heuristics. Furthermore, the new scheme ensures 

that the optimized control structure features state controllability. The results of the proposed method 

in this research demonstrate the benefits of keeping the selected CVs constant and also indicate why 

one CV and not another is the best one to use. 

The performance of the proposed framework was demonstrated on the case study of an industrial 

distillation train. The results showed a very good trade-off between different control design 

objectives, which ensure controllability, and profitability of the synthesized control structure. A 

comparison of the optimized design and a base case design shows that the optimized design achieves 

minimum of product loss and ensures that the process is controllable for all disturbance scenarios.  
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