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Abstract 

The analysis of change is an important issue in human growth and development. In 

longitudinal studies, growth patterns are often summarized by growth 'models' so that a 

small number of parameters, or the functions of them can be used to make group comparisons 

or to be related to other measurements. To analyse complete and balanced data, growth 

curves can be modelled using multivariate analysis of variance with an unstructured 

variance-covariance matrix; for incomplete and unbalanced data, models such as the 

two-stage model of Laird and Ware (1982) or the multilevel models of Goldstein (1987) are 

necessary. 

The use of multilevel models for describing growth is recognized as an important technique. 

It is an efficient procedure for incorporating growth models, either linear or nonlinear, into 

a population study. Up to now there is little literature concerning growth models over wide 

age ranges using multilevel models. 

The purpose of this study is to explore suitable multilevel models of growth over a wide 

age range. Extended splines are proposed, which extend conventional splines using the '+' 

function and by including logarithmic or negative power terms. The work has been focused 

on modelling human growth in length, particularly, height and head circumference as they 

are interesting and important measures of growth. The investigation of polynomials, 

conventional splines and extended splines on data from the Edinburgh Longitudinal Study 

shows that the extended splines are better than polynomials and conventional splines for 

this purpose. It also shows that extended splines are, in fact, piecewise fractional polynomials 

and describe data better than a single segment of a fractional polynomial. 

The extended splines are useful, flexible, and easily incorporated in multilevel models for 

studying populations and for the estimation and comparison of parameters. 
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Chapter 1 

Introduction 

It is important to analyse longitudinal data in human growth and development studies 

(Goldstein, 1979; Plewis, 1985; Hauspie, Lindgren, Tanner and Spruch, 1991). This means 

that researchers in public health, psychology and social sciences need to collect data over 

time rather than to collect data at a particular point in time. The data collected in the former 

case are longitudinal and in the later case cross-sectional. 

Longitudinal data hold hierarchical structure: the repeated measurements are clustered within 

each subject, furthermore subjects can be grouped further for example in schools. This 

clustering or grouping generally induces non-independence between population units so that 

statistical models based on assumptions of independence become invalid (Paterson and 

Goldstein 1991). 

Multilevel modelling is a powerful statistical technique for analysing individuals as members 

of social groups and is especially useful for repeated measures data (Paterson and Goldstein, 

1991). It is essentially a hierarchical linear model and an extension of ordinary multiple 

regression. 

Bryk and Raudenbush (1987) presented a three-level hierarchical linear model for studying 

school effects on children's growth during the primary years. The level 1 units are the times 

or occasions, the level 2 units are the children and the level 3 the schools. This example 

considers two distinct features of the growth system: the structure of the mean or average 

growth trajectory and the nature of the deviations of the individuals growth trajectories from 

the population mean. 



Recent developments in the statistical handling of Longitudinal growth data 	 12 

Goldstein (1987) described how multilevel models can be used for the efficient statistical 

modelling of longitudinal data with an example of children's height where six successive 

measures of height are made an 138 children between ages of six and eleven. The level 1 

units are the measurement occasions within individuals and level 2 the individuals. Quadratic 

polynomials were fitted to the data with gender differences in intercept and growth rate. An 

average height growth curve was estimated together with the variance among individuals 

and variance among occasions. See Goldstein (1986a, 1989) for details. 

It is worth noticing that using multilevel models we do not require the same number of 

measures for each individual nor that the measures are made at the same time or occasion 

while previous models did (Rao 1959; Elston and Grizzle, 1962). And also we should notice 

that polynomials are mostly used in hierarchical models to structure the mean trajectory or 

curve of growth and development but this is not necessary and that is the topic of this thesis. 

1.1 Recent developments in the statistical handling of Longitudinal 

growth data 

The longitudinal growth study will be introduced in two stages: 

(1) Identifying those individual growth models which fit the number of measurements 

over a period of aging to present the underlying growth process. 

(2) Structuring overall growth models for the population, that is, mean growth curves for 

a group or population and the variation in growth between individuals. 

Generally, the models for overall growth have identical form to the models for individuals 

but with variation being further structured . 

1.1.1 Individual Based Models 

Healy (1989) outlined recent developments in the statistical handling of growth data. Many 

longitudinal studies are designed to investigate changes over time in a characteristic which 
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is measured repeatedly for each study participant. A smooth curve is fitted to an individual's 

data and from this curve several features of growth, such as peak height velocity and onset 

of pubertal spurt can be studied (Tanner, Whitehouse, Marubini and Resele, 1976; Hauspie, 

Lindgren, Tanner and Spruch, 1991). 

We consider first parametric models. The first class of parametric models are the linear 

models, such as polynomials, y = a + bt + ct2  + ...; the Count curve, y = a + bt + clogt 

(Count, 1943) and its extension y = a + bt + clogt + d It (Berkey and Reed, 1987) which are 

suitable for the first few years of life. Non linear models such as the Jenss curve, 

y = a + bt — exp(c + dt) (Jenss and Bayley, 1937) can be used for young children; the 

Gompertz curve, y = a exp[— exp(b — ct)] and the logistic y = a + b/(1 + exp(c + dt)) are able 

to model the adolescent spurt (Deming, 1957). These models are suitable only for limited 

age ranges and several authors have proposed combinations of curves. A double logistic 

model for combining pre-adolescent and adolescent growth was first published by Bock, 

Wainer, Peterson, Thissen, Murray, and Roche (1973) followed by a modification, the triple 

logistic model with nine parameters (Bock and Thissen, 1976). Recently the triple logistic 

model has been modified to the BTT model (Bock, Toit and Thissen, 1994). The 

Preece-Baines curve (Preece and Baines, 1978) uses only five parameters, and has been used 

extensively for fitting longitudinal data on height. The JPPS model of Jolicoeur, Pontier, 

Pernin and Sempe (1988) and the JPA2 model of Jolicoeur, Pontier and Abidi (1992), with 

eight parameters, have been shown to fit height curves for infants as satisfactorily as for 

older children. See Appendix A for the triple logistic model, BTT model, JPA2 model and 

the Preece-Baines curve. 

These growth models are mainly for height measurement. A model for head circumference 

from birth to 18 years was proposed by Roche, Mukerjee and Guo (1986), that is, 

y = a[1. — be-c")3]. The three parameter model y = a + b(t)" + c log t was used for early 

ages (Guo, Roche and Moore, 1988). 
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As pointed out by Goldstein (1979) and by Healy (1989), the weakness of any method which 

imposes a fixed algebraic form upon the fitted growth curve is that this form may be too 

rigid to model the true complexities of the growth process. This will be especially true of 

curves based on few parameters. Generally, models with three or four parameters are capable 

of describing only a part of the growth curve, like the Jenss model, the Count model and the 

Reed model for the period of infancy and childhood, or the logistic model for the adolescent 

period. Models with a large number of parameters (5-7) are more complex in their 

mathematical expression and can cope with a broader age interval. Increasing the number 

of parameters also increases the flexibility of the curve to describe more detailed features 

of the growth process. However, there is a price to pay for that: fitting a eight-parameter 

model like the JPA2 model of Jolicoeur, Pontier and Abidi (1992), for example, requires a 

large number of observations in order to obtain a reliable fit. Even with a large number of 

parameters, there may always be certain events or short-term variations in growth rate which 

will not be shown by the fitted curve, simply because the mathematical function does not 

allow for it, for example, small spurts in prepubertal growth (Hauspie, Lindgren, Tanner 

and Spruch, 1991). 

Turning now to look briefly at non-parametric models. In attempting to impose less rigidity 

in fitting the curve two approaches have been considered in addition to the heuristic graphical 

procedure used by Tanner, Whitehouse and Takaishi (1966), that is: spline and kernel 

estimation. A q-spline function is a piecewise or segmented polynomial of degree q with 

q-1 continuous derivatives at the change points, that is, knots, with which great flexibility 

of shape can be obtained (Cox,1971; Silverman, 1985; Seber and Wild, 1989). Variable knot 

cubic splines have been used to fit height curves for children aged four to eleven years 

(Berkey, Reed and Valadian, 1983). The shape-invariant model by Stiitzle, Gasser, Molinari, 

Largo, Prader and Huber (1980) is something of an intermediate between the parametric 

approach and the nonparametric spline functions (Healy 1989). A kernel estimation 
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procedure has been discussed by Gasser, Muller, KOhler, Molinari and Prader (1984), Gasser, 

Muller, and Mammitzsch (1985), which is capable of fitting not only the smoothed distance 

curve but also its velocity and acceleration curves and by which growth parameters can be 

specified clearly. The cubic smoothing splines by Largo, Gasser, Prader, StUtzle and Huber 

(1978) give results very like those of kernel estimation. See Appendix B for the kernel 

estimation of Gasser, Milner, Kohler, Molinari and Prader (1984). 

1.1.2 Population Based Models 

All these above models are individual based, that is, based upon fitting separate curves to 

each individual. In fact, a subject can be regarded as a member of a population and therefore 

population-based approaches should be considered in order to estimate population quantities 

and to model directly the variations in growth parameters for individuals. This is an important 

technique for comparing growth in different populations, as well as for studying the effects 

of other factors such as environmental ones. In addition, we may use the information on the 

population to improve the estimates of each subject's own parameters. 

Following the paper by Wishart (1938), multivariate approaches have been developed to 

study population curves using the technique of fitting a curve to each individual followed 

by a series of regression analyses using the estimated individual curve coefficients. 

Early models by a number of authors were devoted to the estimation of polynomial growth 

curves and to the comparison of growth curves (Wishart, 1938; Leech and Healy, 1959; Rao, 

1959; Elston and Grizzle, 1962; Potthoff and Roy, 1964). 

Generally, the approach used by the authors above is to consider the vectors yi  of observations 

on the jth individual assumed to occur at a fixed set of ages and to have independent 

multivariate normal distributions with common mean vector X3 and covariance matrix V. 

Thus, with the usual notation, 
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yi —N(X13, V), 

where X is the design matrix raised on the ages when individuals were measured and 13 a 

vector of coefficients to be estimated. However, this model is not suitable for the situation 

when individuals are measured at arbitrary or unique times. The difficulty is that usually we 

can not control the circumstances under which the measurements are taken, and there may 

be considerable variation among individuals in the number and timing of observations. 

The Bayesian linear model of Fearn (1975) 

This approach postulates a separate growth curve for each individual and that the nj  

observations yj  on the jth individual are independently and normally distributed about the 

curve for that individual, given parameter vectors pj  and design matrices Xj. The first-stage 

of this model is to model 

(1) YA (4—N(Xii3j, 0). 

The second-stage is then to model 

(2) Pi! C —N(R, C ), 

where the 13's are supposed exchangeable and particularly that the pj's are independently 

and normally distributed with common mean vectorµ and covariance matrix C. 

We combine (1) and (2) to give 

y,1 R, (4, C —N(Xj  XiC4 + (TY). 

The general Bayesian linear model estimation procedure of Lindley and Smith (1972) is 

used. This can be handled by recent developed Markov Chain Monte Carlo methods (Gibbs 

Sampler methods) for general case. Gilks, Clayton, Spiegelhalter, Best, McNeil, Sharples 

and Kirby (1993) gives a review of applications of Gibbs sampling. 
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Recently, efficient maximun likelihood methods have been devised for the estimates of these 

growth models with an unbalanced data setting, in which the number and time intervals of 

measurement can vary from individual to individual. The two-stage model by Laird and 

Ware (1982) and the multilevel model developed by Goldstein (1986a, 1986b, 1987, 1989) 

allow a very general approach to the modelling of growth data. I shall not consider the 

Bayesian model further. 

The linear model of Laird and Ware (1982) 

If the jth individual has a ni xl vector, 	of responses, the growth curve model assumes 

that each individual also has a vector of growth curve parameters, bi!. Let Xi  be a known 

ni  x r design matrix linking bi toy,. For measured, multivariate normal data, the two-stage 

growth curve model of Laird and Ware (1982) is: 

Firstly, for each individual unit, j, 

(1) 	yi =Xib; +ei, 

where ej  is distributed as N(0, Ri). Here Ri  is an ni xnj  positive-definite covariance matrix; 

it depends on j through its dimension ni, but the set of unknown parameters in R1  will not 

depend upon j. 

In the second stage, the b; are assumed distributed as N((3, D), independently of each other 

and of the ei. Here D is a r xr positive-definite covariance matrix and p is the unknown 

population parameters. 

Marginally, the yi  are independent normals with meanXiii and covariance matrixRi  + XpXiT 

and this is the same general form as before with Ri  replacing (32/. 
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If b1  = b; — 3 centers the individual random effects at 0, the model can be expressed as before 

as 

(2) 	yi = xfi +xibi  ej. 

Laird and Ware proposed a unified approach to fitting it, based on a combination of empirical 

B ayes and maximum likelihood under Normality using EM algorithm (Dempster, Laird and 

Rubin, 1977). The advantages of this formulation is that the data need no longer be balanced. 

Very similar is the linear model of Strenio, Weisberg and Bryk (1983) which includes 

covariates. Their approach consists of first deriving Bayesian estimates based on known 

variances following Lindley and Smith (1972) and then substituting maximum likelihood 

estimates for the unknown variances in the estimation formulas. All these authors assume 

the form Ri  = 0210). 

An example of using the Laird and Ware model for incorporating the Reed linear model for 

height using a sample of 62 boys aged at 8 to 18 years was reported by Berkey, Laird, 

Valadian and Gardner (1989). 

The Multilevel Models of Goldstein (1986b, 1987) 

The multilevel models developed by Goldstein (1986b, 1987) incorporate the above models 

as special cases. In particular they can accommodate covariates which change over time and 

within-subject so that, for instance, the variance can change with age (Goldstein, 1986a, 

1987). 

The models have the same form of Laird and Ware. The random terms Xjui  + ej  are assumed 

multivariate normal and maximum likelihood (ML) estimates or restricted maximum 

likelihood (REML) estimates via iterative generalized least squares (IGLS) is applied. 
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The literature review of Multilevel Models is given in section 2.1. Examples of using 

Multilevel Models for fitting polynomials to a group of children aged from 6 to 11 years 

can be found in Goldstein (1986a) and to a group aged from 10 years to adult with multivariate 

responses in Goldstein (1989). 

A related procedure is that of Bryk and Raudenbush (1987), which uses empirical Bayes 

estimates to give maximum likelihood estimates in the Normal case via EM algorithm. 

Longford (1987) provides another procedure using the Fisher scoring algorithm for 

maximum likelihood estimation. Details of comparisons of the various statistical packages 

are given by Kreft, de Leeuw and Kim (1990). 

The Empirical Bayes approach of Berkey (1982a) 

The Jenss model for the growth of a single child, j, with nj  observations is 

yj  = acv  + a11x1  — exp(a21  + a31x1)+e1, 

where yj  is a nj  x 1 vector of measures, xj  a nj  xl vector of age and e is nj  x 1 vector of 

random error. Assuming that the residuals are uncorrelated and normally distributed 

e31 0—N(0, aY), 

where I is an identity matrix of dimension n j  and 

07: (a a a23  a .1 j 	oia31). 

They assume that the distribution of 0 on the population is multivariate normalN(R, /). They 

further assume empirically that 0 and a2  are independent. 

The estimation is done as follows: firstly, the Jenss growth curve parameters for each subject 

are estimated by nonlinear least squares and thus provide population estimates ofµ and I; 



Recent developments in the statistical handling of Longitudinal growth data 	 20 

secondly, these estimates of [I, and are inserted into the full likelihood. The procedure is 

iterative and provides empirical Bayes estimates of the parameters and the fitted curves for 

each child. 

The Empirical Bayes approach of Bock and Thissen (1980) 

This is similar to the above model; the residuals and growth parameters are assumed to have 

multivariate normal distributions N(0, le) and N(R, E0) respectively. 

The example used is the triple-logistic; fitting it to longitudinal data of 66 boys and 70 girls 

from ages one to eighteen years. The focus is primarily the estimation and prediction of 

individual curves. 

The nonlinear model of Berkey and Laird (1986) 

These authors assume that the growth of an individual can be modelled by a nonlinear 

function g(*, *), e.g. the Jenss model, that is, 

y1 = g(0i,xj)+ei, 

where xi  is the ni x 1 vector of ages for the jth individual; Oi  is the r x 1 vector of his or her 

growth parameters. The residual terms are identically independently distributed as N(0, c32) 

and the parameter vectors are distributed as N(lti,D). Each component of the mean vector 

!Ai  is assumed to be a linear function of a time-constant covariate, so that tti  = Z1y where Z1  

contains the appropriate covariate values. 

The authors focus on estimating effects of covariates, such as sex and protein on the 

parameters of early childhood growth, while Berkey (1982a) and Bock and Thissen (1980) 

use this basic model without covariates 	= 0. They consider three methods of estimating 

y and D: the ordinary unweighted least square (OLS), the univariate (ML) and multivariate 

(MML) versions of weighted least squares; the MML method corresponds to maximum 

likelihood under the multivariate normal model. They found that the difference between the 

predicted curves from the three methods of estimation were consistently much smaller than 
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those between sex and between protein group curves though OLS is clearly inferior to either 

ML or MML. The EM algorithm (Dempster, Laird and Rubin, 1977) is used for both ML 

and MML. 

The AUXAL Program of Bock, Toit and Thissen (1994) 

AUXAL is a program for analysis of longitudinal measurements of human stature. In addition 

to quantitative information about individual growth curves, the program provides estimates 

of average curves for growth. The BIT model, an extension of the triple logistic model, and 

the JPA2 model of Jolicoeur, Ponitier and Abidi (1992) are chosen for modelling stature 

over ages from 6 months to maturity. On the assumption that the population distribution is 

multivariate normal, Bayes modal estimation is used for fitting. The Fishing-scoring 

(Newton-Gauss) method is applied to the Bayes modal estimation in the program. The 

population distributions used in the Bayes modal procedure for genders are the estimates of 

the population means and covariance matrices on data from the Fels Longitudinal study, 

which were estimated by the maximum marginal likelihood method (Bock, 1989). The 

structure average is based on the estimates of individuals. 

1.2 Problems in Modelling Mean Growth with Wide Age Ranges 

The literature concerning the use of longitudinal growth models with populations based on 

wide age ranges can be found as follows: 

(1) The model proposed by Berkey and Laird (1986), which incorporates on the Jenss 

curve for height with covariates of sex and protein, covering age 0.25 to 6 years. 

(2) The multilevel models of Goldstein (1986a) using polynomials for height with a 

covariate of sex, covering age 6 to 11 years. The multivariate model of Goldstein 

(1989) for height covers ages from 10 to 18 years. 
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(3) The model presented by Berkey, Laird, Valadian and Gardner (1989), which is an 

application of the Laird and Ware (1982) model for Reed's extension model on height 

with a covariate (protein intake), covering age 8 to 18 years. 

In population studies, to date there are no publications which dealt with a model which can 

handle longitudinal growth data with covariates involving a wide age range, e.g. from birth 

to adulthood. There is a need for a method of estimating the effects of covariates or of making 

comparisons between mean curves of two or more populations, especially for height, and 

head circumference, both of which are important measurements in human growth. 

The lack of models for analysing growth curves across a wide age range can be ascribed to 

two problems. First is the fact that the large variation in growth between individuals, 

especially in adolescence, makes it difficult to find adequate growth functions. Secondly, 

there exist changes in the structure of the underlying function of the growth curve over a 

wide age range and the most flexible curves proposed, polynomials, cannot be used directly 

since they are globally determined by their values in any small interval and, hence, cannot 

model structure change even when they are required to be of high order. They will often fit 

badly at some ages, especially at the extremes of the range. An illustrative example of fitting 

for titanium heat data has shown that polynomials are inadequate for modelling such 

phenomena (Eubank, 1984; Seber and Wild, 1989). An example of the difficulty in fitting 

curves over a whole age range is at the pubertal stage for height measurement and early 

childhood for head circumference where there are rapid changes. If it is a non-linear curve 

it will typically require a large number of parameters which makes estimation difficult, or 

else may introduce fixed relationships between growth events which are unrealistic 

(Goldstein, 1979). Berkey (1982a) found that the problems concerning convergence and 

uniqueness of solutions in nonlinear models were still relevant in the model she used. 
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In addition, the question may be whether individual based models can be incorporated into 

a population based model properly. For example, the population based model of Berkey and 

Laird (1986) requires the multivariate normality of the population of parameter vectors 

obtained from the individual based model. Longitudinal growth studies usually have missing 

data and irregularity in the ages of measurement. Only recently have the efficient models 

of Laird and Ware (1982) and Goldstein (1986b, 1987) been devised for the analysis of 

growth data in the unbalanced data setting. 

The multilevel model (Goldstein, 1986b, 1987) has important advantages: it can 

accommodate covariates which change over time, and within-subject residual terms which 

are more complex than those assumed by Berkey, Laird, Valadian and Gardner (1989). While 

this methodology can be extended to nonlinear models, linear models are easier to interpret, 

flexible and computationally relatively straightforward (Healy, 1989). Thus linear models, 

whether for describing an individual or a population, are easier to implement both 

theoretically and computationally than nonlinear models. In addition, a final difficulty with 

existing longitudinal growth models, such as the Preece-Baines model and the JPA2 model 

is that they have been developed for analysis of growth in height and are generally not 

applicable to other measurements. For example they may be quite inappropriate for fitting 

the dimension of head circumference, which shows little or no adolescent growth spurt 

(Hauspie, Lindgren, Tanner and Spruch, 1991). 

Up to now, little has been achieved in seeking an appropriate linear growth model suitable 

for describing the growth pattern through early childhood to adulthood on the population. 

Potential candidates are the general Reed model and splines. 

The General Reed Model 

Berkey, Laird, Valadian and Gardner (1989) proposed that if measurements earlier than age 

8 years are included in the analysis, the general Reed model should be used, namely 
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boy  + 	+ b2j  in(xii) + b3j/xii  + 	+ b5j /xij3. + b6i/xi4i  + eii• 

The variable y,1  is the jth subject's ith length measurement obtained at age xij  years. Though 

this model has not been commonly pursued it remains linear and indicates that other terms 

could be considered when a simple polynomial is not adequate (see Goldstein 1986a). 

Another approach is to fit separate curves to different sets of occasions with smooth joins 

where the curves meet. For example, the Jenss and Bayley curve might be joined to a logistic 

curve at about age 10 (see Goldstein 1979). This idea can be found in the ICP model of 

Karlberg (1989). But up to now no success has been achieved with smoothing joins for 

separate models due to numerical difficulties and the requirement for a large number of 

measurements in order to obtain good estimates. 

The only linear model proposed to fit both early childhood and adolescence is the general 

eight-parameter Reed model by Reed and Berkey (1989). The model combines the 

five-parameter Reed model for early childhood, 

y = + c2x + c31n(x ) + c4/x + cs/x 2  

and a separate five-parameter model for adolescence, 

y = al  + a31n(x) + a4/x + a5/x2  + a6/x3, 

where x is age and y is length or weight. The Reed model for childhood is splined to one 

for the adolescent period in such a way that the curve is continuous in distance and velocity 

at the age where the two models are joined. This eight-parameter Reed model has been fitted 

to two boys and two girls (Reed and Berkey, 1989). 

Splines 

In the real sense, splines are an evolution of classical parametric inference and bridge the 

gap between parametric and nonparametric models. Spline functions, or regression splines, 
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can be expressed as a linear combination of basis functions that usually have a polynomial 

representation (Wold, 1974; Wegman and Wright, 1983). Thus spline functions can be 

computed based on a least squares approach. 

Spline functions are generally defined to be piecewise polynomials of degree n whose 

function values and first n —1 derivatives agree at the points where they join. The abscissae 

of these join points are called knots. Polynomials may be considered a special case of splines 

with no knots, and piecewise polynomials with fewer than the maximum number of 

continuity restrictions may also be considered spline functions. Spline functions will be 

referred to as splines in the text. 

Splines possess the property of having local behaviour that is less dependent on their 

behaviour elsewhere (Cox, 1971). That is also a feature of experimental data or measurement 

data, such as growth data. Splines have been utilized for diverse purposes in Agriculture, 

Economics, Pharmacokinetics, Geophysics and Astrophysics because of their ability to 

provide simple approximate models for complicated phenomena which are either difficult 

or impossible to model precisely (Eubank, 1984). These successful applications give 

credibility to the statement (Poirier, 1973): 

"Spline functions, and, more generally, piecewise polynomial functions are the most 

successful approximating functions in use today, They combine ease of handling in a 

computer with great flexibility, and therefore particularly suited for the approximation 

of experimental data or design curve experiments". 

Splines with fixed knots are straightforward to estimate using restricted least squares 

estimation, with continuity restrictions on joints (Buse and Lim, 1977), but deciding on the 

number and placing of knots and the degree of the polynomial pieces is still a problem. 

(Smith, 1979). 
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A simpler approach to these is the use of truncated polynomial, or '+' functions 

representation. The '+' function is defined as 

u+  = u, 	if u > 0 

= 0, 	if u s O. 

Smith (1979) provided the framework for a unified statistical theory of spline regression 

with fixed knots and using the '+' function representation. In general, with m —1 knots, 

< 	< l m  _1, and m polynomial pieces each of degree n, the spline is expressed as: 

m - 1 

f(x ) = 	1)10X' 	(I)nj(x Ar, • 
= 0 

In this case, f and its first n —1 derivatives will be continuous. Splines with n = 3 are cubic 

spline and are commonly used. Wold (1974) pointed that splines with 2nd and 3nd degree 

are computationally simple and have sufficient flexibility for most purposes. 

However, there are limited reports of successful growth curve fitting over wide age ranges. 

Variable knot cubic splines were explored by Berkey, Reed and Valadian (1983) for fitting 

height curves to the Boston Longitudinal Data with satisfactory results under age 11 years 

and were found not adequate for adolescence when systematic errors were found. Variable 

knot cubic splines lead to a nonlinear estimation and thus all the problems arising in a 

nonlinear regression are present. 

It may be useful to fit polynomial pieces of different degrees. The construction of spline 

models with polynomial pieces of different degrees has been illustrated by an example of a 

cubic-quadratic-linear spline, that is, the first piece cubic, the second quadratic, and the third 

linear (Smith 1979) and three other examples (Gallant and Fuller, 1973), which will be 

discussed in section 2. 
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Little is known about using splines with '+' function for different degrees in growth studies. 

How can these be structured to be suitable for fitting growth curves over wide age ranges? 

Are they flexible enough to fit curves for different measurements of length? Could any 

other function be used together with polynomials to form splines? How can they be 

incorporated into multilevel models with covariates other than age for comparison of growth 

among groups? 

This study will explore the possibility of using splines with the '+' function of different 

degrees to describe a wide variety of adolescent growth patterns; and will investigate the 

validity of the particular models and incorporate the models into a more general multilevel 

structure. Thus, this thesis is going to investigate growth models which are suitable for a 

wide age range - from infancy to adulthood, and which are applicable to measurements such 

as height and head circumference; in addition the model will seek to handle unbalanced 

longitudinal data with several covariates. 

Chapter 2 presents a review of the two-level model and splines with '+' functions; Chapter 

3 describes the new model and Chapter 4 presents the results on real data. The final chapter 

provides a summary and discussion. 
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Chapter 2 

Theory and Literature Review 

This chapter outlines, in 2 sections, the foundations for the study. The first section 2.1 is a 

discussion of the fitting of two-level models. Piecewise polynomials are described in section 

2.2. 

2.1 Multilevel Models 

The review will be focused on the structure of a basic two-level model with a simple level 

1 covariance structure first and then the general two-level model with a complex level 1 

covariance structure. The models for longitudinal growth curve fitting are described, 

followed by examples of a two-level model. 

In addition the estimation of parameters and standard errors will be addressed. More details 

of model structure can be found in the work of Goldstein (1986b, 1987, 1992) and Prosser, 

Rasbash and Goldstein (1991). 

2.1.1 A Basic Two-level Model 

A two-level model with a simple level 1 covariance structure is now described. The term 

multilevel refers to a hierarchical relationship among units: in a longitudinal growth study 

measurements of an individual are regarded as level 1 units and individuals are level 2 units. 

In a survey, for example, in an education system, students (level 1) are members of classes 

which are level 2 units. In the following context level 2 units are also termed groups. Suppose 

in J groups, Yi  is a nj x 1 vector of the response variable values for the unit j, Xi  is an n1  xr 

matrix of the values of members in group j on a set of r explanatory variables. Typically 

the intercept Xoq  is in this set. A within-unit model for this group is given as 
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17j = X f p j  + e j, 

where Pj  is a r x 1 vector of the coefficients for the jth group, and ej  is a n3  x 1 vector of 

level 1 random terms. The between-unit model for the coefficients can be written as 

= zir + 

where is an r x q between-unit design matrix, r is a q x 1 vector of the fixed coefficients, 

and ui  is an r x 1 vector of level 2 random terms. Combining the within- and between-unit 

models for the jth group gives 

(2.1) 

The vir term is called the fixed part and the latter two terms form the level 2 random part 

and level 1 random part respectively. 

On the assumption of independence of level 1 and level 2 random terms and the eij  in group 

j are independently distributed with an expected value 0 and a variance of cy!, the variance 

of Yi  conditional on the fixed part can be expressed as 

= Var (Xjuj  + e j) = X JO (2)X + o2,1 , 

where Q(2)  = Var(u3). Typically, multivariate normality is assumed for random terms. The 

assumption is usually made that level 2 random terms in uj  have a joint distribution with 

mean 0 and covariance matrix Q(2). 

The model for the total J groups gives 
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/X1  0 () Z, yi \ /X, 0 	... 0" ut  /e1 \ 

Y, 0 X2 	... 0 Z, 72  0 X, 	. 0 tt, e, 

\ 0 0 	.. Xj  vyyl  0 0 	. XJ vu  J1 \ 	J 

namely, 

Y = XZ r+ Xu + e 

The covariance matrix of the random part Xu + e can be expressed as follows: 

(2.2) 

"Q(2)  0 	0 
2 creIn1 	0 

0 Ge2in  
2 

XT  + E= X 

0 0 

0 

0 

0 	0 

Note that E is an N xN block diagonal matrix where N = 	ni. 
=i 

This basic two-level model imposes restrictions in several ways: all explanatory variables 

that have appeared in the random part of the model have been included in the fixed part; 

and, only the intercept can be considered to be random at level 1. This is not always desirable 

and will be dealt with in the next section. 

2.1.2 A General Two-level Model 

The general two-level model now to be described is more flexible. For instance, one can fit 

a complex model to the fixed part and very simple model to the random part and perhaps, 

fit a complex level 1 covariance structure. A shift in notation will be introduced to express 

the general model. 



x =x.z.1.r++ .e. (2)1.u.x (1)1 P (2.3) 
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Suppose there are r2  explanatory variables random at level 2 and r1  at level 1 and the 

corresponding matrices of these explanatory variables are denoted asX(2)  andX(1)  respectively. 

The sets of variables in X(2)  and X(1)  will often intersect. Both will often be submatrices of X 

and will usually contain the constant term which defines the intercept in the fixed part. 

For group j, the general two-level model can be written as: 

0 \ /e l; \ 

0 	e21 

Y. X2 + X(2V + 

0 	0 	xfoniji  \eniji  

where, uj  is a r2  x 1 vector and ej  is a nir1 x1 vector. X(2)1  is a n1  x r2  matrix andX(I)j  is n1  x niri. 

Thus the covariance matrix of Yi  is 

=X .Q )X +X 	CID wT j 	(2)]  (2 (2)j 	(1)j, ni  - 	(1.)n1) j,  

where O is the Kronecker product; S2(2)  is the covariance matrix of the u1  and S2(1)  of the eij. 

For J groups, is a block diagonal matrix composed of the ;s. 

MAXIMUM LIKELIHOOD ESTIMATION VIA IGLS 

The iterative generalized least squares (IGLS) algorithm (Goldstein, 1986b, 1987) is applied 

to fitting the model. Goldstein (1986b) has shown that when the disturbances follow a 

multivariate normal distribution, IGLS estimates are maximum likelihood. Under Normality 

assumptions for the random terms, the loglikelihood function for r and / given Y is: 

/(r, E1 Y) = Inj + (Y -XMTE-1(Y -xzr), 

which is minimized using the IGLS algorithm (see Appendix C). 
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2.1.3 An Example for Growth Curves 

In a longitudinal growth study individuals are measured repeatedly. In terms of two-level 

models, the individual is regarded as a level 2 unit and the measurements on an individual 

are level 1 units. A comprehensive exposition on the modelling of longitudinal data can be 

found in Goldstein (1986a, 1987, 1989) and fitting polynomials is suggested as a promising 

approach to summarize growth. 

If yy  denotes the ith measurement of person j at occasion i and ty, the within-unit equation 

of a two-level polynomial growth model, in this case a quadratic, is expressed as follows: 

yij  = 	+ 	+ 132itij2  + eii, 	 (2.4) 

where eq 's are the level 1 random terms . It is assumed that the level 1 random terms for an 

individual are distributed independently with mean 0, Var(eii )= a: and Cov(eip eri )= 0. 

In order to obtain each person's unique curve, a between-person, that is, between-unit model 

is needed. A simple example is 

130j = Y1 + U0j,  

Plj = Y2 + 141j,  

I32j = Y3 + U21,  

where the y's are the fixed parameters of the mean growth curve; the u 's are level 2 random 

terms, departures from the overall means by each person's own parameters. We have 

Var (ukj ) = 0uk, 

Cov(uki,ukv )= o2  ukk'" 

Some characteristic, for example sex (denoted by Z31), which remains fixed across occasions, 

can be incorporated into the between-unit models to account for coefficient variability: 
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Poj = Y1 Y2Z4 uop 

13  j = Y3 1-  Y4Zsj Ulp 

132j = y5  + y6Zsi U2i • 
	 (2.5) 

Combining the within-unit model in equation (2.4) with the between-unit model in equation 

(2.5) gives the model with a simple level 1 covariance structure as follows: 

'PO;  
If 

\ 12j 

= 

/1 

0 

0 

; 

0 

0 

0 

1 

0 

0 

Zsi  

0 

0 

0 

1 

0 \ 

0 

;, 

?I \  

Y2 

Y3 

Y4 

Y5 

\Y6 

+ (1,tij,t,D 

I uoi  

ulj  
\ uzi  

+ eii. (2.6) 

The variance of the level 2 random part for yti  is 

4 	 2 	3 
02  + t.

202  + t..0 	2t..0 + 2t..cr + 2t..cr 2  u0 	tj u 1 	tj u 2 	tj u01 	u02 	tj ul 

and the variance of level 1 random part is 

02,0. 

In the model of equation (2.6), yl, y2, y3, yoys  and y6  are the fixed parameters to be estimated; 

0:07 4:31!1,  G:242, 0u01 Gu 02 are the random parameters at level 2 to be estimated and cr:o  at level 

1. 

A model with a complex level 1 covariance structure is practically useful. The work of 

Goldstein (1987) has introduced such elaboration of modelling level 1 dispersion as a 

function of other characteristics, such as age, gender etc. 

Suppose level 1 random terms are a linear function of time, the model in equation (2.6) can 

be further structured as: 
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2 

/1 

0 

0 

Zs]  

0 

0 

0 

1 

0 

0 

Zsj  

0 

0 

0 

1 

0 

0 

; 

/ 
71 

Y2 

73 

74 

75 

\Y6/ 

+(1,toti2j) 

u0j 
uq  [ 

U2j 

+(1, 
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(2.7) 

Thus level 1 variation, a quadratic function of time, is given by: 

c32  + 2t-cy + t2c32  e0 	e0t 	et* 

Similarly, if level 1 random terms in equation (2.6) are assumed to be a linear function of 

Z where Zs  is a (0,1) dummy variable for sex. We have the level 1 component 

(1, Zsi) (e°4), 
esti  

and the level 1 variation is 

(2 o ÷ 2Z sj°  e0s Zs2jc5:s• 

Setting o = 0 so that the variation of level 1 is a linear function of sex: 

(3e0 + 2Zsj.0cos,  

i.e. for ; = 1 the variance is cr o  + 2creos  and for ; = 0 is oL (Goldstein, 1987). 

Using general notation the model in equation (2.7) can be expressed as 

I t 

Zsi  0 0 0 0 Y2 u0j 
yii  — (X00X14,X2ii) 0 

(1 

0 1 Zsj  0 0 + ("Vow  X up X2ii) 14 ki i + (Voi j, X iii)(e 04) 
74 ' 	e,ij  

0 0 0 0 1 4,11  u2j 
75 

\Y6/ 
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that is, 

(xiizif)
T
r +4"+x(Tiyieii. 
	 (2.8) 

Fitting a polynomial of degree p is quite straightforward. 

2.2 Splines 

In this section multiphase, that is, change of phase models, or piecewise regression is to be 

described first (Cox,1971; Seber and Wild, 1989) followed by an example of a growth model, 

which was the first linear model proposed for growth in stature from birth to maturity (Reed 

and Berkey, 1989). Then attention will focus on reviewing the contribution to the literature 

of Smith (1979), Wold (1974), Eubank (1984), Gallant and Fuller (1973), Cox (1971) and 

Seber and Wild (1989) on piecewise polynomials. 

2.2.1 Piecewise Regression 

There exist situations where the trajectory to be studied is composed of several regressions 

formed by piecing together different curves over different intervals. 

Suppose a = o  < 1  < < 	< l m  = b and a regression relationship between y and x is 

f(x;13;) =L(x;131), 	if  50 < x 

= f2(x;132), 	if 1 < x 

= f,„(x,[3„,), 	if 	ff  _ 1  < x < „„ 	 (2.9) 

where fi(x ;131) (j = 1, 2,...,m)   are linear function of x. Here E[y Ix] = f(x;(3) is called 

piecewise regression or multiphase regression; the m submodels are referred to as phase 

models or regimes; the 	as changepoints or joinpoints. Typically the end points of the 

intervals are unknown and must be estimated which leads to nonlinear estimation. 
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Models of the form (2.9) are intended to fit curves in which each submodel can be described 

by a simple parametric function such as a straight line and there may be fairly abrupt changes 

between regimes including noncontinuous and continuous cases. 

In the continuous case, suppose for j = 1, 2, ..., m -1, q3  is the first derivative of f(x;13;) 

with respect to x which is discontinuous at x 	namely, asf/axs is continuous at 1j for 

s = 0, 1, ...,qj- 1 but discontinuous for s = qj. The following constraints are imposed to 

make the curves smooth at joinpoints: 

fr)(V = frA 1 2 	m -1; s = 0,1, 	- 1. 	 (2.10) 

Thus, for fixed the model (2.9) with linear submodels becomes a linear regression model 

subject to linear constraints. There have been a variety of computational techniques for 

piecewise regression models. Maximum likelihood estimation is often used. A Bayesian 

framework can also be considered. Seber and Wild (1989) provided references. 

The segment can be a straight line or other function, for example, Lerman (1980) fits the 

form f(x) = xl(x - 1) as one of submodels and also considers segments of the form 

f(x) = cos(x). Reed and Berkey (1989) have proposed a piecewise linear regression in which 

linear, logarithm and increasing powers of the reciprocal terms are included, which appears 

to be the most recent work using piecewise regression in the field of growth curve fitting. 

THE LINEAR MODEL OF REED AND BERKEY (1989) 

The linear model of Reed and Berkey (1989) is composed of the five-parameter model 

(Berkey and Reed, 1987) for early childhood, 

Mt ) = (1)01 + (lint + 4•211n(t) + 4:031/t + 4141/t2, 	t < 

and an extension of this five parameter model for adolescence, 

f2(t) = 4)02  + (012 1n(t) + 4122/t + 4,32/t2  + (1)42/t3. 	t 
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where t is age (in month) and f(t) is measurement of height. is the joinpoint or the boundary 

between the two periods of childhood and adolescence. 

If age is set to be near zero at conception and 1 at the joinpoint by the following linear 

transform, 

x = (t + 9)/( + 9), 

then the above Reed models can be expressed in the form of the piecewise regression : 

fi(x ) = 

f2(x ) = 

1311x + 1321  ln(x) + 13 / 	13 / Poi + 	 . 31 X  + 41 X29  

001 1311x + 1321  In(x ) + (331/x + Padx2  

(302  — ( 11x + 1312  ln(x) B / 	B . 22 X  . 32/ X2  + P42439 

x < 1.0, 	 (2.11) 

x a 1.0. 	 (2.12) 

The residuals from these models are assumed to be independent and distributed as N(0,02). 

With an indicator z, the equation (2.11) and (2.12) can be combined into a single function 

f(x)  = poi + flux + 1321  110) + 1331/X + P41/X2  

I O2z —13lizx +1312z ln(x) + 1322z/x + 1332z/x2  + 1 42z/x3, 	 (2.13) 

where, 

z =0, if x < 1.0 

= 1, if x z 1.0. 

To smooth the curves, the following continuity constraints are imposed on the function and 

its first derivative: 

Aski)=Aski), s = 0,1 

where 

f1°)(1) = P01 ± P

• 

11 + P

• 

31 + P

• 

41; 

+ P irk 	P01 + P

• 

02 + P

• 

31 + P

• 

22 + P 	 4'); 41 	. 32 	_ 
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.41)(1) = Pll + 1321 - P31 - 21341; 

AI)(1) = 1321 - 131 - 21341 + 1312 - 122 - 21332 - 31342' 

These two constraints lead to the following two expressions: 

1302 = 1311 - 1322 1332 - 1342 

and 

1311 = 1312 - 1322 - 21332 - 31342' 

Substituting these two expressions for 1302  and 1311  in the ten-parameter model (2.13) and 

rearranging terms results in the following eight-parameter Reed model: 

Y = 130  + IV* ) + 132/x + 133/x2  + 134(z + x — zr + zln(x))+ 

f35(-2z — x + zr + z/x ) + 136(-3z — 2x + 2zx + z/x 2) + IV-4z — 3x + 3zx + z/x3 ). (2.14) 

Obviously, the advantage of the linear function with the indicator z is that the model can be 

fitted by ordinary least-squares linear regression, which is easier than using a nonlinear 

procedure. 

It seems that a reasonable choice of joinpoint x = 1 can be achieved by ad hoc solutions such 

as choosing the model with the smallest weighted residual variance with the joinpoint located 

at a specified age. It is necessary to experiment with a series of the ages in order to make 

an optimal choice for the boundary age. Ages (in years) of 6.25, 7.25, 8.25 and 9.25 were 

considered for girls and 7.25, 8.25, 9.25 and 10.25 for boys (Reed and Berkey, 1989). 

Up to now the eight-parameter Reed model is the first linear model valuable for describing 

the human growth curve from birth to maturity. Good fitting was reported for two girls and 

two boys in distance curves but not in velocity curves. No population growth study has been 

made by using this eight-parameter model. 
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2.2.2 Piecewise Polynomials 

A piecewise polynomial regression, or a segmented polynomial regression is a special 

continuous case of piecewise regression with continuity constraints of various orders in 

which the individual phase models are polynomials. The terminology of piecewise 

polynomials, segmented polynomials and grafted polynomials are often used 

interchangeably. 

Let us return to the continuous case of piecewise regression (2.9). We assume 

,Y; = .Ax;;P, 	+ ei, 	= 1,2,...,m ),  

where E[ei].= 0, Vai[ei]= &, and e's are independent. Suppose the jth submodel in 

piecewise regression (2.9) is a polynomial of degree pi, the piecewise polynomials can be 

expressed as 

111 

f • ( 	= 	I 3 X 	< 	 j = 1, 2, ..., m. (2.15) 

Again we assume 

Pi 	• 

qj  continuous derivatives 

ds P;.1 

at joinpoints 	j a  1, ...,m —1, i.e. 

[ds 
dx, i20 (3i,x1  = 

x = 
S. 

"A 
, 	s 	0,1, ..., qi  —1. 

x 
(2.16) 

SPLINES USING '+' FUNCTION REPRESENTATION 

There are various representations of piecewise polynomials. However in this thesis the focus 

is on the general form of piecewise polynomial, using '+' function representation, i.e. 

u+  =u, 	if u > 0 

= 0, 	if u s O. 	 (2.17) 
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With this '+' function, the above model (2.15) can be written as a linear combination of 

terms 1, x,x2, ...,xP(p = maxj  pi) and terms of the form (x —)+ (r = 1, 2, ...,p) in such a 

way that all the continuity constraints are taken care of implicitly: 

f(x) = 2 Cox' + 2 (1)rj(x — Mr+ 
	 (2.18) 

r 

It means that if no values of r appearing is less than 2, then f has continuous derivatives 

with respect to either ljj  or x of order 0, 1, ...,r — 1. ( j  — x)+r is another form of '+' function 

which can be used to structure the model (Seber and Wild, 1989). 

A q-spline is a special case of the the model (2.17), in which every polynomial phase model 

has degree q and there are q — 1 continuous derivatives of x at the joints. A cubic spline is 

a q-spline where q = 3. 

We now review three examples of Gallant and Fuller (1973), which illustrate how polynomial 

phases of different degree in models (2.15) with constraints in (2.16) can be expressed by 

a '+' function as in the model (2.17). 

The quadratic-quadratic model (m = 2, p1 = /92  = 2): this model is composed of the first 

quadratic f1(x) and the second quadratic f2(x), 

a  
f1(x) = 1301 + 1311x + P2IX 9  a s < 1; 

f2(x) = 802 + 1i2X  + 1322x2,1 5 X <b. 

The continuity constraints (2.16) on the function and its first derivatives are, 

2 
1 + 	+ 	= 13  +1 	+ 	

tit, 2 
01 	n 1 	21 1 	02 	12 1 F'22`v1 

and 

	

213211 	213221. (2.19) 
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With these constraints, the 601  and 1311  are then be substituted from f1(x) by the expressions 

in terms of other parameters in the above equations of constraints to give 

Mx) = P02 + P12x  1322X2  + (P21 - P22) (1 	)2* 

that is, 

ft(x) .f2(x)+ (1321 — 120 (1 — x)2. 

Then fl(x) when — x > 0 can be reparametrized as 

f1(x) 	ozx 4)3x2  oAl -x)+  

and f2(x) when —x s 0 can be written as 

f2(x) = 4)1+ 02x + 43x2, 

where (pi  =B (I) 	B  02, 4)2 = 129 3 = 22, and 4)4 = 1321 - 1322. 

Now, with the '+' function (2.17), f1(x) and f2(x) can be expressed by f(x), 

.i(x)= + 4)2x 03x2 	— x)2+. (2.20) 

The initial polynomial term 01  + 02x + Cx2  thus expresses the second quadratic f2(x) when 

—x < 0 and the initial polynomial term together with the '+' term ( 1  — x)2, expresses the 

first quadratic f1(x) when —x Z 0. 

To express a quadratic-quadratic model either —x)2+  or (x — )+2  can be used. If ( 1 —x)+2  

was replaced by (x — 1)2., in (2.20), the initial polynomial term is the first quadratic f1(x) and 

the the initial polynomial term together with the '+' term is the second quadratic f2(x). 
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1(x) = 0 v 2 2 0,4 - 
j r 

(2.18) 

The quadratic-linear model (m 	= 2,p2 = 1): this model consists of the first quadratic 

fi(x) and the second linear f2(x) 

, 
MX) = (301 + . 11X  + 1-'21A'

2 
 9 

f2(x ) = 1302 + 1312X,  

a s x < 

s x < b . 

The continuity constraints on function and first derivative are: 

Pot + 	N21
t
`,

2  
1 = 1'02 +  R121 

and 

Pit + 2I3211 = 1312' 

With these constraints, the f301  and 1311  are then be substituted from f1(x) by the expressions 

in terms of other parameters in the above equations of constraints to give 

.fi(x) = Ro2 + 1312X  + 1321(1 

that is, 

fi(x)= f2(x) + R21(1 

Then f(x) can be reparameterized as 

/(x) = 01+ 02x + 03(1- x)2+, 	 (2.21) 

where 	= r3029 (1)2 = 1312, (03 = 1321. The initial polynomial term 4)1  + 	is thus the second 

phase, the linear model and the initial polynomial term together with the '+' term —x)+ 

is the first quadratic fi(x). 
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If 	x )+ was replaced by (x - 1)24.  in (2.21), the initial polynomial term is the first linear 

and the the initial polynomial term together with the '+' term is the second quadratic to 

express a linear-quadratic model instead of the quadratic-linear model. This means that 

(x - 1): is not able to express this model without imposing constraints on the coefficients 

of (Vs. 

The quadratic-quadratic-linear model (m = 3,p1  = p, = 2,p3  - 1): this model is composed 

of the first quadratic fi(x), the second quadratic f2(x) and the third linear function f3(x) as 

follows: 

f1(x) = P01 + P11X  1321X2, 	a s x 

f2(x ) = 1302 + P12X  1322X29 
	 < 2; 

f3(x) = 1303 + 1313x, 	 2 s x <b. 

Similarly, subject to continuous constraints on the function and the first derivative, the 

quadratic-quadratic-linear mosel is expressed as 

fix ) = + 4)2x + 4)3( - x )2. + 04(- .02+, 	 (2.22) 

where ob = 1303,  .2 = 113, T tb 3 = 122, and (1/4 = P21 - 1322, while the linear-quadratic-quadratic 

model can be written as 

.fix) = 01+ 02X + 4 3(x -  1)2+  + 04(x  - 2),• 

Thus, the functions 1, x, x2, ...,x", ( 1  - x)+, (p = maxj  pp, j = 1, 2, ..., m - 1, r = 2, 3, ...,p) 

form a basis for piecewise polynomial satisfying that the functions and the first derivatives 

are continuous at joints. These examples show that to impose continuous first derivatives 

on the model we can delete - x)+, and so on for other constraints (Gallant and Fuller, 

1973). 
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We now write the piecewise polynomial in equation (2.18) in a more general form to give 

m-1 Pi 

i 
f(x) = 0 (1)i0xi  + 	2 (0,1(x - - 	r 

(2.23) 

where n sp,Os ki 5 pj. The continuity constraints can be imposed on the model by setting 

the value ki  in this way: if qi  -1 continuous derivative are required at j  let k3 be q1 so that 

the terms - x)+ with r s q1-1 are dropped from the model. 

A n-spline is a special case of the general model in the equation (2.23) when 

ki  = q j  = n, j = 1, 2, ..., m -1, whose function values and first n -1 derivatives agree at the 

points where they join. Another special case is the unconstrained or discontinuous piecewise 

polynomial when ki  = 0, j = 1, 2, ..., m - 1. The former case is the smoothest one and the 

latter is the most discontinuous. The general form of piecewise polynomial itself sometimes 

is termed a weak spline or deficient spline, or even spline. In spline terminology, the 

joinpoints are termed knots. 

It is not generally possible to use the basis without imposing constraints on the parameters 

4 unless the degrees of polynomial phase models are either nonincreasing (p1  Z p2 	P,„) 

or nondecreasing (p1  5 /92  s s pm). The form -x)+ or (x - V: can used respectively 

without extra constraints (Seber and Wild, 1989). For instance, if (x -V: is used instead of 

- x)r+  to express a model with nonincreasing degrees we need to impose constraints that 

some parameters are zero or certain pairs of parameters sum to zero so that the spline can 

model the specified polynomial phases and is continuous on its function or its derivatives. 

An example of a cubic-quadratic-linear spline using the (x 	form and continuity 

guaranteed on its function was given by Smith (1979): 

= (I) 	(11 y 	2  00 + T10- + W2OLX (x - 2)2+] (030[X
3 
- 	- 1)3+  - 3 1(X - 2).4

2  
1 

2 	 2 
Ci(X - 	(1)+ +4),,i[(X - 	- (x - )41+ (012(x 
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while the use of the form -x)+  in this case makes the presentation simpler, giving 

f(x ) = (1)1 + (I),x + (I)3(1 - x ): + (1)4( 2 - x )+. 

Without extra continuity constraints neither '+' function -x)+ nor (x - V+  alone can be 

used to express a model which mixed by nonincreasing and nondecreasing submodels, such 

as linear-cubic-quadratic-linear. In chapter 3 and 4 we will discuss whether the '+' function 

has sufficient flexibility for growth studies with wide age ranges. 

B-SPLINES 

Apart from the piecewise polynomials in (2.15) and splines in (2.23), B-splines are also used 

(Wold, 1974; Eubank, 1984). 

Suppose with m -1 knots a < < 1 2  < < l m  _2 < tm  < b the spline function of degree 

n is obeying continuity conditions for the function itself and its first n -1 derivatives. Most 

commonly, n equals three, a cubic spline which can be expressed as follows: 

f j(X) = (1)0i 	(02.iX
2 

+ 4)3iX
3
, 	_ 1  5 X < 	(() = a ; m = b). 

In terms of B-splines, for cubic splines: 

m +1 
f(x) = 	X,13 t(x). 

t = -1 

The /3,(x )'s are defined by means of divided differences 

+2 	 +2 
B,(x) = 

t 	

(x - 	
t 
 11 (k 

k =t -2 	 s =t -2 
sok 

where additional knots are defined by 

k = 1 -(1-k)( 1 -a), if k s 0 

(2.24) 

(2.25) 

-m +1)(b 	if 1 m. 	 (2.26) 
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The definition of (2.24), (2.25) and (2.6) make the B-splines have the property 

Bt(x) N 0 	when x > +2 or  X < -2' 
	 (2.27) 

An advantage is that the number of the unknown parameters (at) of B-splines is the same 

as the number of free parameters in the spline function. This leads to the fitting B-splines 

as a linear problem once the positions of knots are specified. For example the number of 

free coefficients of a cubic spline is equal to m (n + 1) — n(m —1) = m + n = m + 3, which is 

the same number of (X) in (2.24). Another advantage is that with the property of (2.27) 

B-splines have computational efficiency when a large number of knots are specified. This 

is due to the heptadiagonal structure of the moment matrix (XTX) in least squares (Wold, 

1974; Eubank, 1984). 

The computation of the polynomial coefficients can be obtained from the B-splines 

coefficients in equation (2.24) by solving the following equations: 

fmR)= 
643J 

 =2x,B,"'( j), 

f'R)= 202j  64)3A = 1,13,"(M, 

fR) = (1)ii  +20A+ 303g = kr B 

Mi) = of + 4)A 4)2A2j (1)3j = ktBt(M, j = 1,2,...,m. 	 (2.28) 

We can see from the equations that B-splines are not straightforward for statistical 

interpretation on these polynomial coefficients. 

SMOOTHING SPLINES 

Smoothing splines are an approach to the estimation of a smooth curve with a certain degree 

of smoothness. We can establish features of f such as its maximum value or prediction 

intervals for y, although the model parameters have no particular interpretation. 
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Suppose the data set (xi, yi), with a s xi  < < x„ s b, are generated by a regression model 

yi  = f(xi) + ei 	 (2.29) 

with E[ei= 0, Var[ei ]= (32, i = 1,2, ...,n. The smoothing involves the choice of the I as 

the function f with m derivatives which minimizes 

2  S 	= 	 f(Xi )]'+kf b( dindx(„,x) ) cbc. (2.30) 

The smoothing spline approach is a nonparametric regression problem. The first term is a 

least squares term. The second term is a 'roughness penalty' which is used to filter out very 

local variability due to random error so that the curve ! does not have too many bends. The 

parameter A. > 0 adjusts the relative weighting given to the error sum of squares and the 

roughness penalty. Thus it controls the degree of smoothing. If k is too small, the spline will 

overfit. If X is too large, the smoothing term dominates and removes not only the noise but 

also the 'signal'. The method of cross-validation for choosing X has been an option for 

choosing X. A full illustration of the approach can be found in Silverman (1985), Wegman 

and Wright (1983). 

2.2.3 Computation for '+' Function Splines 

Among the above presentation of splines, the '+' function representation (2.23) is clearly a 

very useful one since it converts the spline (segmented polynomial) problem into an ordinary 

multiple regression one (Wegman and Wright, 1983). We choose to use '+' function splines 

for their relative ease of computation and interpretation. 

Algorithms reviewed in this subsection are where the coefficients in the piecewise 

polynomials have joinpoints specified. Some hypotheses for splines with special 

interpretations will be discussed. 
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WITH FREE JOINPOINTS 

Piecewise polynomials with joinpoints to be estimated from the data become nonlinear in 

parameters and estimation by least squares is difficult because it is very difficult to find 

joinpoints that give an absolute minimum for the residual sum of squares, although there 

exist a few strategies for the optimal selection of number and position of the joinpoints. 

Gallant and Fuller (1973) illustrated the procedure of using Modified Gauss-Newton fitting 

for piecewise polynomials with '+' function representation. Ertel and Fowlkes (1976) 

reviewed some algorithms for piecewise linear regression and proposed three algorithms in 

this direction. More detailed illustrations and references are given by Seber and Wild (1989). 

WITH FIXED JOINPOINTS 

There are several algorithms for different bases of piecewise polynomials with joinpoints 

or knots specified. Generally speaking, with the basis of the piecewise polynomial in 

equation (2.15) least square techniques are available for estimation (Cox, 1971; Poirier, 

1973; Buse and Lim, 1977) and with the basis of '+' function representation ordinary least 

squares can be easily applied (Smith, 1979; Seber and Wild, 1989). The cubic spline is used 

for purposes of illustration. 

a) Using Restricted Least Squares Method 

The basis of model (2.15) is a linear model subject to linear constraints. Cox (1971) has 

provided a comprehensive account of both the piecewise and spline regression problems 

and suggested two general algorithms for the continuous case with fixed knots, in which 

Golub's method is used for solving a general linear least squares problem with linear equality 

constraints. Poirier (1973) proposed a least squares cubic spline regression method (CSR). 

Buse and Lim (1977) proved that the Poirier's CSR method is equivalent to the restricted 

least square estimation (RLS) and applied RLS to the same data set analyzed by CSR. Here 

the restricted least squares method used by Buse and Lim (1977) is demonstrated. 
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The cubic splines in equation (2.15) can be expressed as follows: 

y = fi(x ) = 	+ 	+ (32ix2  +133ix3, 	_1  s x s 	j = 1, 	m, 	 (2.31) 

with the continuity constraints on the function, the first derivative and the second derivative 

as following: 

f( 1)=.6.1W, 	j =1, ...,m -1 	 (2.32) 

fA)= f +AV, j =1, ...,m -1 	 (2.33) 

.fj"(M = f1,1"(V, j = 1, ..., m -1. 	 (2.34) 

The cubic spline then is a linear model with 4m parameters and 3(m — 1) linear restrictions. 

It can be written in matrix format: 

Y =X(3 + e 	 (2.35) 

and 

C [3 = g, 	 (2.36) 

m 

where Y is n x 1 vector,n = 12 ni; X ---Diag[X1,...,X).] is a n x 4m block diagonal matrix 
-1 

where Xi  is an n1  x 4 matrix of observations; 13 is 4m x 1 vector of coefficients; C is an 

constraints matrix of 3(m — 1) x 4m and g is a 3(m — 1) x 1 vector, usually g = 0. Minimizing 

the sum of squared residuals of (2.35) subject to the constraints of (2.36) gives the RLS 

estimator for 13 as 

PR = 3 + (xTx) 1C-i[C (xTx)-'c T] (g — C 0), 	 (2.37) 

BIBL. 
LONDIN. 
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where p = (xTx)-ixTy, the ordinary least squares estimator. Two additional restrictions can 

be imposed on the end points and more details are shown in the work of Poirier (1973) and 

Buse and Lim (1977). 

However the restricted least squares procedure is cumbersome and a total of 4m parameters 

must be estimated for a cubic spline compared to the free number of parameters m + 3. So 

for a problem with m = 3 we need to estimate 12 parameters instead of 6 free parameters. 

b) Using Ordinary Least Squares 

Now we turn from the piecewise polynomial basis to the '+' function basis. It has been 

mentioned that with the '+' function representation, the number of parameters to be estimated 

is the number of free coefficients as the continuity constraints have already been imposed 

implicitly. The model can simply be expressed as an multiple regression 

Y=X13+e, 	 (2.38) 

where 1 is a k x 1 vector of coefficients to be estimated, Y is a n x 1 vector of responses, n 

is the total number of observations; X is a n x k design martix and e is a n x 1 vector of 

residuals. The ordinary least squares estimator of p in equation (2.37) is 

R = (xTx) lxr. 	 (2.39) 

However, the parameterization using the '+' function can lead to ill-conditioned design 

matrices, for example, when many knots are specified or when the knots are improperly 

placed. Thus, the choice of the number and positions of the knot is an important and difficult 

problem. Wold (1974) gives a full illustration on this problem reviewing his experience with 

spline functions. 

Choice of knots: Wold (1974) proposed that the knots in a spline function should not be 

seen as ordinary free parameters, but their specification should rather be thought of as 
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analogous to the choice of functional type. Hence, the knots should be chosen to correspond 

to the overall behaviour of the data. Here are the rules of thumb suggested by him for assisting 

judgement in cubic spline cases: 

1 Have as few knots as possible. 

2 Have not more than one extremum point (maximum or minimum) and one inflexion 

point per interval. 

3 Have extremum points centred in the intervals. 

4 Have inflexion points close to knots. 

Wold (1974) recommended simulations to investigate the knot placing problem in the actual 

case by adopting these rules of thumb and transformation of data before fitting of splines if 

the data are not polynomial-like. 

Testing: using the '+' function representation, testing whether a knot can be removed is 

easily accomplished by the hypothesis 

Ho: = 0 

with t-statistics from the output of a multiple regression. 

Smith (1979) has fully discussed using ordinary least squares to fit splines with '+' function 

representation and carried out tests of hypotheses by using standard multiple regression 

procedures. In the following section, the term regression splines will be used for the splines 

with '+' function representation. 
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Chapter 3 

Two-level Growth Models for Length 

This section presents models for length, focusing on head circumference (HC) and supine 

length (SL) or height (HT) which are the most difficult to fit over wide age ranges because 

there is a steep increment at early ages in HC and a large pubertal spurt increment in supine 

length and stature. First, for the within-individual model, extended splines using the '+' 

function representation are proposed in section 3.1. Then these extended splines, are 

incorporated in a 2-level Model with covariates, that is, the population based model in section 

3.2. Section 3.3 deals with estimation and prediction. Hypothesis testing is discussed in 

section 3.4 (see Goldstein, 1987). Finally model checking using estimates of residuals is 

discussed in section 3.5. 

3.1 Within-individual Model: Extended Splines 

Though the general form of the conventional piecewise polynomials (2.23) is a useful tool 

there are some problems when it is applied to fitting of growth curves, especially with wide 

age ranges: 

# it is not suitable for data where behaviour is non-polynomial; 

# as the degree of the polynomials become smaller when equation (2.23) is differentiated 

the curves become smoother, that is, fluctuate less. This cannot deal with the fact that 

velocity or acceleration curves are observed to have more fluctuation than the distance 

growth curve itself (Gasser, KOhler,ller, Kneip, Largo, Molinari and Prader, 1984). 

As reviewed in section 2.1.1 the piecewise regression of Reed and Berkey (1989) used the 

log and reciprocal terms with constraints on the function and first derivative for the two 
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segments of the regression. The computation will become more complicated if constraints 

on second derivatives are considered. So far no attempt has been made to add the log or 

reciprocal terms into the '+' function splines of equation (2.23). 

The extended splines proposed in this section will be the first attempt at fitting growth 

models. The extended splines are an extension of piecewise polynomials of equation (2.23) 

with terms other than powers, such as terms of log or reciprocal if necessary. They can be 

written as 

Po 	m -1 P, 

f(x) = 	(picrx' + 2 2 	(x - j4. y1  G1  In(ax + b)+ y2G2/x, 

where Gl and G2 are constant, either 1 or 0; m —1 is the number of joints and m is the number 

of segments in the spline; a and b are given constants and the values of knots are also given 

being s  < < 	< _ 1, 

where 

(x— 1)3+  =0, 	if x 5 1  

= —1)3, If x > 

The log or reciprocal terms are introduced into the extended splines of model (3.1) in order 

to: 

* describe data which are not purely polynomial-like; 

allow more fluctuations in the velocity and acceleration curves than in the distance curve 

itself. 

It is obvious that the extended splines of model (3.1) inherit the advantages of conventional 

splines of model (2.23). 

(3.1) 
i = 0 	j =1 r =ki  
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The location of and and the value of p j, m can be determined by the overall behaviour 

of the data assisted by the adoption of the rules of thumb suggested by Wold (1974). We 

will allow the model (3.1) to have both terms (x 	 -,x)r+  if they do not overlap so 

that the model is neither restricted by nonincreasing or nondecreasing degrees of polynomials 

in each phase model. 

We require a limitation on the number of coefficients 1 to be estimated and we suggest this 

is no more than eight as there are only about thirty to forty observations on each individual. 

Eight parameters have been considered for measurement of stature by several authors (Bock 

and Thissen, 1976; Reed and Berkey, 1989; Jolicoeur, Pontier and Abidi, 1992). Four to six 

parameters will be experimented with head circumference measurements. 

Extended Splines for Head Circumference (HC) 

Early in infancy there is a rapid increase in head circumference (HC) while after infancy 

HC increases slowly at least until 18 years (Roche, Mukherjee, Guo and Moore, 1987). This 

suggests a more complex pattern of head circumference growth curve in early childhood 

than that at other age ranges. 

Let yii  denote the ith head circumference measurement of the person j at time tij  (in years). 

Model for head circumference proposed is as follows: 

m-1 	 n - I 
ct  

Yij = Poi;  + k  Nkj'ij Np + In(12tii + 1) +
k1 p

+ + k,Ak 	
k

v

1
Vp+m+k,j(tij ` 

t 
,k) +9 

Noij = I30; + 
	

(3.2) 

where 

- 03+  = 0, 	if t 

= 	-t)3, 	if t < 

and 
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(t 	1)3+ -0, 	if i s i  

	

= (t 	if t 

where p is the degree of the polynomial phase. The values of knots are given so that 

	

<~2 < < 	< < 2 < < _ lin this model, the total number of knots is equal to 

m + n - 2. The curve consists of m + n -1 segments, each of which has continuous functions 

and continuous first and second derivatives. 

For boys measured from birth to 15 or so, the initial knots are chosen at 2 and 10 years 

according to the nature of the growth and the model with six coefficients is written as: 

yii =1304 +13iitii +1 i32it2 +133j ln(12tii + 1) +134j(2 - 	+135i(tii - 10)3+. 

	

Pou = Poi + eij. 	 (3.3) 

Extended Splines for Height (HT) 

We consider the model not including the measures at birth. Let person j be measured on 

response y at age t (in year). For the jth person on the ith measurement of height, two models 

A and B will be explored. 

MODEL HT-A: 

p 	 m
[
-1 

f k 
ij = POij + k 1 l'

t 
kj'

f
ij 	+1,j 1n(ti.) + 

k 
i3p+t+k,Ak 

=  

	

Poi; = Pot + eit. 	 (3.4) 

The values of knots are set at < < < t„, _1. In this model, there are m -1 knots and 

m segments, each of which has continuous function and continuous first and second 

derivatives. 

The intial values of knots are set to 9, 11, 13, 15, 17 years when girls were measured after 

birth up to 18.5 years. Thus the model with eight parameters can be written as: 
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yij  = 1304 	+ 132j  111(tij) 133j(9 tij): + 134j  (1 1 — tij)3+  135j(13 — tij): 1361(15 — tij)3+  13417 — tij)3+, 

Pot.; = ROj + eij• 
	 (3.5) 

For boys measured after birth up to 18.5 years the intials values of knots are set to 9, 11, 13, 

15, 17.5 years. 

Model HT-B: 

n - 

yii  = 1304  + 	+ 132j  in(tij) ÷ 133j  litij  / 133.0A — 03+, 
k =1 

Poi; = Poi 
	 (3.6) 

The values of knots are set at 1  < < . . . < n _ . There are rt — 1 knots and rt segments, 

each of which has continuous function and continuous first and second derivatives. The 

initial values of knots are 9, 11, 13 and 17 years when girls were measured after birth up to 

18.5 years and the model is written as follows: 

yii  = 1304 + Nlj tij + 132j  111(tij) 1331111-11  134j(9 — tij)3+  1-135i(11 tii)3+  + P6i(13— tij)3+ + Ni(17—tii)3+, 

Poi;  = Poi 
	 (3.7) 

The extended splines shown above are useful for many purpose on the grounds of simplicity 

and flexibility and possess the property of having a continuous function and continuous first 

and second derivatives without extra constraints. The form of these functions makes them 

suitable for use in multilevel models for descriptions of the trajectories of the growth and 

the variation between individuals together with covariates. 

3.2 Between-individual Model 

In terms of a 2-level model, individuals are regarded as level 2 units and measurements as 

level 1 units in longitudinal growth data. The functions (3.2), (3.4) and (3.6) are the 
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within-individual model, in which the term is referred to the level 1 'residual' for the ith 

measurement in the jth individual. The between-individual model can be expressed as: 

Po; = Yoo /lop 

= Yto + U11, 

etc. 	 (3.8) 

where yoo  is the mean intercept and yio  is the mean linear growth rate. 

We assume that the level 1 random term elf  is distributed independently from each of the 

level 2 random terms and we have 

E(e11) = Cov(e9,ekl) = E(u.i ) = 0. 	 (3.9) 

Berkey (1982b) pointed out that the above assumptions may be questioned as there are 

correlations between errors when measurements are a very short time apart due to random 

fluctuation in growth rate. Berkey (1982b) and Goldstein, Healy and Rasbash (1994) 

presented the evidence that it is reasonable to assume uncorrelated errors when the observed 

ages are well spread out in time. El Lozy (1978), Preece and Baines (1978) and Jolicoeur, 

Pontier, Pernin and Sempe (1988) have made this assumption. In our study the target ages 

are similar to those of the above papers and we shall make this assumption also. 

The variance of uoi  and u1  and their covariance are denoted by a 0, o2.1  and o respectively. 

The level 2 variances c7:0, &„„ ... are examined to find out which coefficients should be 

considered random. The coefficients of the intercept 130j, and slope rov  are usually treated as 

random variables at level 2. We may wish to attempt to account for between-individual 

variation in terms of one or more features Z of individuals, for example gender, and the 

model can be extended by including such explanatory variables to give the following: 
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Pot; = Yoo YolZti uoi et;, 

etc. 	 (3.10) 

Likewise the slope, etc. coefficients can be modelled as functions of level 2 explanatory 

variables. Other features such as karyotype or protein intake may also be included in the 

between-individual model. Separate coefficients may be fitted for different subgroups, for 

example males and females, and this should be determined by knowledge of the subject 

matter. 

The level 1 variances can be structured. Suppose we assume that the level 1 random term 

is a linear function of age tii  and we specify the level 1 random component as 

eta = eoo  + eoito, 	 (3.11) 

by setting the coefficient of tt, random at level 1. Thus the level 1 variance is now a quadratic 

function of tip  namely 

4.2 0 2tijaeOt ty2oer, (3.12) 

Also we can structure the level 1 random term as a function of gender (see Goldstein,1987). 

Using general notation the model in (3.2) or (3.4) or (3.6) together with their level 2 and 

level 1 model (3.10) and (3.11) can be expressed as 

(3.13) 

whereXii  is a general notation for the known design variables such as 1, tti ,...  and covariates; 

theX(T2).1  andX(To. are rows containing the explanatory variables whose coefficients are random 

at level 2 and level 1 respectively. 
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3.3 Estimation and Predicted Values 

Most statistical packages do not provide efficient estimates of the parameters in complex 

multilevel models. The Iterative Generalized Least Square (IGLS) algorithm (Goldstein, 

1986b, 1987) is implemented in the ML3 software produced by the Multilevel Models 

Project, Institute of Education (Prosser, Rasbash and Goldstein, 1991). ML3-E version 2.3 

was used for the computation in the study. 

The computer package of HLM3 (Bryk, Raudenbush and Congdon, 1993) uses EM algorithm 

of Bryk and Raudenbush (1987) and the VARCL program produced by Longford (1987) 

uses the Fisher scoring algorithm. These can not fit models with a complex level 1 structure. 

Mean Predicted Values 

The estimation for fixed and random parameters using the IGLS algorithm can be found in 

Appendix C. The estimates of the fixed parameters, f', are used to predict the mean response 

variable values for a given set of explanatory variables: 

17' = xzt. 	 (3.14) 

Individual Predicted Values 

The estimates of level 2 residuals ui are given: 

a j = Mi2))7. 	Yi, 
	 (3.15) 

where Y1 denotes the vector of the total residuals for the individual j, S'.. (2) is the estimates 

of covariance of level 2 residuals and E~ is the estimates of the covariance of the Y3. Thus 

predicted values for the individual j can be expressed as 

xzt +x(2V a 	 (3.16) 
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3.4 Hypothesis Testing with Fixed Coefficients and Nested Models 

Hypothesis Testing with Fixed Coefficients 

We decided on the initial knots in the extended splines according to rules of thumb suggested 

by Wold (1974). We may change the location of the knots in order to find an appropriate 

model. A hypothesis concerning p elements of I' can be formulated and tested using the 

estimated standard errors. A hypothesis about p elements oft is written: 

Ho: Cr = K 

For example, the hypothesis with the first p elements may be: 

Y1 = Y2 = • • = Yp = ° 

and the H0  is written: 

Y1\  
/0 
0 

/ 1 0 0 	... 0\ Y2 0 
0 1 0 () 

\ 0 0 0 	. . . 	1 

Y1, 0 

-1 
ML3 will provide the quantity (CI;  — K)T  [C(XZ )T 	(XZ)c,  Tr1(ct_K) and we refer it to 

the x2  distribution with p degrees of freedom. 

Hypothesis Testing with Nested Models 

The loglikelihood test statistic is a means of testing hypotheses about nested multilevel 

models. Suppose we have fitted model 1 and need to check whether one more knot is 

necessary, say model 2. Model 1 is nested in model 2, with loglikelihood functions 1, and /2 
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with number of parameters d1  and d2  correspondingly. The hypothesis of interest is: extra 

parameters are zero and the likelihood test statistic is 

D =2(4-4) 

whereD has approximately a x2  distribution with d2  — d1 degrees of freedom in large samples. 

See Appendix 2.1 of Goldstein (1987) for details. 

3.5 Checking Model Assumption 

The estimates of residual terms can be used to check whether the underlying assumptions 

are adequate, e.g., to check for the gaussianity of the residual distribution. They can also be 

used to study whether further explanatory variables should be added to the model by plotting 

the corresponding residuals against those variables. 

The variance of the residuals for a given level can be partitioned into two components, 

diagnostic variance and comparative variance. For the level 1 residual, the decomposition 

can be given as 

Var(ei1)=Var(e41e0+  Var(e4). 	 (3.17) 

where Var(eiileii) is comparative variance and Var(e 4) diagnostic variance. The diagnostic 

variances can be used to standardize the estimated residuals for model-checking purposes. 

A further discussion of residuals is given in chapter 2 and 3 of Goldstein (1987). 
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Chapter 4 

Examples 

In this chapter the extended splines proposed in chapter 3 are applied to real longitudinal 

data sets of head circumference and height to model two-level structures with covariates. 

Estimates of random parameters and fixed parameters are given together with residual plots. 

Likelihood ratio tests and large sample 'Wald' tests (Pfeffermann and LaVange, 1989) based 

on contrasts (section 3.4) are used. Section 4.1 deals with head circumference and 4.2 height. 

4.1 Modelling Head Circumference (HC) 

Head circumference is an important part of the growth clinic examination. For example, in 

studying children with sex chromosomal aneuploidy, head circumference (HC) is an 

important factor in the anthropometric follow-up of these patients as a possible predictor of 

later cognitive ability (Ratcliffe, Masera, Pan and McKie, 1994). 

The research on longitudinal data of head circumference was focused on obtaining reference 

data. Reference data for head circumference and 1-month increments from 1 to 12 months 

of age in the Fels Longitudinal Study were provided by Guo, Roche and Moore (1988). A 

three-parameter linear model was fitted to the head circumference data for each individual 

and the estimated head circumference data were used to calculate the reference. Roche, 

Mukherjee and Guo (1986) presented a four-parameter nonlinear model for head 

circumference from birth to 18 years. The four-parameter model was used to smooth the 

raw mean and the standard deviation for each age group in the Fels Longitudinal Study 

(Roche, Mukherjee, Guo and Moore, 1987). Recent work of Ratcliffe, Masera, Pan and 

Mckie (1994) studied karyotype effect on head circumference in the Edinburgh Longitudinal 

Study. Extended splines were used to fit data for each individual and the estimates were 
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used to calculate mean and standard deviation for several age groups of controls and 

chromosome abnormal children. No other papers in the literature have dealt with population 

data in studying head circumference with abnormal karyotype as a covariate by using a 

random-effect model. 

DATA 

The subjects include 31 children with sex chromosome abnormalities (10 XYY, 11 XXY 

and 10 XXX) and 163 controls (83 XY and 60 XX), who were at least 14 years of age and 

had been identified by cytogenetic screening of consecutive liveborn infants between 1967 

and 1979. Chromosomally normal male and female infants were recruited as controls 

between 1972 and 1976 from the two hospital in which the cytogenetic survey was being 

carried out (Ratcliffe and Paul 1986). Twins and low birth weight children were not included 

in this study. Details can be found in Ratcliffe, Masera, Pan and McKie (1994). Tables 4.1.1 

to 4.1.3 show the number of measurements and cross-sectional means by age group, where 

HC measurements are in cm and age in years. 

Table 4.1.1 	The Number of measures (HC) by karyotype 

Karyotype Individuals Total Measures Mean Measures per individual 

XY 83 2522 30.39 

XX 60 1781 29.68 

XYY 10 261 26.10 

XXY 11 306 27.82 

XXX 10 285 28.50 
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Table 4.1.2 Mean HC (cm) and number of measures by age group of controls 

Age group Mean 

XY 

S.D. N Mean 

XX 

S.D. N 

0.00 35.58 1.11 83 34.80 0.85 60 

0.25+ 41.90 1.36 85 40.58 0.99 58 

0.50+ 44.80 1.45 80 43.50 1.21 57 

0.75+ 46.65 1.32 73 45.46 1.14 52 

1.00+ 47.99 1.33 82 46.78 1.26 58 

1.50+ 49.51 1.36 80 48.03 1.23 58 

2.00+ 50.46 1.49 81 49.12 1.28 56 

2.50+ 51.14 1.40 73 49.88 1.33 52 

3.00+ 51.52 1.41 83 50.34 1.31 57 

3.50+ 51.97 1.45 82 50.77 1.26 59 

4.00+ 52.38 1.36 85 51.10 1.25 55 

4.50+ 52.70 1.40 76 51.35 1.22 64 

5.00+ 53.09 1.34 83 51.83 1.21 55 

5.50+ 53.09 1.52 78 51.88 1.14 54 

6.00+ 53.47 1.53 75 52.33 1.31 62 

6.50+ 53.45 1.36 79 52.27 1.14 52 

7.00+ 53.70 1.39 79 52.65 1.34 57 

7.50+ 53.95 1.46 78 52.80 1.26 55 

8.00+ 54.12 1.42 78 52.88 1.34 57 

8.50+ 54.27 1.44 76 53.27 1.18 52 

9.00+ 54.39 1.45 84 53.37 1.31 61 

9.50+ 54.58 1.44 76 53.48 1.21 54 

10.00+ 54.81 1.46 83 53.77 1.17 55 

10.50+ 54.79 1.42 78 53.75 1.38 55 

11.00+ 55.04 1.48 80 54.11 1.30 56 

11.50+ 55.09 1.48 78 54.29 1.40 58 

12.00+ 55.42 1.48 77 54.33 1.25 55 

12.50+ 55.35 1.40 79 54.47 1.31 49 

13.00+ 55.60 1.59 75 54.55 1.34 55 

13.50+ 55.91 1.44 67 54.76 1.26 56 

14.00+ 56.15 1.60 80 54.90 1.47 53 

14.50+ 56.46 1.51 80 55.05 1.46 51 



Chapter 4 Examples 	 65 

Table 4.1.3 Mean HC (cm) and number of measures by age group of cases 

Age group Mean 

XYY 

S.D. N Mean 

XXY 

S.D. N Mean 

XXX 

S.D. N 

0.00 35.22 1.97 10 34.31 1.14 11 33.64 1.43 10 

0.25+ 43.24 2.87 11 40.81 1.15 6 40.47 1.93 8 

0.50+ 44.55 1.04 7 43.42 0.97 11 41.73 2.05 8 

0.75+ 46.96 2.18 5 45.49 1.20 10 43.87 1.80 7 

1.00+ 47.84 1.88 9 46.57 1.36 10 45.55 1.45 12 

1.50+ 49.14 1.87 11 48.06 1.28 12 46.64 1.27 9 

2.00+ 50.58 1.70 9 49.00 1.43 10 47.65 1.28 11 

2.50+ 51.46 2.07 6 49.65 1.51 10 48.42 1.38 10 

3.00+ 51.43 1.67 11 49.51 1.39 6 49.17 1.80 10 

3.50+ 52.86 1.44 8 50.50 1.25 11 48.94 1.07 9 

4.00+ 52.12 1.98 10 50.48 1.51 7 49.44 1.43 11 

4.50+ 53.08 1.53 7 51.00 1.20 9 49.71 1.84 6 

5.00+ 53.17 1.99 9 50.98 1.48 8 50.19 1.35 11 

5.50+ 52.80 1.91 9 51.27 0.94 8 49.71 1.16 7 

6.00+ 53.32 1.99 9 51.25 1.08 9 50.33 1.63 9 

6.50+ 54.01 1.84 9 52.23 1.38 11 51.13 1.34 8 

7.00+ 53.10 1.87 8 51.64 1.95 5 50.55 1.09 7 

7.50+ 54.23 1.77 8 52.15 0.94 9 51.36 1.38 11 

8.00+ 53.96 1.96 11 52.43 1.34 10 50.48 0.94 6 

8.50+ 54.43 1.82 6 52.88 1.04 9 50.95 1.17 7 

9.00+ 54.30 1.95 10 52.97 1.39 11 51.63 1.41 11 

9.50+ 54.45 2.00 6 53.00 0.76 8 51.48 1.79 7 

10.00+ 54.08 1.91 10 53.21 1.54 13 52.03 1.56 8 

10.50+ 54.95 1.69 4 53.37 1.45 10 52.01 1.43 10 

11.00+ 54.63 1.89 8 53.20 1.23 11 51.79 1.50 10 

11.50+ 54.38 2.11 7 53.60 0.75 10 52.35 1.45 8 

12.00+ 55.07 2.21 9 53.84 1.48 10 52.53 1.51 9 

12.50+ 54.92 2.06 7 54.15 1.15 11 52.39 1.44 12 

13.00+ 55.93 1.71 8 54.62 1.26 9 53.16 1.43 8 

13.50+ 55.68 1.85 6 54.37 1.53 10 53.18 1.62 9 

14.00+ 56.67 1.57 7 54.79 0.97 10 53.14 1.80 8 

14.50+ 56.38 1.76 6 54.88 1.36 11 53.00 1.91 8 
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MODELLING HEAD CIRCUMFERENCE FOR CONTROL MALES 

The initial work focused on investigating the ability of the model (3.3) to fit a separate curve 

for each individual of the control males. Table 4.1.4 gives the correlation coefficients, means 

and standard deviations of the OLS estimates, where the standard error of gl, skewness, is 

equal to 0.2642 and for g2, kurtosis, is 0.5226. 

The average residual standard deviation is 0.21 cm with the range from 0.10 cm to 0.39 cm. 

The residual mean square error (RMS) ranges from 0.01 cm2  to 0.16 cm2  with an average 

value of 0.05 cm2. For a further check of the model, a summary of HC residuals by age 

intervals is displayed in Table 4.1.5. These errors are close to those reported by Roche, 

Mukherjee and Guo (1986) and considered acceptable. 

Table 4.1.4 Correlation, means and standard deviations of the OLS estimates 

Intercept t t2  In(12t + 1) (2 - 03., (t -10); 

Mean 39.8240 -0.2509 0.0093 3.4232 -0.5310 0.0045 

S.E. 0.3295 0.0528 0.0023 0.1286 0.0396 0.0010 

gl -0.3697 -0.5798 0.2891 0.6580 0.2269 0.0808 

g2 0.6438 0.6319 0.0269 1.0602 0.4525 -0.1976 

Correlations 

Intercept 1.0000 

t 0.7873 1.0000 

t2 -0.7132 -0.9687 1.0000 

11412t+1) -0.8886 -0.9250 0.8371 1.0000 

(2-0: -0.9327 -0.7592 0.6796 0.8849 1.0000 

(t -10): 0.3664 0.6117 -0.7220 -0.4366 -0.3623 1.0000 

Number of individual = 83 (males) 
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Table 4.1.5 Summary of HC residuals (OLS) by age group for males 

Age n mean sd se gl g2 

0+ 85 0.01 0.17 0.02 -0.23 0.32 

0.25+ 85 -0.05 0.25 0.03 1.09** 2.06** 

0.50+ 80 0.00 0.36 0.04 -0.58* 1.63** 

0.75+ 73 0.10 0.32 0.04 -0.40 0.35 

1.00+ 82 -0.01 0.30 0.03 0.01 0.43 

1.50+ 80 -0.09** 0.25 0.03 0.10 0.43 

2.00+ 81 0.00 0.27 0.03 -0.33 -0.45 

2.50+ 73 0.01 0.25 0.03 0.33 0.55 

3.00+ 83 0.02 0.25 0.03 0.13 1.42** 

3.50+ 82 0.00 0.23 0.03 -0.02 -0.28 

4.00+ 85 0.03 0.22 0.02 -0.12 -0.03 

4.50+ 76 0.01 0.21 0.02 -0.35 1.53** 

5.00+ 83 0.01 0.17 0.02 0.15 0.06 

5.50+ 78 0.01 0.19 0.02 -0.05 -0.54 

6.00+ 75 -0.03 0.20 0.02 0.22 -0.05 

6.50+ 79 -0.01 0.22 0.02 0.08 0.64 

7.00+ 79 -0.05* 0.19 0.02 0.33 0.52 

7.50+ 78 0.02 0.19 0.02 0.37 1.07* 

8.00+ 78 -0.01 0.20 0.02 -0.12 -0.12 

8.50+ 76 0.00 0.18 0.02 0.17 -0.13 

9.00+ 84 0.00 0.22 0.02 -0.02 -0.40 

9.50+ 76 0.00 0.17 0.02 -0.21 0.69 

10.00+ 83 0.00 0.20 0.02 0.09 0.19 

10.50+ 78 -0.00 0.23 0.03 -0.01 -0.30 

11.00+ 80 0.02 0.21 0.02 -0.94** 1.44** 

11.50+ 78 0.00 0.20 0.02 -0.31 0.42 

12.00+ 77 0.03 0.16 0.02 0.93** 2.18** 

12.50+ 79 -0.02 0.20 0.02 0.12 1.14* 

13.00+ 75 -0.04* 0.21 0.02 0.18 -0.38 

13.50+ 67 -0.02 0.22 0.03 -0.28 -0.43 

14.00+ 80 0.03 0.14 0.02 0.46 0.36 

14.50+ 80 -0.00 0.15 0.02 0.02 -0.27 

* P < 0.05; 	** P < 0.01 
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Variance component models of HC for 83 control males using polynomials, conventional 

splines of equation (2.18) and extended splines of equation (3.3) are illustrated in Figure 

4.1.1 in HC-1(*), HC-2(*) and HC-3(*) respectively. The values in brackets are the numbers 

of fixed parameters of the model, e.g. HC — 1(4) is a cubic polynomial with four fixed 

parameters to be estimated. Values of -2*loglikelihood (LH) and the estimated level 1 

residual variance (o) are also listed in Figure 4.1.1. To simplify the expressions for the 

extended splines described in Chapter 3, the combination of symbols will be used in the 

following text or figures to present the model. For example, a cubic polynomial is written 

as t°, t1, t2, t3 and a cubic spline as t°, t', t 2, t 3, (t —1;)+, where t°  denotes intercept. 

The models of HC — 1(3), HC — 1(4), HC — 1(5), HC — 1(6) and HC — 1(7) are polynomials 

of degree from 3 to 6; the models of HC — 2(5), HC — 2(6) andHC — 2(7) are the conventional 

splines and HC — 3(4), HC — 3(5) and HC — 3(6) are the extended splines presented in this 

study. Comparing the values of LH and o for the models with the same number of parameters 

one can see clearly that the conventional splines fit better than polynomials and the extended 

splines fit better than the conventional splines. For example, HC — 1(4) and HC — 3(4), 

obtained from a quadratic by adding a different extra term, have the same parameters but 

with quite different values of LH and o. Similarly differences can also be found by 

comparing HC — 1(5) with HC — 2(5), HC — 2(5) with HC — 3(5) etc. 

Two knots are chosen at 2 and 10 years for model HC according to rules of thumb (Wold, 

1974). Table 4.1.6 shows values of LH and o of the model HC-3(6) with the second knot 

varying from 7 to 12 in term (t — V when the first knot is fixed at year 2. The lowest value 

of LH in the model with knot at 10 is not significantly different from that with knot around 

10. It implies that the results of the model with knot around the value of 10 are similar. Table 

4.1.6 also shows the LH and o of the model HC-3(6) with the first knot varying from year 

1.7 to 2.6 when the second knot is fixed at year 10. 
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The model HC-3(6) is the variance components model of the model (3.3). The random 

coefficient model of it is now given: 

yii  = 1301  + P IA + 1[32itij2. + 133i  in(12tii + 1) + 134i(2 tii): 1304 - 10)3+  + 
	

(4.1) 

with 

Poi = Yo 

= Yt + 1111, 

12j = Y2 4- U2 9  

P31 = Y3 + U319 

134j = Y4 + U4j.  

The estimates of parameters for the model (4.1) is given in Table 4.1.7. The fixed parameters 

are significantly different from zero (P < 0.01) and they allow us to estimate the mean curve 

for normal males. 



HC -2(5) 
t°,t1,t2,t 3,(2-0+  
LH = 4635.07 
a! = 0309 
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Figure 4.1.1 Variance component models of HC for 83 males 

HC - 0(3) 
t 0,t1

,t
2 

LH = 11078.1 
a! = 4.310 

HC - 1(4) 
tO,t1,t2

,t
3 

LH = 9540.05 
cr: = 2.299 

HC -1(5) 
t0,t1,t2

,1
3
,t

4 

LH = 8289.32 
a: = 1.378 

HC - 1(6) 
t°, t1, t2, t3, el, t3  
LH = 6954.24 
a: = 0.795 

HC - 3(4) 
t°, t1, t2, (2 - t)3+  
LH - 4860.87 
cr! = 0.339 

HC -3(5) 
t°, t l, t2, (2 - t)3„ In(12: + 1) 
LH = 3949.84 
a: = 0.234 

1 

HC - 2(6) 
	

HC - 3(6) 
t°, t 1, t 2, t3, (2 - t)+, (t -10)+ 	t°, tl, t2, (2 - t)3+, (t - 10)3+, ln(12t + 1) 
LH - 4628.22 
	

LH = 3919.37 
a: = 0.308 	 a: = 0.231 
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Table 4.1.6 	Model HC-3(6) with different knots 

Models LH ICJ 
2  

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

tc),P,t2,1n(12t +1),(2-03+,(t -7)3+  

t°,t 1,t 2,111(12t +1),(2-03+,(t -8)3+  

t°, t i, t 2,In(12t + 1), (2 - 0:, (t -9)+3  

t°,t1, t 2,1n(12t +1),(2-03+,(t -10): 

t°, t 1, t2,1n(12t +1),(2-03+,(t -11): 

t°,t1,t2,1n(12t +1),(2-0+3,(t -12)+3  

t°,t1,t2,1n(12t +1),(2.6 -0+3,(t -10)+3  

t°,t1,t2,111(12t +1),(2.5-03+,(t -10)3+  

t°, t1, t 2,111(12t + 1), (2.4-03+,(t -10)3+  

t°,t1, t2,1n(12t +1),(2.3-0+3,(t -10)+3  

t°, t i, t2,1n(12t +1),(2.2-0+3,(t -10)+3  

t0,t1,t2,1n(12t +1),(2.1-0+3,(t -10)+3  

t°,t1,t2,1n(12t +1),(2.0-0+3,(t -10)+3  

t°,t1,t2,1n(12t +1),(1.9 -03+,(t -10)3+  

t°,t1,t2,1n(12t +1),(1.8 -03+,(t -10)+  

t°,ti,t2,1n(12t +1),(1.7-03+,(t -10): 

3924.50 

3922.72 

3920.88 

3919.37 

3919.64 

3919.73 

3981.71 

3969.45 

3956.98 

3944.76 

3933.56 

3924.55 

3919.37 

3920.04 

3928.71 

3947.08 

0.231 

0.231 

0.231 

0.231 

0.231 

0.231 

0.237 

0.236 

0.234 

0.233 

0.232 

0.231 

0.231 

0.231 

0.232 

0.233 



Modelling Head Circumference (HC) 	 72 

Table 4.1.7 Model (4.1) of Head circumference for 83 males 

Fixed coefficient 
	

Estimate 	s.e. 

Intercept 	 39.83000 	0.32600 

t 	 -0.25000 	0.05230 

t2 	 0.00926 	0.00227 

ln(12t+1) 	 3.42100 	0.12800 

(2-t)3, 	 -0.53200 	0.03930 

(t -10)3+ 	 0.00459 	0.00098 

Random parameters 

Level 2 Covariance matrix (correlations in brackets) 

Intercept 	t 	t2 	111(12t +1) 	(2-03. 	(t-10)3. 

Intercept 

t 

6.7240 

( 	1.00) 

0.8470 

( 	0.76) 

0.1850 

( 	1.00) 

t2  -0.0340 -0.0078 0.0004 

(-0.70) (-0.97) ( 	1.00) 

111(12t+1) -2.2800 -0.4070 0.0160 1.0530 

(-0.86) (-0.92) ( 	0.84) ( 	1.00) 

(2-03, -0.7480 -0.0995 0.0040 0.2780 0.0993 

(-0.92) (-0.73) ( 	0.67) ( 	0.86) ( 	1.00) 

0-10. 	 0.0081 0.0021 -0.0001 -0.0038 -0.0010 0.0001 

( 	0.40) 	( 0.64) (-0.74) (-0.48) (-0.41) ( 	1.00) 

S.E. 	of Var. 	1.3620 0.0349 0.00007 0.2080 0.0198 0.00001 

Level 1 variance = 0.0611 (0.002) 

Number of subjects = 83 

Number of measurements = 2587 
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The skewness and the kurtosis of the estimated standardised level 1 residuals are 

g1  = —0.0828 (0.0487) and g2  = 1.1169 (0.0973) respectively, showing a symmetry for 

skewness and a sharp peakedness in kurtosis of the distribution. For a check of the model, 

the plot of standardised residuals by predicted values is given in Figure 4.1.2 which does 

not show any obvious trend. The Normal plot of level 1 standardised residuals is displayed 

in Figure 4.1.3, showing an approximately normal distribution except at the two extremes. 

Further investigation has been made on these extremes and they come from the children 

who had a deceleration in HC during age 5 months to 1 year. This variability in HC growth 

can also found in control females (see Figure 4.1.11). Our finding is consistent with the 

report of Jaffe, Tal, Tirosh and Tamir (1992). 

For a check of level 2 residuals, the Normal plots of the standardised level 2 residuals by 

Normal equivalent scores of the intercept, t, t2,1n(12t + 1), (2 — t)3. and (t —10)+ are displayed 

in Figure 4.1.4, showing approximately Normal distributions. The plots of each pair of 

standardised level 2 residuals are shown in Figures 4.1.5-4.1.7. The likelihood ratio test of 

the model in table 4.1.7 with its corresponding variance component model reveals that level 

2 random variables are significantly different from zero (x2  — 2328,p < 0.001). 

Figure 4.1.2 
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Figure 4.1.4 Standardised level 2 residuals by Normal equivalent scores 

for the model in Table 4.1.7 
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Figure 4.1.5 Plots of standardised level 2 residuals. 
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Figure 4.1.6 Plots of standardised level 2 residuals. 
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Figure 4.1.7 Plots of standardised level 2 residuals. 
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The longitudinally estimated mean population curve of the random coefficient model of 

Table 4.1.7 with the cross-sectional means plotted is given in Figure 4.1.8. The 

cross-sectional means are derived from varying numbers of observations within the age 

intervals. The means estimated by using the multilevel model use the precise age at which 

the measurement was taken. It is obvious that the multilevel model uses the data more 

efficiently especially when missing values and unbalanced data are included. 

o o cross-sectional 

longitudinal 

Age in years 

Figure 4.1.8 Longitudinally estimated mean curves (line) of 

HC for males with the cross-sectional means (dot). 
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MODELLING HEAD CIRCUMFERENCE FOR CONTROL FEMALES 

Firstly ordinary least squares (OLS) for model (3.3) is used to fit the model for individuals 

of the control females. Table 4.1.8 gives the correlation coefficients, means and standard 

deviations of the OLS estimates, where the standard error of g1 is equal to 0.3087 and for 

g2 is 0.6085. 

The average residual standard deviation is 0.24 cm with a range from 0.12 cm to 0.44 cm. 

The residual mean square error (RMS) ranges from 0.02 cm2  to 0.20 cm2with an average 

value of 0.06 cm2. For a further check of the model, a summary of HC residuals by age 

intervals is displayed in Table 4.1.9. These errors are close to those reported by Roche, 

Mukherjee and Guo (1986) and considered acceptable. 

Table 4.1.8 Correlation, means and standard deviations of the OLS estimates 

Intercept t t2  ht(12t +1) (2 - 03. (t -10)3. 

Mean 	39.2220 -0.1434 0.0080 3.1498 -0.5604 -0.0012 

S.E. 	0.3501 0.0593 0.0027 0.1426 0.0412 0.0013 

gl 	-0.1726 -0.1783 0.0963 0.3114 0.1406 -0.2376 

g2 	-0.4396 -0.7204 -0.8407 -0.1998 -0.3528 -0.0267 

Correlations 

Intercept 	1.0000 

t 	 0.7569 1.0000 

t2 	 -0.6447 -0.9591 1.0000 

ln(12t+1) 	-0.8975 -0.9052 0.7863 1.0000 

(2-03 	-0.9530 -0.7809 0.6580 0.9225 1.0000 

(t-10).3 	0.4400 0.6574 -0.7931 -0.4825 -0.4005 1.0000 

Number of individual = 60 (females) 
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Table 4.1.9 Summary of HC residuals (OLS) by age group for females 

Age n mean sd se gl g2 

0+ 61 0.06** 0.18 0.02 -0.05 0.68 

0.25+ 58 -0.12** 0.22 0.03 0.20 0.16 

0.50+ 57 0.00 0.39 0.05 -0.90** 2.98** 

0.75+ 52 0.05 0.36 0.05 0.07 -0.20 

1.00+ 58 0.01 0.28 0.04 0.38 0.33 

1.50+ 58 -0.21** 0.28 0.04 0.31 -0.16 

2.00+ 56 0.02 0.28 0.04 -0.47 0.01 

2.50+ 52 0.05 0.26 0.04 0.01 -0.20 

3.00+ 57 0.10* 0.30 0.04 -0.30 0.67 

3.50+ 59 0.11** 0.21 0.03 0.69* 1.33* 

4.00+ 55 0.07* 0.21 0.03 0.41 -0.12 

4.50+ 64 0.03 0.17 0.02 -0.43 -0.18 

5.00+ 55 0.01 0.18 0.02 0.19 -0.39 

5.50+ 54 -0.04 0.20 0.03 -0.21 0.68 

6.00+ 62 -0.01 0.23 0.03 0.65* 2.06* 

6.50+ 52 -0.03 0.18 0.02 0.20 -0.53 

7.00+ 57 -0.01 0.18 0.02 0.36 0.18 

7.50+ 55 -0.03 0.23 0.03 -0.17 -0.08 

8.00+ 57 -0.05 0.19 0.03 -0.28 0.51 

8.50+ 52 -0.03 0.23 0.03 0.19 -0.39 

9.00+ 62 0.00 0.23 0.03 0.03 0.14 

9.50+ 54 -0.04 0.20 0.03 -0.37 0.40 

10.00+ 55 0.01 0.22 0.03 -0.00 0.06 

10.50+ 55 -0.06* 0.23 0.03 -0.20 -0.08 

11.00+ 56 -0.01 0.23 0.03 -0.19 0.54 

11.50+ 58 0.04 0.28 0.04 0.29 0.07 

12.00+ 55 0.10* 0.26 0.04 0.33 0.18 

12.50+ 49 0.05 0.26 0.04 0.63 0.51 

13.00+ 55 -0.06* 0.26 0.03 0.56 0.27 

13.50+ 56 -0.01 0.26 0.04 -0.24 -0.24 

14.00+ 53 0.02 0.19 0.03 0.95** 3.28** 

14.50+ 51 -0.02 0.19 0.03 0.47 -0.06 

* P < 0.05; ** P < 0.01 
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Variance component models of HC for 60 control females using polynomials, conventional 

splines of equation (2.18) and extended splines of equation (3.3) are illustrated in Figure 

4.1.9 in HC-1(*), HC-2(*) and HC-3(*) respectively. Similarly to males, it is obvious that 

the extended splines fit the data better than the polynomials and conventional splines. Table 

4.1.10 shows values of LH and o for the model HC-3(6) with the first knot varying around 

age year 2 and the second knot varying from 7 to 13 in the term (t — )34_. The lowest value 

of LH of the model with knot at 12 is not significantly different from that with knots around 

10. 

Same as for males, the random coefficient model (4.1) is used to the data for females. The 

estimates of parameters for the model (4.1) are given in Table 4.1.11. All the fixed parameters 

except (10 — t)3, are significant (P < 0.01). It implies that females might not have such an 

obvious spurt as males have in HC during puberty, which can be seen in Figures 4.1.8 and 

4.1.15. The estimated standardised level 1 residuals have skewness, g1  = 0.0669 (0.0579), 

and kurtosis, g2  = 1.7406 (0.1157), showing a little skewness and a sharp peakedness in 

kurtosis of the distribution. For a check of the model, the plot of standardised residuals by 

predicted values is given in Figure 4.1.10 which does not show any obvious trend. The 

Normal plot of standardised residual is displayed in Figure 4.1.11, showing an approximately 

Normal distribution except at the two extremes. 

For a check of level 2 residuals, the Normal plots of the standardised level 2 residuals by 

Normal equivalent scores of the t°, t, t2,1n(12t + 1) and (2 — t)3, are displayed in Figure 4.1.12, 

showing an approximately Normal distribution. The plots of each pair of standardised level 

2 residuals are given in Figures 4.13-4.14. The likelihood ratio test of the model in Table 

4.1.11 with its corresponding variance component model shows that the level 2 random 

variables are significant ((x2  =1091.61,p < 0.001). 
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Figure 4.1.9 Variance component models of HC for 60 control females 
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Table 4.1.10 Model HC-3(6) with different knots for females 

Models 	 LH 

1 

2 

3 

t°, t i,t2,1n(12t + 1), (2— 03+, (t —7)+3  

t°,t1,t 2,1n(12t +1),(2-0+3,(t —8)+3, 

t°,t1, t 2,1n(12t +1), (2 — 03+, (t —9)3, 

2562.50 

2562.60 

2562.61 

0.2050 

0.2050 

0.2050 

4 t°,t1, t 2,1n(12t +1), (2— 03+, (t —10)3, 2562.56 0.2050 

5 to, t i, 	2 ,n,  r , I kilt + 1),(2— 03+, (t —11)3, 2562.51 0.2050 

6 t°, t l, t2,1n(12t +1),(2— 03+, (t —12)3+, 2562.56 0.2050 

7 t°, t l,t2,1n(12t +1), (2— 0+3, (t —13)+3, 2562.62 0.2050 

8 t°,t1, t2,1n(12t +1), (2.6 — 03+, (t —10)3, 2591.24 0.2087 

9 t°,t1,t2,1n(12t + 1), (2.5 — 03+, (t —10)3+, 2583.09 0.2077 

10 t°, t', t2,1n(12t +1),(2.4 — 03,(t — 10)3, 2575.38 0 .2068 

11 t°, t l,t2,1n(12t +1),(2.3 — 03+, (t —10)3, 2568.60 0.2059 

12 t°, t l,t2,1n(12t +1),(2.2— 03+, (t —10)3+, 2563.48 0.2053 

13 t°,t 1,t2, In(12t +1), (2.1— 0+3,(t —10)3+, 2561.03 0.2051 

14 t°,t 1,t 2, ln(12t +1), (2.0 — t)3+,(t — 10)3+, 2562.56 0.2052 

15 t°,t1, t 2,1n(12t +1), (1.9 — 0+3, (t —10)+3, 2569.53 0.2061 

16 t°, t l, t2,1n(12t +1), (1.8 — 0+3,(t —10)+3, 2583.33 0.2077 

17 t°, t1, t2,1n(12t + 1),(1.7— 03+, (t —10)3, 2604.83 0.2103 

Figure 4.1.10 
	

Figure 4.1.11 
Plot of standardised level 1 residuals by 	Plot of standardised level 1 residuals by 
predicted values 	 Normal equivalent scores 
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Table 4.1.11 Model (4.1) of head circumference for 60 females 

Fixed coefficient 
	

Estimate 	s.e. 

Intercept 	 39.25100 	0.31970 

t 	 -0.13669 	0.04840 

t2 	 0.00757 	0.00193 

ln(12t+1) 	 3.13830 	0.12870 

(2-03. 	 -0.56390 	0.03852 

(t-10)3, 	 -0.00074 	0.00067 

Random parameters 

Level 2 Covariance matrix (correlations in brackets) 

Intercept 	t 
	

t2 	ln(12t + 1) 	(2 -0! 

Intercept 	3.1203 

( 1.00) 

t 	 0.2802 	0.0814 

( 	0.56) ( 	1.00) 

t2 	 -0.0072 -0.0029 0.0001 

(-0.38) (-0.95) ( 	1.00) 

ln(12t+1) 	-1.0435 -0.1845 0.0056 0.5702 

(-0.78) (-0.86) ( 	0.70) ( 	1.00) 

(2-03. 	 -0.3509 -0.0417 0.0012 0.1427 0.0478 

(-0.91) (-0.67) ( 	0.51) ( 	0.86) ( 	1.00) 

S.E. 	of Var. 	1.0850 0.0228 0.00003 0.1742 0.0159 

Level 1 variance = 0.0857 (0.0031) 

Number of subjects = 60 

Number of measurements = 1789 
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Figure 4.1.12 Standardised level 2 residuals by Normal equivalent scores 

for the model in Table 4.1.11. 
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Figure 4.1.13 Plots of standardised level 2 residuals. 
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Figure 4.1.14 Plots of standardised level 2 residuals. 
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The longitudinally estimated mean population curve for the random coefficient model of 

Table 4.1.11 with the cross-sectional means is shown in Figure 4.1.15. The two sets of means 

are consistent. 
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Figure 4.1.15 Longitudinally estimated mean curve (line) of 

HC for females with the cross-sectional means (dot). 
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MODELLING HEAD CIRCUMFERENCE WITH KARYOTYPE AS COVARIATE 

Modelling head circumference with the covariate of karyotype (XY, XX, XYY, XXY and 

XXX) is investigated using model HC-3(6). XY indicates normal males, XX normal females, 

XYY and XXY chromosomally abnormal males, and XXX chromosomally abnormal 

females. 

Firstly the covariate of karyotype is considered as an explanatory variable. That is, in 

additional to the intercept there are four dummy variables are included into the model 

HC-3(6): XX-XY, indicating XX versus XY; XYY-XY, indicating XYY versus XY; 

XXY-XY for XXY versus XY and XXX-XY for XXX versus XY. Table 4.1.12 shows the 

results of the two-level random coefficient model: the coefficient of XX-XY is estimated 

as -0.9398 , which means that normal female group on average has a smaller mean than that 

of the normal male group by 0.94 cm (p < 0.01); the mean HC of XXX group is smaller 

than that of XY by 2.22 cm (p < 0.01). For the male group, on average, mean of HC for 

karyotype XXY is smaller than that of XY by 1.32 cm (p < 0.01); mean HC of XYY is only 

0.43 cm smaller than that of XY which is not statistically significant (p > 0.05) and the mean 

HC of XXY is about 0.88 cm smaller than that of XYY (p < 0.05). The x2  values for these 

tests can be found in table 4.1.13. 

The likelihood ratio test is used to test the model of Table 4.1.12 with its corresponding 

variance component model (x2  = 4168.6,p < 0.001). 

In the model of Table 4.1.12, the average effect only of covariate on mean HC has been 

investigated. However, in fact, these differences may change with age. 
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Table 4 .1 . 12 Model HC-3( 6 ) of head circumference with covariate of karyotype 

Fixed coefficient 
	

Estimate 	s.e. 

Intercept 	 39.95000 	0.25620 

t 	 -0.19780 	0.03977 

t2 	 0.00808 	0.00173 

ln(12t+1) 	 3.30700 	0.09783 

(2-03, 	 -0.53970 	0.02958 

(t-10)3. 	 0.00287 	0.00074 

XX-XY 	 -0.93980 	0.17170 

XYY-XY 	 -0.43450 	0.33920 

XXY-XY 	 -1.31900 	0.32530 

XXX-XY 	 -2.21900 	0.33920 

Random parameters 

Level 2 Covariance matrix (correlations in brackets) 

Intercept 	t 

Intercept 	7.86600 

( 	1.00) 

t2  ln(12t + 1) (2-03. (t -10); 

t 	 1.06900 	0.22720 
( 	0.80) 	( 	1.00) 

t2 	 -0.04235 	-0.00957 0.00043 

(-0.73) 	(-0.97) ( 	1.00) 

h1(12t+1) 	-2.86500 	-0.50930 0.02010 1.32200 

(-0.89) 	(-0.93) ( 	0.84) ( 	1.00) 

(2-0: 	-0.89740 	-0.13090 0.00515 0.35850 0.11880 

(-0.93) 	(-0.80) ( 	0.72) ( 	0.90) ( 	1.00) 

(t-10)2. 	0.01054 	0.00246 -0.00013 -0.00460 -0.00129 0.00007 

( 	0.45) 	( 	0.61) (-0.73) (-0.47) (-0.44) ( 	1.00) 

S.E. 	of Var. 	1.11900 	0.03003 0.00006 0.18170 0.01652 0.00001 

Level 1 variance = 0.06814 	(0.01500) 

Number of subjects = 174 

Number of measurements = 5178 
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Table 4.1.13 x2  values for examining fixed coefficient contrasts 

Variable 	 X2 	 P 

	

XX-XY 	 29.96 	 < 0.001 

	

XYY-XY 	 1.64 	 > 0.050 

	

XXY-XY 	 16.45 	 < 0.001 

	

XXX-XY 	 42.81 	 < 0.001 

Further investigation of the effects of karyotype and the comparison of mean-parameter 

curves of the five populations can be found in Table 4.1.14-4.1.17. These results are obtained 

by modelling all the coefficients of model HC-3(6) to be functions of the four dummy 

variables of karyotype, XX_XY, XYY_XY, XXY_XY and XXX-XY. Table 4.1.14 shows 

the estimated fixed parameters for the random coefficient model, in which AGE*XX denotes 

the term for the interaction of age and XX-XY and is the product of term age and XX-XY; 

AGE2*XX for the interaction of age2  and XX-XY; LN*XX for the interaction of ln(12t + 1) 

and XX-XY; (2 — t)3+*XX for the interaction of (2 — t)+ and XX-XY; and (t — 10)3+*XX for 

the interaction of (t —10)+ and XX-XY. The other interaction terms are similar. Table 4.1.15 

shows the random parameters of the random coefficient model of Table 4.1.14. The mean 

parameters for XY and the difference between other karyotype groups are listed in Table 

4.1.16 and the x2  values for simultaneous tests and individual tests of the hypotheses are 

listed in Table 4.1.17. 
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Table 4.1.14 Model (4.1) of HC with covariate of karyotype (fixed part) 

Fixed coefficient Estimate 	 s.e. 

Intercept 39.83000 	 0.34410 

t -0.24970 	 0.05633 

t2  0.00926 	 0.00247 

ln(12t+1) 3.42000 	 0.13710 

(2-t); -0.53190 	 0.04188 

(t-10),3  0.00459 	 0.00102 

XX_XY -0.61640 	 0.53210 

XYY-XY -2.27400 	 1.08000 

XXY-XY -1.33400 	 1.01000 

XXX-XY -0.38630 	 1.06800 

AGE*XX 0.11030 	 0.08704 

AGE*XYY -0.16410 	 0.17570 

AGE*XXY 0.01684 	 0.16530 

AGE*XXX 0.37740 	 0.17430 

AGE2*XX -0.00157 	 0.00382 

AGE2*XYY 0.00188 	 0.00771 

AGE2*XXY 0.00238 	 0.00727 

AGE2*XXX -0.01523 	 0.00764 

LN*XX -0.27150 	 0.21190 

LN*XYY 0.74950 	 0.42920 

LN*XXY -0.09531 	 0.40230 

LN*XXX -0.95490 	 0.42520 

(2-t)3f*XX -0.02785 	 0.06476 

(2-03,*XYY 0.23680 	 0.13170 

(2-0XXY 0.01156 	 0.12290 

(2-0XXX -0.20600 	 0.13020 

(t -10)+3*XX -0.00548 	 0.00157 

(t-10)±3*XYY 0.00106 	 0.00328 

(t-10)3+*XXY -0.00093 	 0.00302 

(t-10)+3*XXX 0.00284 	 0.00317 
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Table 4.1.15 Model (4.1) of HC with Covariate of Karyotype (random part) 

Random parameters 

Level 2 	Covariance matrix (correlations in brackets) 

Intercept 	t 	t2 	ln(12t + 1) 

Intercept 	7.47800 

( 	1.00) 

(2 - (t- 10): 

t 	 1.00900 	0.21690 

( 	0.77) 	( 	1.00) 

t2 	 -0.04067 	-0.00928 0.00042 

(-0.71) 	(-0.97) ( 	1.00) 

ln(12t+1) 	-2.67800 	-0.47890 0.01928 1.22900 

(-0.87) 	(-0.92) ( 	0.84) ( 	1.00) 

(2-0! 	-0.85200 	-0.12410 0.00496 0.33690 0.11340 

(-0.92) 	(-0.77) ( 	0.70) ( 	0.89) ( 	1.00) 

(t-10)2, 	0.01085 	0.00256 -0.00013 -0.00486 -0.00132 0.00006 

( 	0.47) 	(-0.68) (-0.78) (-0.53) (-0.47) ( 	1.00) 

S.E. 	of Var. 	1.07500 	0.02885 0.00006 0.17120 0.01591 0.00001 

Level 1 variance = 0.06812 	(0.0015) 

Number of subjects = 174 

Number of measurements = 5178 
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In Table 4.1.16, the column XY shows the mean estimated parameters for the normal male 

group with the standard error in brackets, and the column XX-XY the gender difference 

between the normal female and male groups. The column XYY-XY shows parameters of 

the difference between the chromosomally abnormal male XYY and the normal male group, 

similarly for the other karyotypes. 

Simultaneous tests of hypotheses about parameter contrasts are made and the x2  values of 

these tests are listed in Table 4.1.17. In the female group, the parameters of the mean 

population curves are significantly different between the control XX and the chromosomally 

abnormal XXX (p < 0.001). In the male group, the parameters of the mean population curves 

are significantly different between the control XY and chromosomally abnormal XXY 

(p < 0.001), however the sets of parameters of XY and XYY curves are not significantly 

different (p > 0.05). There is a significant difference of the mean population curves between 

the normal XX and XY (p < 0.001). These results are consistent with those reported by 

Ratcliffe, Masera, Pan and McKie (1994). 

The likelihood ratio test is used for the model in Table 4.1.15 with its corresponding variance 

component model and again shows a significant difference(p < 0.001). The distributional 

assumptions are checked by the level 1 and level 2 residuals. The estimated standardised 

level 1 residuals have skewness g1  = —0.0044 (0.0340), and kurtosis, g2  = 2.0631 (0.0680), 

which show symmetry and a sharp peakedness of the distribution. The plot of standardised 

residuals by predicted values is given in Figure 4.1.16, and does not show any obvious trend. 

The Normal plot of standardised level 1 residuals by Normal equivalent scores is displayed 

in Figure 4.1.17. The Normal plots of the standardised level 2 residuals are displayed in 

Figure 4.1.18 and show an approximately Normal distribution. Figures 4.1.19-4.1.21 are the 

plots of the standardised level 2 residuals plotted against each other. 
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Table 4.1.16 Mean parameters (S.E.) and the karyotype effects 

Parameter XY" XX-XY" XYY-XY XXY-XY" XXX-XY" 

CONS 39.83000 -0.61640 -2.27400 -1.33400 -0.38630 

(0.34410) (0.53210) (1.08000) (1.01000) (1.06800) 

t -0.24970 0.11030 -0.16410 0.01684 0.37740 

(0.05633) (0.08704) (0.17570) (0.16530) (0.17430) 

t2  0.00926 -0.00157 0.00188 0.02381 -0.01523 

(0.00247) (0.00382) (0.00771) (0.00727) (0.00764) 

1n(12t+1) 3.42000 -0.27150 0.74950 -0.09531 -0.95490 

(0.13710) (0.21190) (0.42920) (0.40230) (0.42520) 

(2-0! -0.53190 -0.02785 0.23680 0.01156 -0.20600 

(0.04188) (0.06476) (0.13170) (0.12290) (0.13020) 

(t-10): 0.00459 -0.00548 0.00106 -0.00093 0.00284 

(0.00102) (0.00157) (0.00328) (0.00302) (0.00317) 

** P <0.01 of simultaneous tests of the hypotheses by F test. 

95 
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Table 4.1.17 x2  values for examining karyotype effects 

Karyotype 	 x2 
	

p 

Male Group 

XYY / XY 11.78 0.06706 

XXY / XY 22.80 0.00087 

XYY / XXY 19.10 0.00390 

Female Group 

xxx / xx 23.23 0.00072 

Normal Male/Female 

XX / XY 68.54 0.00000 

Figure 4.1.16 
	

Figure 4.1.17 
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Figure 4.1.18 Standardised level 2 residuals by Normal equivalent scores 

for the model in Table 4.1.15. 
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Figure 4.1.19 Plots of standardised level 2 residuals. 
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Figure 4.1.20 Plots of standardised level 2 residuals. 
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Figure 4.1.21 Plots of standardised level 2 residuals. 
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The predicted mean values of head circumference for the five populations are presented in 

Figure 4.1.22, which are consistent with the curves of Ratcliffe, Masera, Pan and McKie 

(1994). 
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Figure 4.1.22 Longitudinally estimated mean curves of HC for XY, 

XX, XYY, XXY and XXX (line) with the cross-sectional means 

(dot). 
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4.2 Modelling Height (HT) 

The subjects studied include 89 males and 67 females from the control group (99 males and 

74 females) of the Edinburgh Longitudinal study, initiated in 1972 and they are known to 

be chromosomally normal as they were born at a time when the Medical Research Council 

was conducting a newborn cytogenetic survey (Ratcliffe and Paul 1986). These children 

were at least 16 years of age for males and 15 years for females in 1992 when this study 

started. Anthropometric measures were taken by S.G.Ratcliffe who was trained in 

measurement techniques by the late R.H. Whitehouse of the Department of Growth and 

Development, Institute of Child Health, University of London. The children were measured 

3-monthly during the first year of life and twice-yearly thereafter. The data used in this 

section cover ages from 0.25 to 18.5 years. 

Gross errors have been checked. Tables 4.2.1-4.2.2 show the number of measures and the 

cross-sectional mean for each age group with height in cm and age in years. 

Table 4.2.1 The number of measures (HT) by gender 

Gender 	Individuals Measurements Mean measures per individual 

Males 	89 	 3044 	 34.2 

Females 	67 	 2134 	 31.7 
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Table 4.2.2 Mean height (cm) and number of measures by age group 

Age Group Mean 

XY 

S.D. N Mean 

XX 

S.D. N 

0.25+ 62.75 2.60 90 60.83 2.06 62 

0.50+ 68.62 2.65 84 66.71 2.25 62 

0.75+ 72.55 2.52 76 70.93 2.18 56 

1.00+ 76.25 2.81 86 74.33 2.60 61 

1.50+ 81.68 3.04 82 80.19 2.91 59 

2.00+ 87.21 3.17 81 85.58 3.15 60 

2.50+ 91.67 3.47 76 90.27 3.46 54 

3.00+ 95.89 3.73 90 94.57 3.14 63 

3.50+ 99.46 3.97 86 98.62 3.24 63 

4.00+ 103.57 4.15 93 102.04 3.76 61 

4.50+ 106.40 4.47 82 106.01 3.98 67 

5.00+ 110.38 4.61 87 109.45 4.03 59 

5.50+ 113.17 4.71 83 112.93 4.12 58 

6.00+ 116.58 4.94 82 116.07 4.84 66 

6.50+ 119.58 5.17 84 117.98 4.17 54 

7.00+ 122.38 5.03 87 122.19 4.83 65 

7.50+ 125.60 5.34 82 125.05 5.19 57 

8.00+ 128.31 5.37 84 127.51 4.84 64 

8.50+ 131.13 5.82 80 131.08 4.81 57 
9.00+ 134.08 5.71 90 132.86 5.61 68 

9.50+ 136.69 5.61 81 136.14 6.01 57 

10.00+ 139.29 5.94 88 139.13 5.58 62 

10.50+ 141.29 6.52 82 141.70 6.64 60 

11.00+ 144.40 5.91 86 145.01 7.37 62 

11.50+ 146.84 6.68 84 148.32 7.95 65 

12.00+ 149.97 6.78 80 151.38 7.39 59 

12.50+ 152.27 7.38 85 153.55 7.92 53 
13.00+ 155.91 7.61 79 156.86 7.46 59 
13.50+ 160.01 7.54 73 159.20 7.21 61 

14.00+ 164.11 8.05 85 160.59 6.69 60 
14.50+ 167.67 7.86 81 162.09 6.45 49 
15.00+ 169.89 7.29 79 163.34 6.14 60 

15.50+ 172.64 7.17 76 164.09 6.15 39 
16.00+ 174.39 7.06 81 163.74 6.40 64 
16.50+ 176.46 6.67 72 164.23 6.12 39 

17.00+ 176.31 6.73 61 164.15 7.35 35 
17.50+ 176.66 6.93 52 166.51 6.47 21 
18.00+ 177.41 6.86 33 168.92 5.87 12 
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MODELLING HEIGHT FOR CONTROL MALES 

Firstly the model (3.5) of Model HT-A in section 3 is investigated by fitting curves for each 

individual using OLS. The knots at years 9, 11, 13, 15, 17.5 are chosen according to rules 

of thumb (Wold, 1974). The average residual standard deviation is 0.5517 cm with a range 

from 0.2918 cm to 0.9121 cm. Table 4.2.3 gives the correlation coefficients, means and 

standard deviations of the OLS estimates, where the standard error of gl is equal to 0.2554 

and of g2 is 0.5056. 

The residual mean square error (RMS) ranges from 0.09 cm2  to 0.83 cm2  at an average value 

of 0.32 cm2. For a further check of the model, the summary of residuals by age intervals is 

displayed in Table 4.2.4. The results are close to expectation (see Bock, Wainer, Petersen, 

Thissen, Murray and Roche, 1973; Berkey 1982b). 

Variance component models of height for 89 control males using polynomials, conventional 

splines of equation (2.18) and extended splines of equation (3.5) are illustrated in Figure 

4.2.1 in HT-1(*), HT-2(*) and HT-3(*) respectively. The notation used in section 4.2 is 

same as that in section 4.1. 

The models of HT — 1(3), HT — 1(4), HT — 1(5), HT — 1(6), HT — 1(7) and HT — 1(8) are 

polynomials of order from 3 to 7; the models of HT — 2(5), HT — 2(6), HT — 2(7) and 

HT — 2(8) are the conventional splines and HT — 3(3), HT — 3(4), HT — 3(5), HT — 3(6), 

HT — 3(7) and HT — 3(8) are the extended splines presented in this study. Comparing the 

values of LH and o for the models with seven or eight parameters we can see obviously 

that the extended splines fit the data better than the conventional splines. Comparing HT-3(7) 

with HT-3(8) we can also see that the term (9 — t)3, in HT-3(8) is not significantly different 

from zero (p > 0.05), that is, the knot at age 9 is not necessary in the population mean curve 

for males. 



Chapter 4 Examples 	 105 

Table 4.2.5 shows values of LH and o of these models derived from HT-3(7). The models 

with last knot at 17 years, such as model 1 and 2 in Table 4.2.5, are not better than HT-3(7). 

Models 6 to 13 are the model HT-3(8) with first knot varying from age 1 to 8 years and show 

that they are close to model HT-3(8) and HT-3(7). 

In addition the model (3.6) of Model HT-B in section 3 is tested by adding the term of 1/t 

to the model HT-3(7). Comparing model 1 with 2 or 3 with 4 in Table 4.2.5 we can find that 

l/t is not significantly different from zero (P > 0.05). 

The random coefficient model of HT-3(7) is now used for analysing the data for males 

and is given: 

yii  fioi  + 	+ 	441 1 — tii)3+  + 13413 — 03+  +135;(15 — to:+ 1361(17.5 —to:+ eir  (4.2) 

with 

NOj = yo  + uoj  + u3j(tii  — 9): + u4j(tii  — 11)2+, 

PI;  = Yi + /411, 

I32j = Y2 + u2j 9  

I33j = Y39  

R4j Y4' 

I35j = Y59  

136j = Y6. 

Table 4.2.6 gives the estimates of parameters for the random coefficient model (4.2). 

Examining fixed coefficient contrasts shows that all the fixed coefficients are significantly 

different from zero (P < 0.01). 
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Table 4.2.3 Correlation, means and standard deviations of the OLS estimates 

t°  Int t - 9 (9 -t); (11-0! (13-t); (15-t); (17.5-0: 

Mean 150.100 6.3553 1.0294 0.0091 0.1551 -0.6131 0.6694 -0.2233 

S.E. 2.5538 0.2727 0.3198 0.0183 0.0524 0.0713 0.0520 0.0154 

gl -0.1632 -0.2674 -0.2923 0.6472 -1.1020 0.9357 -0.1608 -0.2361 

g2 3.9072 -0.4879 8.1899 -0.0109 0.4975 0.7801 1.9578 5.0345 

Correlations 

to 	 1.0000 

Int 	-0.1445 1.0000 

t-9 	-0.9137 -0.1532 1.0000 

09-0: 	0.2521 0.3078 -0.3752 1.0000 

(11-0: 	-0.1529 -0.1249 0.2240 -0.9360 1.0000 

(13-0: 	-0.1738 0.0286 0.1355 0.7417 -0.9135 1.0000 

05-0: 	0.5341 0.0357 -0.5261 -0.4289 0.6573 -0.9035 1.0000 

(17.5-t);-0.7783 -0.0706 0.7934 0.1131 -0.3438 0.6829 -0.9291 1.0000 

Number of individual = 89 (males) 

Note t° denotes intercept. 
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Table 4.2.4 Summary of HT residuals (OLS) by age group for males 

Age 	n mean sd se gl g2 

0.25+ 90 0.05 0.34 0.04 0.24 0.29 

0.50+ 84 0.06 0.56 0.06 0.08 0.68 

0.75+ 76 -0.03 0.60 0.07 0.18 0.51 
1.00+ 86 -0.18* 0.62 0.07 0.01 -0.14 

1.50+ 82 -0.11 0.71 0.08 -0.07 -0.10 

2.00+ 81 0.00 0.59 0.07 -0.06 0.32 
2.50+ 76 0.18* 0.60 0.07 0.05 0.68 
3.00+ 90 0.23** 0.45 0.05 0.40 -0.16 
3.50+ 86 0.10* 0.44 0.05 0.39 -0.28 
4.00+ 93 0.00 0.45 0.05 -0.08 0.07 
4.50+ 82 -0.08* 0.40 0.04 -0.17 -0.19 
5.00+ 87 -0.13** 0.45 0.05 -0.21 -0.08 
5.50+ 83 -0.06 0.42 0.05 0.15 -0.67 
6.00+ 82 -0.19** 0.43 0.05 -0.06 -0.57 
6.50+ 84 -0.14** 0.40 0.04 -0.26 -0.28 
7.00+ 87 0.04 0.47 0.05 -0.26 0.64 
7.50+ 82 0.00 0.43 0.05 0.51 0.20 
8.00+ 84 0.18** 0.45 0.05 -0.07 -0.02 
8.50+ 80 0.07 0.42 0.05 0.01 -0.36 
9.00+ 90 0.09 0.41 0.04 0.16 -0.54 
9.50+ 81 0.03 0.46 0.05 0.07 -0.11 
10.00+ 88 0.04 0.51 0.05 0.00 -0.40 
10.50+ 82 -0.12* 0.48 0.05 0.26 0.54 
11.00+ 86 -0.09 0.42 0.05 -0.10 0.76 
11.50+ 84 0.01 0.55 0.06 -0.43 0.60 
12.00+ 80 -0.04 0.79 0.09 -0.85** 1.73** 
12.50+ 85 0.03 0.66 0.07 0.13 -0.35 
13.00+ 79 0.05 0.56 0.06 -0.01 -0.61 
13.50+ 73 0.03 0.65 0.08 0.00 0.69 
14.00+ 85 0.07 0.88 0.10 -0.03 0.43 
14.50+ 85 -0.08 0.81 0.09 -0.60* 0.35 
15.00+ 79 -0.15* 0.59 0.07 -0.32 1.16* 
15.50+ 76 -0.06 0.60 0.07 0.22 -0.38 
16.00+ 81 0.05 0.83 0.09 0.63* -0.10 
16.50+ 74 0.18* 0.73 0.09 0.92** 0.72 
17.00+ 61 0.17** 0.45 0.06 0.63* 0.54 
17.50+ 52 -0.11 0.67 0.09 -1.16** 1.41* 
18.00+ 33 -0.23 0.87 0.15 -0.91* -0.24 

* 	p 	0.05; ** P < 0.01 
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Figure 4.2.1 Variance component models of HT for 83 males 
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I 
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Table 4.2.5 Model HT-3(7) with different knots or terms for males 

Models 

	

1 	t°, , Int , (11 - t)+, (13 -030(15 -03+,07 -030  

	

2 	t°,t1, Int ,(11 - t)+, (13 -030(15 - t)+, (17 -t)+, lit 

	

3 	66hu,(11-03.,(13-t)+,(15-t)+,(17.5-03. 

	

4 	t°, t l  ,Int, (11 - 03+,03 -030(15 - 03+,07.5 - ttlIt 

	

5 	t°, tl  , Int , (9 - tg, (11 - t)+, (13 -03+,05 -03+,07.5 -tr., 

	

6 	t°,t1, int, (8 - t)+, (11 -t)+, (13 -030 (15 - t)+, (17.5 -03. 

	

7 	66huj7-tta1-rt(13-t)+,(15-t)+,(17.5-t)+ 

	

8 	t°,t1,/nt, (6 -f)+, (11 - tg, (13 - t)+, (15 -030(17.5 - t)+ 

	

9 	t°,t1, Int , (5 - t).3, (11 -030(13 -030(15 -03., (17 .5 -03. 

	

10 	t°,t1, Int, (4 -030(11 -03., (13 - 03+, (15 - 03., (17.5 -t)+ 

	

11 	0Ahu,(3-03.,(11-030(13-03.,(15-03.,(17.5-t)+ 

	

12 	661m4-03001-tt(13-t)+,(15-t)+,(17.5-t)+ 

	

13 	t°,ti, Int , (1 - t)+,(11 - t)+, (13 -03+,05 -03+,07.5 -03+  

LH (1; 

14994.3 7.026 

14994.0 7.026 

14991.1 7.019 

14991.0 7.018 

14991.1 7.019 

14991.1 7.019 

14990.9 7.018 

14990.5 7.017 

14990.1 7.016 

14990.0 7.016 

14990.7 7.018 

14990.1 7.016 

14990.7 7.018 
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Fixed coefficient 

03-03, 

(15-03. 

07.5-0! 

(4.2) 	of height for 89 males 

Estimate s.e. 

148.9900 1.7200 

6.2657 0.2195 

0.1697 0.0112 

-0.6164 0.0171 

0.6599 0.0134 

-0.2179 0.0057 

1.2258 0.2101 
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Table 4.2.6 	Model 

Random parameters 

Level 2 Covariance matrix (correlations in brackets) 

to 	 Int 
	

t - 9 	(t -9); 	(t - 11)2. 

to 	 25.6930 

( 1.00) 

hit 	 -0.9369 	2.0321 

	

(-0.13) 	( 1.00) 

t-9 	 2.2437 	-0.3037 	0.2470 

	

(0.89) 	(-0.43) 	( 1.00) 

(t -9); 

0.1019 -0.1380 0.0447 -0.1237 0.3826 

( 	0.03) (-0.16) ( 	0.15) (-0.97) ( 	1.00) 

4.1290 0.3492 0.0415 0.0202 0.0603 

Level 1 variance = 1.0298 (0.0286) 

Number of subjects = 89 

Number of measurements = 3044 

-0.3219 0.0814 -0.0504 0.1264 

(-0.18) ( 	0.16) (-0.28) ( 	1.00) 

(t-11)2, 

S.E. of Var. 
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The Likelihood ratio test on the model in Table 4.2.6 compared to its corresponding variance 

component model is significant (p < 0.001). The estimated standardised level 1 residuals' 

skewness, g1  = 0.0620 (0.0444), and kurtosis, g2  = 1.7944 (0.0887), show symmetry and a 

sharp peakedness of the distribution. For a check of the model, the plot of standardised 

residuals by predicted values is given in Figure 4.2.2, in which the residuals are randomly 

distributed and the spread of the residuals increases with the magnitude of the predicted 

values. However, we have been unable to model this using a complex level 1 

variance-covariance structure. The Normal plot of standardised level 1 residuals is displayed 

in Figure 4.2.3, showing an approximately Normal distribution. 

The terms of (t — 9)2+  and (t —11)+ are chosen to join other variables to form the level 2 random 

part of the model in Table 4.2.6. For a check of level 2 residuals, the Normal plots of the 

standardised level 2 residuals by Normal equivalent scores are displayed in Figure 4.2.4 and 

the plots of each pair of standardised level 2 residuals are shown in Figures 4.2.5-4.2.6. 

Higher-order terms, such as cubic, (9 — t)+ etc. should be useful in order to explain 

between-individual variation and to reduce level 1 variance. Unfortunately with our limited 

number of level 2 units it is not possible to obtain estimates. 

Figure 4.2.2 
	

Figure 4.2.3 

Plot of standardised level 1 residual by 	 Plot of standardised level 1 residuals by 

predicted values 
	

Normal equivalent scores 



Modelling Height (HT) 	 112 

Figure 4.2.4 The Standardised level 2 residuals by Normal equivalent scores 

for the model in Table 4.2.6. 
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Figure 4.2.5 Plots of standardised level 2 residuals. 
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Figure 4.2.6 Plots of standardised level 2 residuals. 
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The longitudinally estimated mean population curve of the model in Table 4.2.6 together 

with the cross-sectional means is shown in Figure 4.2.7. The two means are consistent in 

length. The cross-sectional means are derived from varying numbers of observations within 

the age intervals. The mean curve estimated by the multilevel model uses the precise age at 

which the measurement was taken. Figure 4.2.8 presents the estimated velocity curve which 

is the first derivative of the multilevel model based on the estimated fixed parameters. 

Figure 4.2.7 Longitudinally estimated mean curve (line) of 

HT for males with the cross-sectional means (dot). 

Age in years 

Figure 4.2.8 Estimated velocity curve of HT for males. 
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MODELLING HEIGHT FOR CONTROL FEMALES 

The model (3.5) of Model HT-A in section 3 is investigated by fitting OLS curves for each 

individual. The knots at years 9, 11, 13, 15, 17 are chosen according to rules of thumb (Wold, 

1974). The average residual standard deviation is 0.4904 cm with the range from 0.2347 

cm to 0.7986 cm. Table 4.2.7 gives the correlation coefficients, means and standard 

deviations of the OLS estimates, where the standard error of gl is equal to 0.2908 and of 

g2 is 0.5780. 

The residual mean square error (RMS) ranges from 0.0551 cm2  to 0.6377 cm2  at average 

value of 0.2501 cm2. For further check of the model, summary of residuals by age intervals 

is displayed in Table 4.2.8. The results are also close to expectation as were those for males. 

Variance component models of height for 67 control females using polynomials, 

conventional splines of equation (2.18) and extended splines of equation (3.4) are illustrated 

in Figure 4.2.9 in HT-1(*), HT-2(*) and HT-3(*) respectively. 

Comparing the values of LH and cy! for the models with seven or eight parameters in HT-1(*), 

HT-2(*) and HT-3(*), we can see that the extended splines fit the data better than the 

conventional splines. Comparing HT-3(7) with HT-3(8) we can also see that the term (15 — t)3. 

in HT-3(8) is not significantly different from zero (p > 0.05), that is, the knot at age 15 is 

not necessary in the population mean curve for females. 

Table 4.2.9 shows values of LH and o of models derived from HT-3(7). The models with 

last knot at 17.5 years, such as models 1 and 2, do not show an improvement over the model 

of HT-3(7). The term (15 — t)+ is not significantly different from zero when comparing model 

5 with HT-3(7). Models 6 to 13 are the model HT-3(7) with the first knot varying from age 

1 to 8 years and they are close to model HT-3(7). 
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Table 4.2.7 Correlation, means and standard deviations of the OLS estimates 

t°  int t-9 0- 01-0! 03-0! 05-0! 07-0! 

Mean 149.900 4.8599 0.1307 0.0621 -0.3203 0.3124 0.0355 -0.1034 

S.E. 14.6920 4.2186 1.3331 0.1617 0.3927 0.6240 0.5244 0.1666 

gl 1.5377 -3.9926 1.3225 -0.3390 0.1838 -0.4345 0.1604 0.1012 

g2 6.9145 21.2136 5.2984 -0.0979 -0.5698 -0.8313 -0.8798 -0.4461 

Correlations 

1.0000 

int -0.7177 1.0000 

t-9 -0.3131 -0.3171 1.0000 

0-03., -0.0927 0.3809 -0.3298 1.0000 

01-0: 0.1334 -0.3038 0.1561 -0.7822 1.0000 

(13-0: -0.2453 0.2082 0.1213 0.3194 -0.8296 1.0000 

(15-0: 0.3356 -0.1421 -0.3298 -0.0249 0.6048 -0.9425 1.0000 

(17-0: -0.4101 0.1084 0.4768 -0.1266 -0.4458 0.8535 -0.9770 1.0000 

Number of individual = 67 (females) 

Note t°  denotes intercept. 
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Table 4.2.8 Summary of HT residuals (OLS) by age group for females 

Age n mean sd se gl g2 

0.25+ 62 -0.03 0.35 0.05 -0.12 0.58 

0.50+ 62 0.12 0.64 0.08 0.16 0.14 

0.75+ 56 0.01 0.60 0.08 -0.23 -0.33 

1.00+ 61 -0.03 0.65 0.08 0.35 1.84** 
1.50+ 59 -0.10 0.72 0.09 0.08 -0.58 

2.00+ 60 -0.10 0.57 0.07 -0.10 -0.45 

2.50+ 54 0.05 0.48 0.07 0.03 -0.57 

3.00+ 63 0.13* 0.48 0.06 -0.17 -0.87 

3.50+ 63 0.08 0.51 0.06 0.03 -0.24 
4.00+ 61 0.00 0.45 0.06 -0.15 -0.36 
4.50+ 67 -0.13** 0.44 0.05 -0.23 0.63 

5.00+ 59 0.07 0.45 0.06 -0.43 -0.07 
5.50+ 58 -0.02 0.56 0.07 -0.02 -0.46 
6.00+ 66 -0.10* 0.42 0.05 -0.36 0.78 
6.50+ 54 -0.06 0.43 0.06 -0.16 -0.35 
7.00+ 65 0.06 0.49 0.06 0.37 0.51 
7.50+ 57 0.00 0.51 0.07 -0.04 -0.12 
8.00+ 64 0.13** 0.40 0.05 -0.10 -0.27 
8.50+ 57 -0.00 0.38 0.05 -0.54 0.17 
9.00+ 68 -0.05 0.45 0.05 -0.03 -0.64 
9.50+ 57 -0.00 0.57 0.08 -0.94** 0.28 
10.00+ 62 -0.01 0.50 0.06 -0.73* 0.23 
10.50+ 60 -0.02 0.46 0.06 -0.37 0.80 
11.00+ 62 0.03 0.51 0.07 0.01 0.26 
11.50+ 65 0.03 0.61 0.08 0.64* 0.07 
12.00+ 59 -0.02 0.63 0.08 0.07 -0.83 
12.50+ 53 -0.02 0.44 0.06 -0.66* 0.25 
13.00+ 59 -0.01 0.51 0.07 0.61* 0.33 
13.50+ 61 -0.01 0.51 0.06 -0.28 -0.73 
14.00+ 60 0.04 0.47 0.06 0.10 -0.40 
14.50+ 54 0.00 0.42 0.06 -0.66* 1.86** 
15.00+ 60 -0.01 0.37 0.05 -0.46 1.05 
15.50+ 39 -0.05 0.42 0.07 -0.45 1.77* 
16.00+ 64 -0.02 0.41 0.05 -0.14 0.48 
16.50+ 40 0.06 0.44 0.07 1.31** 3.56** 
17.00+ 35 0.08 0.35 0.06 0.70 1.86* 
17.50+ 21 0.00 0.29 0.06 -0.77 1.07 
18.00+ 12 -0.16 0.59 0.17 -1.65** 3.54** 

* p 0.05; ** P < 0.01 
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Figure 4.2.9 Variance component model of HT for 67 females 
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The model (3.6) of Model HT-B in section 3 is tested by including the term of lit into the 

model HT-3(7). The term lit is significant (p < 0.05) in model 2 comparing with model 1 

in Table 4.2.9, however it does not improve much compared with model 3. Comparing model 

3 with model 4 in Table 4.2.9 we can find that lit is not significantly different from zero 

(P > 0.05). 

The random coefficient model of HC-3(7) is now used to analyse the data for females: 

yii  = Poi  + Piptij 	inod + 133;(9 - 03+  + 134;(11 - 0+3  + 13,;(13 - 0+3  + 136;(17 - 03+  + eii, (4.3) 

yo  + tcoi  + u3i(tii  — 11)2+  + u4i(ti  —13)+, 

131;  = Yi + ul j , 

132j = Y2 + u2j9 

133j = Y39  

134j = Y49  

15j = Y59 

136j = Y6' 

Table 4.2.10 gives the estimates of parameters for the (4.3). Examining fixed coefficient 

contrasts shows that all the fixed coefficients are significantly different from zero (P < 0.01) 

except the coefficient of age. 
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Table 4.2.9 Model HT -3(7) with different knots or terms for females 

Models 	 LH 

	

1 	t°,t 1, int, (9 —03,, (11 —03., (13 —03„, (17.5 —0,3 	10540.4 	7.088 

	

2 	t°,t 1, Int, (9 - t )3„, (11 — 03„ (13-03., (17.5 	 10536.3 	7.074 

	

3 	t°,t1, Int, (9 — 	(11 — 03.,, (13 — t)3.,, (17 — 03„ 	 10537.8 	7.079 

	

4 	t°, t i,Int, (9 — t)3.„ (11 —03+, (13 — t)3±, (17 —03., lit 	10534.1 	7.066 

	

5 	t°, 	(9 -03.,(11-03., (13 — 03+, (15 —03., (17 —03,, 	10537.4 	7.078 

	

6 	t°, ,Int, (8 — 03+,(11-03„., (13 — t)+, (17-0! 	10537.3 	7.078 

	

11 	t°,t 1, Int , (3 — 03+, (11-030 (13 -03+,07 — W 	10539.5 	7.085 

	

12 	t°,t 1,Int, (2 — 	(11-03+,03-03+,07-W 	10545.1 	7.104 

	

13 	t°,t 1,Int,(1 - 	(11 -03+, (13 -03„, (17 - 	 10538.3 	7.081 

7 	t°,t 1, lnt,(7 — 03+,(11 — 03+, (13-03+,07—W 	10537.5 	7.078 

8 	t°, 	,Int , (6 —03,, (11 —03+, (13 — 03+, (17 —03+ 	10537.9 	7.080 

9 	t°, t l, /nt, (5 — 	(11 — 03+, (13 —03+, (17 —03,, 	10538.4 	7.081 

10 	t°,t1, Int, (4 —03+, (11 —03+, (13 —03„ (17 —03+ 	10538.7 	7.082 
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Table 4.2.10 Model (4.3) of height for 67 females 

Fixed coefficient 
	

Estimate 	s.e. 

e 146.2800 1.7650 

Int 5.7125 0.2875 

t-9 0.2608 0.1723 

(9-0! 0.0536 0.0125 

01-03, -0.3034 0.0226 

(13-0! 0.3233 0.0151 

(17-0! -0.0861 0.0033 

Random parameters 

Level 

t o 

2 	Covariance matrix (correlations in brackets) 

t° 	 Int 	 t -9 	(t-11)2. 	(t -13)2, 

42.8170 

( 	1.00) 

Int -4.8029 2.4207 

(-0.47) ( 	1.00) 

t-9 4.5174 -0.7392 0.5360 

( 	0.94) (-0.65) ( 	1.00) 

(t-11)! 	-2.5608 	0.3325 	-0.3077 

(-0.69) 	( 	0.38) 	(-0.74) 

0.3193 

( 	1.00) 

(t-13)2. 	2.5792 	-0.2154 0.3162 -0.4461 0.6990 

( 	0.47) 	(-0.17) 	( 0.52) (-0.94) ( 1.00) 

S.E. 	of Var. 	7.6080 	0.4581 0.0955 0.0578 0.1315 

Level 1 variance = 0.9374 	(0.0311) 

Number of subjects = 67 

Number of measurements = 2134 
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The likelihood ratio test is significant (p < 0.001) when comapring the model in Table 4.2.10 

with its corresponding variance component model. The estimated standardised level 1 

residuals' skewness, gi  = —0.0711 (0.0530), and kurtosis, g2  = 1.1288 (0.1059), show 

symmetry and a sharp peakedness of the distribution. For a check of the model, the plot of 

standardised residuals by predicted values is given in Figure 4.2.10, in which the residuals 

are randomly distributed and the residual variance increases with the magnitude of the 

predicted values, as for males, but no function could be found to describe this. The Normal 

plot of standardized level 1 residuals is displayed in Figure 4.2.11, showing an approximately 

Normal distribution. 

Similarly to the male cases, the terms of '+' function are used to explain between-individual 

variation for the model in Table 4.2.10. The terms of (t —11)+ and (t —13)+ are finally chosen 

to form level 2 random part together with other variables, t°, int and t — 9. For a check of 

level 2 residuals, the Normal plots of the standardised level 2 residuals by Normal equivalent 

scores are displayed in Figure 4.2.12. The plots of each pair of standardised level 2 residuals 

are shown in Figures 4.2.13-4.2.14. 

Figure 4.2.10 
	

Figure 4.2.11 

Plot of standardised level 1 residual 
	

Plot of standardised level 1 residuals by 

by predicted values 
	

Normal equivalent scores 



Level 2 

re 

2.2 

1.1 

• 

  

Normal snare 

1.a 

Level 2 

residual 

-1.85 

-2 7 

omm 

9.9 	1.9 	2.7 

Normal sear. 

9 7 

1.4 

• .7 

Level Level 2 

residual • residua • 

-2.7 
-I 7 

-31.7 9.9 1 .2 4.9 2.7 2.7 1.9 

I 	I 	I 

sal 

I 	I 	I  

Modelling Height (HT) 	 124 

Figure 4.2.12 The Standardised level 2 residuals by Normal equivalent 

scores for Table 4.2.10. 
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Figure 4.2.13 Plots of standardised level 2 residuals. 
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Figure 4.2.14 Plots of standardised level 2 residuals. 
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Figure 4.2.15 shows the longitudinally estimated mean population curve of the random 

coefficient model of Table 4.2.10 together with the cross-sectional means. Figure 4.2.16 

presents the estimated velocity curves from the model using the first derivative of the model 

based on the estimated fixed parameters. 

Figure 4.2.15 Longitudinally estimated mean curve (line) of 

HT for females with the cross-sectional means (dot). 
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Figure 4.2.16 Estimated velocity curve of HT for females. 
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Growth Parameters 

We have used the estimated parameters to calculate the velocity curves for males and females 

(see Figure 4.2.8 and 4.2.16). We can also use the estimated parameters to calculate growth 

parameters, such as take-off - at the minimum pre-spurt velocity, Peak Height Velocity 

(PHV) - maximal peak height velocity. These growth parameters are often compared between 

populations (Tanner, Whitehouse, Marubini and Resele, 1976). 

If we use the model (4.2) for females as an example, then the ages of minimum or maximum 

velocity are given by the solution to the following equation: 

—(Y2 + u2;)/t2 + 613(9  — 	+ 6y4(11 — t), + 6y5(13 — t), + 6y6(17 — t)+ + 2u3i  + 2u4i  = 0 

If we assume that the —u2j, 2u31  and 2u3j  have a multivariate Normal distribution we can 

estimate the distribution of t, for example, by simulation (Goldstein, 1989). In order to 

estimate the growth parameters properly, especially the variance of these parameters, we 

require at least coefficients up to the cubic to be random between individuals. However, it 

has not been able to include the random coefficients higher than the quadratic with the 

relatively small sample size. In addition, there is no closed form solution for the ages at 

minimum and maximum in the above equation. The values of ages at take-off and peak 

height velocity can be approximately read off from the velocity curves (Tanner, Whitehouse, 

Marubini and Resele, 1976; Berkey, Reed and Valadian, 1983). 

Table 4.2.11 gives the mean values of the growth parameters. The means under the column 

'Overall' are obtained using the estimates from the fixed part of Table 4.2.6 for males and 

Table 4.2.10 for females. Those under the column 'Simulation' are from a simulation sample 

of 100 individuals using the estimates, both the fixed and the random part, of these two 

tables. The two results are similar. 
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Table 4.2.11 Average growth parameters for 89 males and 67 females 

Growth 

Parameters 

Overall Simulation 

Males Females Males Frmales 

Age at take-off (years) 11.1 9.2 11.2 9.3 

Velocity at take-off (cm/year) 5.1 5.5 4.9 5.6 

Height at take-off (cm) 144.4 134.1 145.5 135.5 

Age at PHV (years) 13.8 11.5 13.8 11.6 

PHV (cm/year) 7.8 6.4 7.8 6.7 

Height at PHV (cm) 161.4 147.6 161.6 149.2 

Height at 18 years (cm) 178.1 165.1 178.9 165.5 

Our results are very close to those obtained by other methods. For males, these estimates 

are close to the results of Ratcliffe, Pan and McKie (1992) for 16 boys of this dataset by 

using the kernel estimation (Gasser, KOhler, Muller, Kneip, Largo, Molinari and Prader, 

1984; Gasser, Kneip, Ziegler, Largo and Prader, 1990). For females, the estimates are close 

to the results of Ratcliffe, Pan and McKie (1994) by using the same kernel estimation for 

16 girls of this dataset. See Table 4.2.12 for the results using kernel estimation. 

Table 4.2.12 Average growth parameters for 16 males and 16 females 

Parameters 	 Males 	Females 

Age at take-off (years) 

Velocity at take-off (cm/year) 

Height at take-off (cm) 

Age at PHV (years) 

PHV (cm/year) 

Height at PHV (cm) 

Height at 18 years (cm) 

	

11.3 (1.0) 	9.2 (1.6) 

	

4.7 (0.7) 	5.0 (0.8) 

	

143.8(8.0) 	134.1(10.3) 

	

13.8 (1.2) 	11.8 (1.1) 

	

8.9 (1.3) 	7.8 (0.8) 

	

159.6(7.6) 	150.1(6.4) 

	

175.1(7.7) 	164.5(6.1) 



Deming (1957) 

Marubini et al (1972) 

Tanner et al (1976) 

Bock et al (1973) 

Bock et al (1976) 

13.4 	11.4 

14.0 

14.2 

14.4 

13.0 

13.9 
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It is worth noticing that the estimates of velocities at PHV by using the kernel estimation 

of Gasser, Kneip, Ziegler, Largo and Prader (1990) are higher than those obtained by any 

other parametric method so far. Their approach consists of synchronizing the individual 

curves before determining the average, which is biologically similar to the procedure of 

Tanner, Whitehouse and Takaishi (1966). 

Our estimates for the age PHV are very close to those quoted by Bock and Thissen (1976) 

(see Table 4.2.13). 

Table 4.2.13 Ages at adolescent PHV from various studies 

Reference 	 Males 	Females 

If we compare our results with those of the Fels Longitudinal Growth Study fitted with the 

triple logistic model by using maximum marginal likelihood estimation (Bock, 1992): the 

third logistic component is located at 13.75 years for male and 11.51 years for female and 

the corresponding growth velocities are 7.36 cm/year and 6.51 cm/year, which do not differ 

greatly from our estimates for velocity at these ages. 

It is obvious that our models are better than those proposed by Berkey, Laird, Valadian and 

Gardner (1989). The five parameter linear Reed model was used for 62 boys aged from 8 

to 18 years. The residual standard deviations of ordinary least squares (OLS) curves ranged 

from 0.37 to 2.51 cm with median of 1.4cm comparing 0.55 cm of our extended spline. The 
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population mean was estimated by using the general linear random-effects model of Laird 

and Ware (1982). The ages both at take-off and PHV are underestimated by 0.5 year and 

the PHV is about 7 cm/year in their population mean curves for males. 

Up to now, the eight parameter Reed model of Reed and Berkey (1989) is the only published 

linear model for height from birth to maturity. The model was used to fit curves for two 

boys and two girls from birth to 18 years of age. The plotted velocity curve has an obvious 

sudden change in it's shape at the joint, which implies the discontinuity in acceleration. In 

contrast, the velocity curves of Figure 4.2.8 and 4.2.16 represent the main features of the 

pubertal spurt well and are smooth at joints because these extended splines have three 

continuous derivatives at joints. 

The height mean curves in Figures 4.2.7 and 4.2.15 have an asymptotic end for female but 

not for males. There may be two reasons for this: one is that females stop growing earlier 

than males and by year 18.5 some boys in late development are still growing; another is that 

relatively small numbers in the end age group might lead to an average curve being unstable 

at that age as discussed by Cole and Green (1992). In order to check the predicted values 

for males of 178.9 cm at 18.5 years using the 2-level random coefficient model with the 

extended spline, we applied BTT model to the data using the AUXAL program of Bock, 

Toit and Thissen (1994). The predicted value is 178.8 cm, which is close to our results. The 

BTT model is a nonlinear and asymptotic model, an extention to the Triple Logistic model 

of Bock and Thissen (1976). 

Between-individual variation 

Figure 4.2.17 shows the estimated between-individual standard deviation by age for each 

gender of the models in Table 4.2.6 and 4.2.10. For most ages, from early childhood to 16 

years, these are close to those found by Tanner, Whitehouse and Takaishi (1966). The 

standard deviation increases by age gradually at the prepubertal stage and increase obviously 
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at the pubertal stage. The difference in timing between the two genders is shown in Figure 

4.2.17 and is reasonably consistent with the timing difference of the pubertal stages in gender. 

Note that the standard deviation increases after age 16 in our results which is not consistent 

with those of Tanner, Whitehouse and Takaishi (1966). This may be due to the relatively 

small sample and the increasing number of missing values at this age. The missing values 

vary from 0-18% in males and 0-42% in females at ages 0.25 to 16 years and from 9-63% 

in males and 4.5-82% for females after ages of 16 years. We have reasonably good estimates 

for the fixed coefficients. However, the estimates of the random terms depend on adequate 

number of individuals (Goldstein, 1986a). 
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Chapter 5 

Discussion 

In longitudinal studies, growth patterns are often summarized by certain linear or nonlinear 

growth models so that a small number of parameters, or functions of them can be used to 

make group comparisons or to relate to other measurements. The statistical methods for 

analysis of longitudinal data can be described in two broad categories: fitting the average 

growth curve and fitting individual curves. 

To analysis data based on the individual, growth models are fitted to each individual and 

then the growth parameters that describe the timing, magnitude and duration of the growth 

spurt are derived from the fitted models. The effects of covariates other than age, such as 

gender, protein etc. are often analysed by performing multiple cross-sectional analyses (Guo, 

Siervogel, Roche and Chumlea, 1992; Ratcliffe, Masera, Pan and McKie, 1994). 

Multivariate analysis of variance with an unstructured variance-covariance matrix (Rao, 

1965) uses polynomials and requires complete and balanced data. The application of 

multilevel models for describing growth is an efficient way for specifying growth models, 

linear or nonlinear, and incorporates covariates readily (Goldstein 1986a, 1989). 

The interest of this study is to explore suitable specifications for multilevel models to analysis 

human growth and development over wide age ranges. The work has been focused on 

modelling human growth in height and head circumference. Measurements of height and 

head circumference are used in this study as they are of general interest and each includes 

a difficult range to be fitted: puberty in height measurements and infancy in head 

circumference with rapid acceleration or deceleration. The investigation of polynomials, 

conventional splines and the extended splines proposed in this study shows that the extended 
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splines are better than polynomials and conventional splines for this purpose. The extended 

splines are useful, flexible, and simple to incorporate into multilevel models for population 

study. 

5.1 Usefulness 

These multilevel models are the only linear models proposed to date to estimate mean growth 

curves over a wide age range with covariates other than age. Prior to this study work carried 

out by other authors is limited to certain periods of age range for height. The model proposed 

by Berkey and Laird (1986) deals with height measurements for the Jenss curve for early 

childhood with gender and protein as covariates. The multilevel models using polynomials 

presented by Goldstein (1986a) and Goldstein (1989) show an efficient statistical modelling 

of longitudinal data over age 6 to 11 years with gender as covariate and covering ages 10 

to 18 years respectively. The approaches of Berkey, Laird, Valadian and Gardner (1989) 

predict mean population parameters by the covariates of protein for a sample of 62 boys 

aged 8-18 years using the Reed model. The Jenss model is suitable for early childhood and 

the Reed model for the stage of puberty. No literature has addressed a population study for 

head circumference using multilevel models. Polynomials are flexible but they are neither 

able to fit adolescent growth in height nor the early childhood growth in head circumference 

as the curves are not polynomial like during these periods. 

Multilevel models solve the inference problem we encounter when performing multiple 

cross-sectional analysis of the effects of covariates along the age scale. For example, the 

model for head circumference (HC) analyse the effect of the karyotype on magnitude along 

the age scale by using likelihood ratio tests on the parameters estimated for the various 

karyotype groups. For the same data set Ratcliffe, Masera, Pan and McKie (1994) studied 

the HC difference between normal and chromosomally abnormal groups by t-test with the 

Bonferroni inequality adjustment for multiple comparison in age groups. The two methods 
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reach the same conclusion in analysing the effect of the karyotype. However multilevel 

models use data more efficiently than multiple cross-sectional comparisons especially when 

there is a small number of measurements within each year and each karyotype group and 

the data are unbalanced and incomplete. Multilevel models utilise the precise age when the 

measurement was taken and also all the information from each individual to estimate the 

covariate effects and mean curves. 

These multilevel models can be compared with the model proposed by Berkey, Laird, 

Valadian and Gardner (1989), which uses the two-stage model of Laird and Ware (1982) 

incorporating the Reed model. The extended splines cannot be compared easily with the 

Reed model as the former has seven parameters and the later five parameters; the former is 

used for data covering early childhood to adult while the later covers adolescence to adult. 

However we can compare the two models for some important growth parameters derived 

from the two models with those quoted from published papers. The five-parameter linear 

Reed model was used for 62 boys aged from 8 to 18 years and their results in general were 

good. The residual standard deviations of ordinary least squares (OLS) ranged from 0.37 

to 2.51 cm with a median of 1.4cm, while with our extended spline method it ranged from 

0.29 to 0.91 cm with a mean of 0.55 cm. The age at take-off was estimated to be 9.7 years 

and the age at PHV about 13 years by Reed model, which were underestimated by about 

1.0 and 0.5 year respectively in comparison with other studies (see Table 4.2.13). The PHV 

was estimated to be 7.0 cm/year in their population mean curves versus our PHV of 7.8 

cm/yr. Our models seem more accurate than the model of Berkey, Laird, Valadian and 

Gardner (1989). 

Recent work of Royston and Altman (1994) on fractional polynomials may provide a 

valuable contribution to modelling growth data. The question is whether fractional 

polynomials can be alternatives to the extended splines in this study. Royston and Altman 

(1994) provide a unified description and a degree of formalization for fractional polynomials. 
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In general fractional polynomials are the combination of logarithm terms and power terms 

with integer and non-integer values. The family of fractional polynomials are supposed to 

have considerable flexibility for various kinds of data. For x > 0 a fractional polynomial 

with degree k and powers pi  s s pk  is defined as 

Crik(-03,1,) = OiHi(X), 
i -0 

where 

H1(x) = (P), 	 if Pi Pi-i 

= Hi _ i(x)lnx, 	if p=p . 

The authors suggest that candidate values of p are all possible m-tuples selected with 

replacement from a fixed set of {-2, —1, —0.5, 0, 0.5,1, 2, 3, ... max(3, k)}. With its definition 

of fractional polynomials the five-parameter Reed model can be expressed as 

04(t; — 2, —1, 0, 1) and the cubic can be expressed as (133(t;1, 2, 3). 

A variety of fractional polynomials have been searched where the number of parameters 

varies from 7 to 8 to see whether we can find a fractional polynomial which can fit adolescence 

better than our extended splines. The strategy to enumerate all k-tuples from the set 

{-2, —1, —0.5, 0, 0.5,1, 2, 3, ... max(3, k)} is a heavy computational burden (Royston and 

Altman, 1994). The search was done by fixing some of the powers of set of 

{-4, —3, —2, —1, 0, 1, 2, 3} and varying the others. Ordinary least squares (OLS) were used to 

fit individual curves for male cases in the Section 4. Standard deviations of the pooled 

residuals are used for comparison between the models. Table 5.1.1 shows part of the models 

for height with relatively small standard deviations of the pooled residuals. We find that 

the fractional polynomial (135(0, 0.5, 1, 2, 3) is quite close to the extended splines in section 

4 for head circumference. However we have not found any fractional polynomials which fit 

the height data better than the extended splines. 
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Table 5.1.1 Standard deviation of residuals (OLS) for height 

Model 

07(t; - 4, -3, -2, -1, 0, 1, 1) 

(D7(t ; - 3, -2, -1, 0, 0, 1, 1) 

D7(t; - 2, -1, -1, 0, 0, 1, 1) 

07(t; - 2, -2, -1, 0, 0, 1, 1) 

17(t; - 2, -1, 0, 0, 1, 1, 2) 

4:1)7(t; -1,0, 0, 1, 1, 2, 2) 

(137(t;0, 0, 1, 1, 2, 2, 3) 

(D7(t;0, 1, 1, 2, 2, 3, 3) 

07(1;1,1, 2, 2, 3, 3, 4) 

07(t;0,1, 2, 3, 3, 4, 4) 

(137(t;0,1, 2, 3, 4, 4, 5) 

07(1;0,1, 2, 3, 4, 5, 6) 

17(t;1, 2, 3, 4, 5, 6, 7) 

1.5517 

1.4636 

1.4661 

1.4476 

1.3020 

1.1632 

1.1134 

1.0479 

0.9016 

0.8811 

0.8496 

0.7952 

0.7046 

The crude search may not be optimal. Some models may be prohibited by high correlations 

between power terms. For example, the correlation between variables 1/t and lralt is -0.9956; 

t and lnt*t is -0.9999; 1/t and 1/t2  is 0.9946; fruit and 1/t2  -0.9999; (lnt)2/t and (1nt)21t2  

0.9947. The high correlations between these terms make it difficult to find a fractional 

polynomial for height including childhood and adolescence where at least 7 parameters are 

required. Berkey and Reed (1987) suggest including 1/t3  and 1/t4  into the five-parameter 

Reed model to form a general Reed model. However Reed and Berkey (1989) find that in 

practice this is dubious and suggest using piecewise model. 

The five-parameter Reed model includes logarithmic term and negative integer powers. 

Royston and Altman (1994) have applied fractional polynomials to many data sets and 

usually find a model that is an improved fit in comparison with the conventional polynomial. 
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Using the definition of fractional polynomials and the '+' function we can express extended 

splines with m segments in a general form as 

In - 1 
f(t) = I 9 iHi(t) + I 

1
(0i(t — 

-0  

where 

Ht(x) = x(P,), 	if Pi Pi -1 

= 	_ i(x) ln x, 	if Pi = Pi -1. 

Note the '+' function can be either (t — )i.„ or — t): or both if necessary. When max(pi) a r 

or a negative power or logarithmic term is included the f(t) has r — 1 continuous derivatives 

of t at the joints. For example the last segment in the extended splines for height is a fractional 

polynomial of (1)2(t;0,1) and the last but one is 433(1;0,1, 3) and these two segments are 

combined at the last point with continuous at function, first and second derivatives. The 

extended splines combine segments of fractional polynomials and therefore they provide 

more useful tools than a single fractional polynomial. 

5.2 Computational Simplicity 

As the extended splines are piecewise fractional polynomials they have the advantages of 

both fractional polynomials and splines. With the '+' function in the extended splines the 

continuity constraints are implicit (Wold, 1974; Smith, 1979), which makes it possible to 

fit using standard methods. 

The examples in section 4 illustrate the simplicity of fitting the extended splines with 

multilevel models. The use of the '+' function in extended splines allows the data to be fitted 

by any suitable method such as iterative generalized least squares (IGLS) of multilevel 

models straightforward without extra constraints. 
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Extended splines are not as computationally efficient as B-splines (Wold, 1974; Eubank, 

1984) especially when a large number of knots are specified. The reason that B-splines are 

not used in this study is that they are not straightforward in interpretation and for analysing 

effects of covariates other than age. In addition it is not clear whether B-splines are suitable 

when splines contain terms of logarithmic, reciprocal etc. Smoothing splines are flexible 

tools for the estimation of a smooth curve but they are not available with a multilevel 

framework at the present time. 

An alternative to the '+' function is using constraints to combine segments smoothly at joints 

(Cox, 1971, Seber and Wild, 1989; Reed and Berkey, 1989). Goldstein and Pan (1992) 

illustrate the use of constraints to smooth individual and centile curves respectively. 

Multilevel models allow us to join several segments with constraints both on fixed part and 

random parts (Goldstein 1987). This provides us with a broad way to fit segments for 

different age ranges with smooth constraints on joints. 

In the early work of this study an attempt was made to combine polynomials with other 

functions, for example, a model composed of two segments, the first segment in cubic and 

the second —t-c + — , where the value of c was given. Smooth constraints were put on the 0-02  

function, the first derivative and the level 1 and level 2 random part. Height measurements 

of 110 boys aged from 3 to 18 years were used from the mixed data of the Harpenden 

Longitudinal Study and International Children's Centre Study (Tanner, Whitehouse, 

Marubini and Pesele, 1976; Tanner, Goldstein and Whitehouse, 1970). It was difficult for 

the iterative procedure to converge when three segments were included or when covariates 

other than age are considered because of the need for smooth constraints at joints both for 

the fixed part and the random part. This leads to too many parameters to be estimated when 

a limited number of level 2 units are available. 
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Similar problems may occur when the model of Reed and Berkey (1989) is incorporated 

into a multilevel model. The Reed and Berkey model is composed of two fractional 

polynomials: the first one is 4:04(t; — 2, —1, 0, 1) for the pre pubertal stage and the second 

04(t; — 3, —2, —1, 0) for the pubertal stage. In principle it can be estimated by multilevel 

models with constraints. We need at least 5 constraints: three for the fixed part to be 

continuous at function, first and second derivatives and two for level 1 and level 2 random 

variance to be equal at joints, which leads computational difficulties especially if covariates 

other than age are required to be estimated. This problem may explain why there are few 

applications of the model despite the fact that the Reed and Berkey model is the first and 

the only linear model published which describes human growth from birth to maturity. The 

work of Reed and Berkey (1989) was focused on fitting individual curves by OLS with 

constraints for continuous on the function and the first derivative. The velocity curve derived 

from the model has an obvious sudden change in it's shape at the joint, which implies a 

discontinuity in acceleration. In contrast, the velocity curves derived from our extended 

splines present the main features of the pubertal spurt well and are smooth at the joints 

because these extended splines are continuous up to the second derivative at the joints (see 

Figure 4.2.8 and 4.2.16). 

5.3 Flexibility 

Most growth models describe growth patterns for certain periods. For example, the Reed 

model (Berkey and Reed, 1987) and Jenss model (Jenss and Bayley, 1937) are suitable for 

the height of young children; the triple logistic (Bock and Thisse, 1976), BTT model (Bock, 

Toit and Thissen, 1994), JPPS model (Jolicoeur, Pontier and Sempe, 1988) and JPA2 model 

(Jolicoeur, Pontier and Abidi, 1992) are suitable for height from early ages to maturity. They 

may not be able to fit data for other age ranges. In addition a model for height may not suit 
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other measurements, for instance, head circumference or leg length. By contrast we can add 

or drop some terms from an extended spline or use different joints to form an extended spline 

for other measurements or other age ranges. 

An example is given now to demonstrate the flexibility of extended splines. The extended 

splines for height can be applied to model other measurements of length, such as sitting 

height and leg length. The measurements of sitting height (SH) and leg length (LL) are from 

the 83 normal males and 60 females, from the same sample used in section 4.1. Sitting 

height was measured and leg length was obtained by subtracting sitting height from the 

corresponding total standing. The data cover ages 2 to 18 years. For a preliminary check, 

ordinary least squares (OLS) curves are fitted independently to each individual's data. The 

model (3.5) is used with knots set at 11, 13, 15 and 17 years for males and 9, 11, 13 and 17 

years for girls respectively. The check of the residuals gives similar results as we found in 

the fitting for height (see section 4.1). The residual standard deviations are summarized in 

Table 5.3.1. 

Table 5.3.1 Residual standard deviation for SH and LL (OLS) 

SH 	 LL 

Gender 	N 	Mean 	Range 	Mean 	Range 

Male 	83 	0.48 	0.23 - 0.72 	0.48 	0.29 - 0.81 

Female 	60 	0.48 	0.25 - 0.79 	0.47 	0.32 - 0.78 

The flexibility of the extended splines allows us to study changes of relationships between 

different kinds of measurements by ages using a multivariate longitudinal model. As the 

numbers of individuals are greater for males than for females, we will use the data of the 83 
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males as an example to show how a multivariate longitudinal model for sitting height and 

leg length can be formulated. Level 1 is the variable, sitting height or leg length within 

occasion which is level 2 and subject is level 3. 

The values of the mean and standard deviation of sitting height and leg length from the raw 

data are listed for each age group in Table 5.3.2. Table 5.3.3 gives the estimates of fixed 

parameters using the extended splines. All the parameters in the fixed part are significantly 

different from zero (P < 0.05 or P < 0.01) except the variable age in the model for leg length. 

The parameters of the mean population curves are significantly different between these two 

curves (P < 0.001). 

Figure 5.3.1 shows the mean curves for sitting height and leg length (in line) and also shows 

the mean values estimated cross-sectionally. The main growth parameters derived from the 

estimated fixed part are listed in Table 5.3.4. The growth parameters are close to those of 

Tanner, Whitehouse, Murubini and Resele (1976) and Gasser, Kneip, Binding, Prader and 

Monlinari (1991) despite using different methods and data. 

Table 5.3.5 gives the covariance matrix of random coefficients of the multivariate 

longitudinal model. The likelihood ratio for this model is 13362.3 and is 17976.4 for the 

variance component model. The difference is highly significant (p < 0.001) and indicates 

that the variables in the level 3 random part are necessary. 

Using the estimated parameters from the multivariate model we can obtain correlations at 

any ages of the data. Tables 5.3.6 and 5.3.7 show estimated correlations at specified ages 

for sitting height and leg length respectively. Table 5.3.8 gives the correlation between sitting 

height and leg length changes by age. On average it is 0.51 at two years of age and increases 

to 0.68 at ten years of age and decreases to 0.43 at eighteen years of age. 

In practice longitudinal data are not measured exactly at the target ages. The multivariate 

longitudinal model provides an efficient way to analyse data in this case. Goldstein (1986) 
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gives an example of a multivariate model using polynomials for height and weight at ages 

about 8 to 9 years to predict correlations for target ages 8 and 9 years. The example given 

here for ages 2 to 18 years shows that the extended splines are useful in order to formulate 

a multivariate model when data do not behave like polynomials and when data cover wide 

age ranges. 

o a sitting height 

o o leg length 
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Figure 5.3.1 Mean curves of sitting height and leg 

length for Table 5.3.3 of males 
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Table 5.3.2 Means of SH and LL (cm) in age group for 83 males 

SH LL 

Age Group N Mean S.D. Mean S.D. 

2.00+ 67 53.24 1.94 34.12 1.91 

2.50+ 71 55.19 1.89 36.68 2.19 

3.00+ 83 56.95 2.06 38.95 2.17 

3.50+ 82 58.48 2.14 41.01 2.34 

4.00+ 86 60.37 2.07 43.20 2.53 

4.50+ 79 61.36 2.29 45.07 2.68 

5.00+ 84 62.99 2.37 47.43 2.75 

5.50+ 81 64.09 2.45 49.33 3.00 

6.00+ 73 65.42 2.38 51.06 3.01 

6.50+ 79 66.60 2.57 52.95 3.14 

7.00+ 80 67.61 2.41 54.61 3.13 

7.50+ 79 69.22 2.74 56.50 3.13 

8.00+ 77 70.08 2.60 58.25 3.46 

8.50+ 75 71.16 2.95 60.07 3.51 

9.00+ 85 72.23 2.60 61.85 3.73 

9.50+ 76 73.35 2.58 63.42 3.71 

10.00+ 81 74.20 2.88 65.14 3.77 

10.50+ 77 75.08 3.09 66.21 4.08 

11.00+ 78 76.20 2.68 68.01 3.86 

11.50+ 77 77.49 3.47 69.35 4.01 

12.00+ 76 78.40 3.28 71.52 4.16 

12.50+ 79 79.55 3.66 72.81 4.56 

13.00+ 74 81.57 4.34 74.85 4.77 

13.50+ 67 82.95 3.66 76.85 4.60 

14.00+ 80 85.44 4.31 78.89 4.65 

14.50+ 76 87.56 4.30 80.49 4.68 

15.00+ 73 88.39 3.80 81.41 4.42 

15.50+ 71 90.42 3.82 82.41 4.54 

16.00+ 77 91.67 3.49 82.89 4.69 

16.50+ 64 92.73 3.12 83.81 4.49 

17.00+ 56 93.12 3.13 83.47 4.35 

17.50+ 45 93.84 3.03 83.26 5.04 
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Table 5.3.3 Mean curves of sitting height and leg length for 83 males 

Fixed coefficient 
	

Estimate 	 s.e. 

Sitting Height 

Intercept 66.7130 4.1670 

t-10 1.3477 0.1572 

hu 5.9621 1.7290 

01-0! 0.1295 0.0089 

03-0! -0.3840 0.0162 

05-0! 0.3840 0.0152 

07-0! -0.1286 0.0058 

Leg Length 

Intercept 74.1280 3.7850 

t-10 0.1300 0.1582 

lig 2.9560 1.5620 

01-0! 0.0622 0.0081 

03-0! -0.2893 0.0148 

05-0! 0.3952 0.0141 

(17-03, -0.1689 0.0055 

Table 5.3.4 Main growth parameters of SH and LL for 83 males 

Variable 	 Our results 	Tanner et al 	Gasser et al 

(1976) (1991) 

Sitting Height 

Age at take off (yr) 11.20 12.12 11.30 

Age at peak velocity (cm/yr) 14.00 14.25 14.20 

Peak velocity (cm/yr) 4.09 4.54 4.84 

Adult size (cm) 94.73 92.71 93.80 

Leg Length 

Age at take off (yr) 11.30 12.01 10.70 

Age at peak velocity (cm/yr) 13.50 13.58 13.80 

Peak velocity (cm/yr) 3.89 4.25 4.87 

Adult size (cm) 83.71 80.94 84.30 
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Table 5.3.5 Covariance Matrix of random coefficients (correlations in 

brackets) 

SH 	 LL 

t° 	 t 	 t2 	t
3 	 to 
	

t 
	t 2 	t3 

SH t
o 8.9202 

( 1.00) 

t 0.5945 0.1366 

( 0.54) ( 1.00) 

t2  -0.0570 -0.0032 0.0010 

(-0.60) (-0.27) ( 1.00) 

-0.0078 -0.0018 0.0001 0.0000 

(-0.44) (-0.82) ( 0.54) ( 1.00) 

LL to 	8.2572 0.4504 -0.0413 -0.0054 14.6150 

( 0.72) ( 0.32) (-0.34) (-0.24) ( 1.00) 

t 	0.4528 0.0683 -0.0014 -0.0007 0.8030 0.0900 

( 0.51) ( 0.62) (-0.15) (-0.39) ( 0.70) ( 1.00) 

t2  -0.0778 -0.0091 0.0007 0.0002 -0.0894 -0.0058 0.0013 

(-0.71) (-0.67) 	( 0.60) 	( 0.92) (-0.65) (-0.53) 	( 1.00) 

t3  -0.0074 -0.0018 0.0001 0.0000 -0.0070 -0.0012 0.0002 0.0000 

(-0.43) (-0.84) 	( 0.55) 	( 0.80) (-0.32) (-0.69) 	( 0.74) 	( 1.00) 

Number of measurements = 2459 in sitting height. 

Number of measurements = 1637 in leg length. 

The within-subject variance is 0.6853 for sitting height. 

The within-subject variance is 0.5653 for leg length. 

t°, t, t 2  and t3  denote intercept, age-10, (age-10)2  and (age-10)3  respectively. 
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Table 5.3.6 Estimated correlations for sitting height 

Age (year) 2 	4 	6 	8 	10 	12 	14 	16 

2 

	

4 	0.75 

	

6 	0.70 0.85 

	

8 	0.71 0.82 0.87 

	

10 	0.70 0.75 0.82 0.89 

	

12 	0.68 0.67 0.74 0.85 0.92 

	

14 	0.64 0.61 0.68 0.80 0.89 0.93 

	

16 	0.55 0.56 0.62 0.71 0.80 0.85 0.91 

	

18 	0.32 0.42 0.46 0.49 0.51 0.56 0.65 0.82 

Table 5.3.7 Estimated correlations for leg length 

Age (year) 2 	4 	6 	8 	10 	12 	14 	16 

2 

	

4 	0.79 

	

6 	0.77 0.91 

	

8 	0.78 0.90 0.93 

	

10 	0.79 0.88 0.92 0.95 

	

12 	0.78 0.85 0.90 0.94 0.96 

	

14 	0.75 0.84 0.88 0.92 0.95 0.96 

	

16 	0.66 0.80 0.84 0.86 0.87 0.89 0.93 

	

18 	0.40 0.63 0.65 0.63 0.61 0.62 0.71 0.87 
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Table 5.3.8 Estimated correlations for sitting height and leg length 

SH 

Age (year) 	2 	4 	6 	8 	10 	12 	14 	16 	18 

	

2 	0.51 0.64 0.73 0.78 0.78 0.73 0.65 0.51 0.22 

	

4 	0.44 0.64 0.72 0.74 0.71 0.66 0.62 0.57 0.45 

	

6 	0.41 0.59 0.67 0.70 0.68 0.63 0.59 0.55 0.42 

	

8 	0.42 0.56 0.64 0.68 0.68 0.64 0.59 0.51 0.31 

	

LL 10 	0.43 0.52 0.60 0.67 0.68 0.66 0.59 0.48 0.21 

	

12 	0.44 0.49 0.57 0.65 0.68 0.66 0.60 0.46 0.15 

	

14 	0.44 0.47 0.55 0.63 0.67 0.66 0.61 0.47 0.15 

	

16 	0.42 0.44 0.50 0.58 0.62 0.62 0.59 0.50 0.25 

	

18 	0.30 0.33 0.36 0.40 0.42 0.44 0.46 0.43 0.43 

5.4 An Optimal Model 

The procedure shown in chapter 4 does not guarantee an optimal model for the data studied. 

Five parameters are considered in describing a growth trajectory of head circumference and 

seven or eight parameters of height as other authors suggest (Bock and Thissen, 1980; 

Jolicoeur, Pontier and Abidi, 1992). There is a choice of fractional polynomials from the set 

of {-2, -1, 0, 1} and a small number of knots. The placement of knots is determined according 

to the rule of thumb (Wold, 1974) on the basis of knowledge of growth or the experience 

of other authors. For example, if we count the number of maxima, minima and inflection 

points in a height curve we can see that we need a model with five knots, which are initially 

fixed at 9, 11, 13, 15 and 17 years and the other three terms chosen from {-2, -1, 0, 1}. We 

need to experiment on the placement of knots by moving one knot when the other four are 

fixed. Chapter 4 illustrates this. The final model will be determined by its interpretability 

and small residuals. With eight parameters the amount of computation for all possible models 

is very large. Experience indicates that there may exist several models which are close to 

the 'optimal' one and can describe the data well. Royston remarks (1994): 
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However, we hypothesize that the likelihood surface (with respect to p) will often 

be very flat for m > 2, making the choice of p less critical than with m s 2. 

5.5 Individual and Population Curves 

It should be noted that the mean growth curve does not necessarily have the same form as 

individual curves (Bryk and Raudenbush, 1987). In this study the five-parameter model is 

used for head circumference for both individual curves and mean curves in each gender. 

Eight-parameter models are used for individual height curves using OLS and 

seven-parameter models for mean curves using multilevel models. The '+' function of 

(15 — t): is not significant in the fixed part of the multilevel model for females and (9 — t)3, 

is not significant in the fixed part of the model for males. This is because of the greater 

variation in height both in timing and magnitude between individuals. If we plot mean growth 

curve overlapped by individuals curves we can see that some individual trajectories with 

positive curvatures cancel out others with negative curvatures. Multilevel models allow us 

to model this variation. For example, in the model for males we can let (9 — t )+ random at 

level 2 but have a small value (or zero) in the fixed part. 

In the model for head circumference all the five variables in the fixed part are random at 

level 2 and the estimated within-individual variance is consistent with the variance of errors 

for individual curves of other studies (Roche, Mukherjee and Guo, 1986). In the model for 

height there are five random variables at level 2 and the estimated within-individual variance 

is around 1.0cm2. It is the default value of the variance of the measurement errors in the 

AUXAL Program (Bock, Toit and Thissen, 1994). It is slightly larger than the estimates of 

residual variance in our individual curves. We need a larger number of level 2 units in order 

to include more or higher-order random coefficients to model adequately between-individual 

variation in height to obtain smaller level 1 variance estimate. See the discussion of Goldstein 

(1986a). 
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5.6 Midgrowth Spurt 

The evidence of the occurrence of a small growth spurt in height several years before the 

pubertal spurt has been cited by several authors (Stutzle, Gasser, Molinari, Largo, Prader 

and Huber, 1980; Gasser, Muller, KOhler, Prader, Largo and Molinari, 1985, Goldstein, 

1986a). These spurts have been described as the midgrowth spurt or mid-childhood growth 

spurt (MS). Bock and Thissen (1980) found a pronounced midgrowth spurt in the average 

height velocity curve for either gender of Berkley Guidance Study by differentiating the 

triple logistic average parameter curves. It should be noticed that a mean parameter curve 

of a nonlinear model is not the mean population curve (Merrell, 1937) therefore we should 

be cautious of the pronounced midspurt spurt in the mean parameter curve of the nonlinear 

triple logistic of Bock and Thissen (1980). 

Gasser, Kneip, Ziegler, Largo and Prader (1990) showed the midgrowth spurt at about ages 

6 to 9 years in boys and girls of Zurich Longitudinal Growth Study. They evolved a new 

statistical method to shift individual curves continuously (and non-linearly) in age prior to 

averaging the individual growth curves. Their resulting curves present the typical shape 

rather than individual variations in it. 

The recent work of Bock, Toit and Thissen (1994) gives the estimation for nonstructure 

average using the Maximum A Posterior (MAP) procedure. Midgrowth spurts obtained are 

close to those shown by Gasser, Kneip, Ziegler, Largo and Prader (1990) and are not as 

pronounced as those given by Bock and Thissen (1980). 

A number of authors have not observed the regular presence of the midgrowth spurt in 

measures of height velocity. Tanner and Cameron (1980) examined single-year increments 

from a sample of 10,000 children in London and did not find evidence for a midgrowth spurt 

in girls velocity curves and only demonstrated a diminution of deceleration from age six to 

seven years in boys. Meredith (1981) found a midgrowth spurt in 14% of Iowa City children. 
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Berkey and Reed and Valadian (1983) demonstrated a midgrowth spurt in height in 17 of 

67 boys and 0 of 67 girls from Longitudinal Studies of Harvard University using the variable 

knot cubic splines. Jolicoeur, Pontier, Pernin and Sempe (1988) used a seven-parameter 

nonlinear model on height measures of 13 boys and 14 girls from the French auxology survey 

and found evidence for midgrowth spurt in less than half of the children. 

The extended splines fit growth curve before age 9 years by 03(t;0, 1, 3) and velocity curve 

by 02(t; — 1, 2), which allows the estimation of up to two inflection points for this period. 

Our individual velocity curves of height show small upward turn, not an obvious spurt, at 

about ages 5 to 10 years in 47 of 89 males and 13 of 67 girls by using eight-parameter 

extended splines for separate individuals. Our mean velocity curve of height does not show 

the upward turn in either gender. 

It is not surprising that mean velocity curves do not exhibit the midgrowth spurt because of 

the variation of the timing and small intensity of these multiple minor fluctuations. The ages 

at take-off of the midgrowth spurt are spread over about four years with mean at about 6 

years (Berkey, Reed and Valadian, 1983; Gasser, Muller, KOhler, Prader, Largo and 

Molinari, 1985). Gasser, Muller, KOhler, Molinari and Prader (1984) have noted that the 

mid-growth spurt is often small, almost drowned in random noise. Furthermore, some 

individuals can have more than one small spurt during childhood (Gasser, Kneip, Ziegler, 

Largo and Prader, 1990). Butler, McKie and Ratcliffe (1990) demonstrated the cyclical 

nature of prepubertal growth in the data of the Edinburgh Longitudinal Growth Study: a 

pre-school spurt at ages 4.8 and 4.6 years for boys and girls, midgrowth spurt at ages 7.0 

and 6.7 years and a late-childhood spurt at 9.2 and 8.6 years. 

A cyclical pattern may exist throughout growth and small spurts are more easily located at 

ages when growth is slower than when it is more rapid. These small spurts vary considerably 

both in size and timing and require an excessive increase in the number of parameters to 
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describe. The extended splines with a few parameters cannot describe the pattern and the 

variation appropriately. Jolicoeur, Pontier and Abidi (1992) discuss this matter and point 

out that it is debatable whether the midgrowth spurt should necessarily be incorporated into 

a growth model of stature or whether it should be treated as an ignorable fluctuation among 

others. 

5.7 Asymptotic Growth and Prediction 

The extended splines are flexible but are not a satisfactory model for data with asymptotic 

adult values. A fractional polynomial with p s 1 may have a less marked end effect than 

quadratic and cubic polynomials. As the height data in this study include adult measurements 

a fractional polynomial with p s 1 is used in the last segment of the extended spline. The 

fractional polynomial of (1)2(t; — 1, 1) or (P2(t; — 2, 1) was considered and the reciprocal terms 

were not significant and finally the (I)2(t;0, 1) is chosen, which gives a slight overestimate 

of velocity at the end. 

The presence of edge effects is common in curve fitting and smoothing techniques (Cole 

and Green, 1992). This problem may be partly due to the variation of height after the puberty 

spurt though height measurements are expected to asymptote to adult values at about 17 

years for girls and 18 for boys. The experience of using the kernel estimation for individual 

height curves reveals that it is common to find a small bump after the pubertal spurt at ages 

16 to 19 years (Gasser, Muller, Kehler, Molinari and Prader, 1984; Gasser, Kneip, Ziegler, 

Largo and Prader, 1990). In addition, the relative small number of measurements during 

this age range may affect the results. We would suggest including measurements up to 20 

years, if possible, to obtain better results. 

In general, extended splines are satisfactory for modelling growth. They are useful for 

purposes of description or comparison. However, similar to polynomials they can not safely 

be used to predict growth outside the delimited region as nonlinear asymptotic models do 
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(Bock 1989). But Goldstein (1989) describes an alternative approach to prediction using a 

multivariate multilevel model which can be used with our models. It can be expressed by 

including adult height measurements to the extended model (3.5): 

yij  = poi  + Nlj tij  +132j1n(tij) + p5j(9 - td: +134j(11 - tij): + 151(13 - tij ): + p6j(15 - t,j): + 1371(17 - tij 	ey 

Y; = 4)0 + a; 

where the first line of the model is for repeated measures of height and the second line for 

a single measure of adult height. All the parameters can be estimated by a 3-level model, 

where level 1 is the variable, repeated measures of height or adult height, level 2 is the 

occasion and level 3 is the individual. Other variables such as parent height or bone age can 

also be included into the model as illustrated by Goldstein (1989). 

5.8 Further Work 

Analysing data when a transformation required 

In this study the work is focused on human growth in length not only because of its interest 

but also of its growth regularity. We may assume that most measurements in length have 

an approximately Normal distribution (Healy, Rasbash and Yang, 1988). However, to 

analyse human growth in weight it is necessary to transform data to approximate Normality. 

Logarithmic or Box-Cox transformations (Cole and Green, 1992) may be useful for this 

purpose. A transformation function on age may be required and the analysis may become 

more complicated when the data cover a wide age range. It would be interesting to study 

such transformations. 
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Another kind of transformation may be required in longitudinal studies on cognitive growth 

and development, where different scales are used over age. Plewis (1994) gives a review 

and discussion on statistical methods for understanding cognitive growth. He points out that 

different conclusions can be reached depending upon the linear transformations chosen. 

Nonlinear Model 

It is a linear modelling problem when knots of splines are given. It will become a non-linear 

problem when the knots are treated as continuously varying in a given range, that is, splines 

with variable knots. At present it is not clear whether it is worth trying to incorporate splines 

with variable knots into multilevel models. 

It may be worth incorporating other nonlinear growth models into multilevel models. The 

triple logistic model of Bock and Thissen (1976) and the JPA2 model of Jolicoeur, Pontier 

and Abidi (1992) are often used for data on height from early childhood to adulthood. The 

nonlinear model of Roche, Mukherjee and Guo (1986) was used for head circumference. 

Goldstein (1995) describes a procedure for nonlinear models and gives examples with a 

single linear component, namely the Jenss model. In principle, the procedure can be applied 

for a model with multiple components, for example the triple logistic model with three 

components. In practice it is quite difficult for the procedure to reach convergence in fitting 

a model with multiple components. 

Time series 

We feel that it is reasonable to assume uncorrelated residuals in our model. Most of the data 

used in this study were collected at about 6 month intervals. A runs test on residuals, using 

SPSS/PC+ (version 3.0), for each individual was significant in 6 of 89 boys and 5 of 67 girls 

in height; in head circumference it was significant in 10 of 83 boys and 7 of 60 girls. 
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To make use of standard procedures for estimation of autocorrelation (Fuller, 1976, p236; 

Bock and Thissen, 1980, p274), it is necessary that the observations be equally spaced. The 

estimates are biased when the mean of the calculated residuals is used. Berkey (1982b) and 

Berkey, Reed and Valadian (1983) used the standard estimation of autocorrelation for the 

subset of the residuals which fall at approximately six-month intervals. 

Autocorrelations (see Bock and Thissen, 1980, p274) calculated from the subset of the OLS 

residuals which occur at approximately 6 month intervals are given in Table 5.8.1. The 

results should be viewed with caution as there is considerable variability in the observed 

ages about target ages and a considerable number of missing measurements. The residual 

autocorrelations are relatively small compared with those found by Bock and Thissen (1980) 

in the triple logistic model. These autocorrelations and the runs test suggest that for these 

time lags, residuals can be assumed to be approximately independent. Many authors (El 

Lozy 1978; Preece and Baines, 1978; Berkey, 1982a, 1982b) make the same assumption. 

Table 5.8.1 	OLS residual autocorrelations at time lag (years) 

Measures Gender 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 

HT M 0.24 -0.07 -0.41 -0.38 -0.27 -0.02 -0.07 0.16 

HT F 0.15 -0.07 -0.33 -0.34 -0.26 -0.08 -0.00 0.10 

HC M 0.21 0.01 -0.11 -0.12 -0.17 -0.14 -0.16 -0.12 

HC F 0.24 0.04 -0.14 -0.15 -0.11 -0.17 -0.16 -0.07 

Autocorrelations have also been calculated for the level 1 residuals of the random coefficient 

models in section 4. Table 5.8.2 shows that the autocorrelations estimated from the subset 

of residuals occur at approximately six month intervals. The residual autocorrelations are 
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quite close to those of OLS in head circumference. The autocorrelations of lag 0.5, 1.0 and 

1.5 of height measurements seem larger than those of found in OLS residuals, however they 

are close to those found by Bock and Thissen (1980) in triple logistic model. 

Bock (1992) used triple logistic model on the Fels data gathered at 6-monthly intervals. The 

estimates of the means and covariances of his random effect model, when uncorrelated 

residuals are assumed, are essentially the same when autocorrelation are considered. Bock 

(1992) points out that if the data points are equally, and not too closely, spaced over the age 

range of interest, there is little harm in ignoring the autocorrelation. This is confirmed by 

other authors, for example, Goldstein, Healy and Rasbash (1994) who point out that the 

6-monthly and yearly measurements can be regarded as independently varying about the 

growth curve with a constant variance that can be estimated from a suitable sample. We 

should keep in mind that large autocorrelations could also arise from misfit of the model. 

For example with a small sample, only a limited number of variables can be random at level 

2 as we have discussed in the section 5.5 and section 4.2. 

Table 5.8.2 Level 1 residual autocorrelations at time lag (years) 

Measures Gender 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 

HT M 0.60 0.28 -0.14 -0.34 -0.42 -0.38 -0.29 -0.19 

HT F 0.64 0.38 0.11 -0.10 -0.25 -0.31 -0.35 -0.31 

HC M 0.20 0.01 -0.10 -0.11 -0.15 -0.12 -0.14 -0.10 

HC F 0.28 0.07 -0.08 -0.11 -0.09 -0.15 -0.14 -0.06 

Multilevel models allow us to analyse correlated residuals. Goldstein, Healy and Rasbash 

(1994) point out that if measurements are taken close enough together then their deviations 

from the fitted smooth curve are bound to be correlated. For height measurements on children 

prior to adolescence the point at which this 'autocorrelation' becomes apparent is for 
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measurements made about 3 months apart. Goldstein, Healy and Rasbash (1994) proposed 

a time series model which deals with an autocorrelation for level 1 residuals for longitudinal 

data. First-and second-order autoregressive models are used to model level 1 residuals with 

a seasonal component in fixed part and also a model in continuous time is illustrated. Their 

time series model can be applied to our extended splines if autocorrelations are considered 

to be modelled. This is an interesting research topic for the future. 

Finally and very importantly, the method of this thesis need to be extended to other 

measurements, both singly and jointly. 
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Appendices 

Appendix A Non-linear Models for Individual Height Curve 

Triple Logistic Model (Bock and Thissen 1976; Bock, Toit and Thissen, 1994) 

a1 	a2 	a3  
Y - 

1 + e
-b

i
t + 

1 + e
-02, + co + 

1 + e
-o3t + co,  

where y is height at time t. 

BTT Model (Bock, Toit and Thissen 1994) 

al 	a2 	 a3  
y- 	 

[1 + e
-b1x

]
d1 

[1 + e
4b2x + c2)

]
d2 

[1 + e
-(b3r + c3)

]
d3 
 

The values of d1, d2  and d3  are given, which were suggested to be 0.75, 0.75 and 1.2 

individually in the manual of AUXAL program. Triple logistic model can be considered as 

BIT model with di, d2  and d3  are equal to 1. 

JPA2 Model (Jolicoeur, Pontier and Abidi, 1992) 

1  
y a{1 

1 + [bi(t + 	+[b2(t + e)]`2  + [b 1(1 + e)] 

Preece-Baines Model 3 (Preece and Baines, 1978) 

4(hi  - ho) 
y - hi 	  

po(t 0) 	 r l 13)  L 	eql(t  Le 	+ e
pi(t 

 

where po, Pi  and q1  are rate constants, 0 is a time constant, h0  is height at t 0 and y is height 

at time t. 
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Appendix B Kernels for Nonparametric Curve Estimation 

See Gasser, Muller, Kohler, Molinari and Prader (1984) for details. 

For measurements 4(0 of subject j at time ti  we assume: 

4(0 = ft(ti) + 

where MO denotes true measurements at age ti. Random variations E(t) are due to 

measurement error, seasonal effect, environmental conditions, etc. 

Denote j(t)v  for dv (t)Idtv (v = 0,1, 2) and determine it as: 

fv(t) = I f(t)ygi(t), 
i_1 

S. 

where the weight gilt) =f 1474 
t-

.
.), 

v+i 	 crx  b si _i  

N is the number of measurement for an individual, b is bandwidth (smoothing parameter), 

si  = (4 +1 + 012 and Ws, is weighting function for v-th derivative. The weight function Wv  for 

v = 0,1, 2 is: 

wo(u) = E(7u 4  — 101i 2  + 3) 	
1141 s1 

0 	 I ul > 1 

W1(u)= ;(-9us+14u 3 - 5u) 	
1141 s 1 

0 	 I/41 >1 

w2(u) 	315 	6 	4 	2 
67(77u - 135u +63u -5) 	Itil 5 1 

0 	 ltd >1 
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Appendix C Maximum Likelihood Estimation Via IGLS 

The Iterative Generalised Least Squares (IGLS) algorithm has been proposed for estimating 

the F and / of equation (2.8) with a complex level 1 covariance structure by Goldstein (1986, 

1992). The IGLS procedure produces maximum likelihood (ML) estimates when the random 

variables have a multivariate normal distribution by minimizing 

t(r, II Y) = lnl El + (Y -XZOTI-1(Y-XZn, 

which is the loglikelihood function for F and X given Y under the assumption of multivariate 

normality. 

The IGLS algorithm applied has two parts cycle (suppose at step k): 

(a) obtaining f(k)  using 

fir  = ((XZ)T  (fk  — 1) 1  (XV) 1  (XZ)T (±Qc — 0) iy  

(b) Estimating the random parameters of S'Y( j and SY(ki j using (1' - (XZ)f (k))(Y - (XZ)f4))T, 

X(2) and X(1). 

Following additional notation is introduced to express the computing of part (b). 

Let Y**  be [Y1**T, ..., Yrir  while Yr be vecqYj  - (XZ)it)(Yi  - (XZ)i f )7.). Let F**  be 

PecS2(2)17.,[vecRonT  andX**  be the design matrix {Xi T̀, ...,X;*71 relating Y**  to the random 

parameters (see Browne, 1974). Note the vec operator stacks the columns of a matrix from 

left to right to form a vector. Estimates of random parameters in F**  can be obtained using 

GLS method to the following regression 

y** = x**r** + 

where is a vector of residuals and its covariance matrix denoted by E . Elements of ±("1- I)  

are used to obtain ±**('") which in turn is used to estimate r*" +1). 



Appendices 	 168 

The procedure of the IGLS cycle of (a) and (b) is: firstly, to obtain the starting estimates of 

Em using an ordinary least squares regression by setting I'm = o2I; and then to update it 

successively until it satisfies a convergence criterion. 

The final estimates of I and E**  from the above IGLS cycle are used to compute the variance 

and covariance of f' and r as follows: 

((Xz )T±--' (ivz )) 1, 

2(X**Ti*-5(**) 

respectively. The estimation of IGLS at each iteration is consistent and the consistency does 

not depend on Y having a multivariate normal distribution (Goldstein, 1986b). 
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