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A behavioral nonlinear dynamics model of multistable perception due to am-
biguous visual stimuli is presented. The perception state is formalized as the 
dynamic phase variable v(t) of a recursive process with cosinuidal transfer 
characteristic which is created by superposition (interference) of neuronal mean 
fields. The two parameters μ = difference of meaning of alternative percepts 
and G = attention parameter, control the transition between unambiguous and 
ambiguous stimuli, e.g. from stimulus off to stimulus on, and attention fatigue 
respectively. Mean field interference with delayed phase feedback enables tran-
sitions between chaotic and limit cycle attractors v(t) representing the percep-
tion states. Perceptual reversals are induced by attention fatigue G(t) (~ adap-
tive gain g(v)) with time constant γ, and attention bias which determines the 
relative duration of the percepts. The coupled attention – perception dynamics 
with an additive stochastic noise term reproduces the experimentally observed 
Γ-distribution of the reversal time statistics. Mean reversal times of typically 3 
– 5 s as reported in the literature, are correctly predicted if  delay T is associated 
with the delay of 40 ms between stimulus onset and primary visual cortex (V1) 
response. Numerically determined perceptual transition times of 3 – 5 T are in 
reasonable agreement with stimulus – conscious perception delay of 150 – 200 
ms [11]. Eigenfrequencies of the limit cycle oscillations are in the range of  10 
– 100 Hz, in agreement with typical EEG frequencies. 

1 Introduction 

From the use of (transparent) monocular head mounted displays (HMD) in military 
helicopters it is well known that different visual input into both eyes may involve ad-
verse perceptual and attentional effects like binocular rivalry which may lead to sig-
nificant reduction of reaction times [1]. Laramee et.al. [2] determined more than 
100% response time increase in a HMD based visual search task due to binocular ri-
valry and visual interference effects. Binocular rivalry is the spontaneous involuntary 
switching of conscious awareness between the different percepts corresponding to the 
different stimuli of both eyes [3]. It belongs to a larger class of cognitive multistabil-
ity effects as observed with ambiguous stimuli such as perspective reversal (e.g. the 
Necker cube [4][5]) or figure-ground reversal. Also dynamic stimuli may give rise to 
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cognitive multistability, e.g. ambiguous motion displays such as plaids as induced by 
moving groups of crossed lines [6]. By determining the correlation dimension, e.g. of 
corresponding time series, Richards et.al [7] found experimental evidence indicating 
common nonlinear dynamical cognitive processes underlying  a surprisingly diverse 
range of visual phenomena such as cognitive multistability with ambiguous pictures, 
saccade intervals in visual search, and movie scene durations. Binocular rivalry, how-
ever appears to be a predominantly stochastic phenomenon, in agreement with other 
authors [10][28][29]. 

The present macroscopic model provides an approach for explaining the experi-
mental finding that deterministic (even chaotic) as well as stochastic dynamics deter-
mines the measured reversal time statistics for different multistability phenomena [7]. 
It contributes to the ongoing controversial discussion on the deterministic [8] [9] ver-
sus purely stochastic character [10] of cognitive multistability. In agreement with the 
widely accepted view of recursive interactions between distant neural groups leading 
to conscious perception (e.g. [11]), the model assumes a reentrant process which ap-
pears to be related to the dynamical core hypothesis of Tononi et.al. [12]. The model 
relies on the mean field phase oscillator theory of coupled neuronal columns in the 
visual cortex [13]. The latter was used for describing the synchronization of neuronal 
oscillations as the physiological basis of dynamic temporal binding which in turn is 
thought to be cruical for the selection of perceptually or behaviorally relevant infor-
mation [14][15][16][18]. Self oscillation of neuronal groups within columns and cou-
pling between columns is excited when the external stimulus exceeds a certain 
threshold [13]. Single columns exhibit multistable characteristics of the neuronal 
mean field as function of the stimulus, similar to the present model. Within the phase 
synchronization theory phase locking between different groups of neurons is de-
scribed by means of the circle (sin) map. Phase oscillator dynamics is the basis of the 
phase attractive circle map [17] which was used for describing human coordination 
dynamics as well as multistable perception.  

A multistability model of Ditzinger & Haken [8] is based on the continuous poly-
nomial dynamics of two separate coupled perception state equations. In accordance 
with the experimentally supported satiation (neuronal fatigue) hypothesis [4] sponta-
neous transitions between different percepts are induced by the time variation of two 
attention (control) parameters due to perception – attention coupling. Recently pub-
lished experimental results of Nakatani et.al.[19] support the perception – attention 
coupling approach. The present model follows the perception – attention coupling and 
attention fatigue approach in [8]. It takes into account, however,  the reentrant charac-
ter of the neuronal processes [12] by including a finite delay time T, which results in 
limit cycle and chaotic attractor states defined as "percepts". In contrast to [8] a single 
differential – delay perception state equation together with a attention fatigue equation 
is formalized via the phase dynamics [13][17] of a recursive cosinuidal map as origi-
nating from superposition (interference) of neuronal mean fields. The stimulus ambi-
guity is quantified by a difference-of-meaning parameter which controls the stimulus-
on/-off switching. The present model provides an explicit quantitative confirmation of 
the proposed catastrophe topology of the cognitive multistability dynamics [20]. 
In the following section 2 I describe the theoretical approach, with details of the re-
cursive interference model in subsection 2.1, and an analysis of the stationary behav-
ior in section 2.2. Results of computer experiments are presented in section 3, with 



simulated time series and attention – perception phase space plots in subsection 3.1 
and a statistical analysis of the reversal time intervals in section 3.2 with different re-
entrant delay times.  The results are discussed with respect to published experimental 
data and alternative theoretical models in section 4. A conclusion and outlook is pre-
sented in section 5. 

2 Theory 

2.1 The Recursive Mean Field Interference Model 

As a kind of minimum architecture allowing for the emergence of discontinuous state 
transitions, I have proposed in previous papers coupling of the attention and percep-
tion dynamics via delayed phase feedback interference, and attention satia-
tion[21][22]. Formally this is achieved analogous to multistable optical systems 
[23][24]. Interference with contrast μ is the superposition of (electromagnetic) fields 

{ ( )}ii tja Φ+ωexp0 , i = 1, 2, 3, ... with ω = circular frequency, Φ = phase, and a0 = 
amplitude. The superposition yields extinction or amplification of each other, depend-
ing on the relative phase shift ΔΦ = Φ1 − Φ2. It may be compared with the phase shift 
between the coupled self - oscillating neuronal columns of the mean field theory [13]. 
A simplified block diagram is depicted in Figure 1. 

Fig. 1.  Simplified block diagram of perception – attention recursive interference model. Sym-
bols explained in the text 

The feedback loop describing the perception state order parameter dynamics v(t) 
may be compared with the reentrant thalamo - cortical and basal ganglia dynamics 
presented by Edelman [25] within his dynamical core hypothesis of consciousness: 
the interference and feedback gain blocks represent the thalamo – cortical complex 
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and the sub – cortical basal ganglia with attention related tasks respectively.  In the 
schematic an ambiguous stimulus with strength I and difference of meaning μ (= in-
terference contrast 0 ≤ μ ≤ 1) of the two possible percepts P1, P2, excites two corre-
sponding hypothetical mean fields with phase difference ΔΦ = π vt . Interference con-
trast μ depends on the coherence and polarization of the two fields. It creates the 
typical cosinuidal dependence of the output (= squared modulus of the sum of the 
field amplitudes, with detection conversion factor κ) on the phase difference ΔΦ as 
mapping function. A recurrent process is established by feedback of the output after 
amplification (feedback gain g, attention bias vb, satiation (fatigue) and recovery time 
constants γ and τG) with low pass filtering (time constant τ) and delay T into ΔΦ  via a 
phase modulation mechanism. As a quantitative estimate for T I chose the stimulus – 
primary visual cortex response delay (≈ 40 ms, [11]). One possibility for phase feed-
back is frequency modulation of the input field [24], comparable to the stimulus in-
duced modulation of the neuronal mean field limit cycle oscillations [13]. The nor-
malized output vt = Ut / Uπ   of the feedback interference circuit with dΦ/dU = π/Uπ   
and U ∼ percept intensity = |superimposed percept field strength|2 defines the percep-
tion state v as synergetic order parameter. The phase attractive circle map as proposed 
by Kelso et.al. [9][17] represents a similar recursive (discrete) phase oscillator map-
ping function  which, however attempts to model multistability without feedback gain 
as control parameter and insofar cannot be mapped to the reentrant loops as proposed 
by Edelman [25]. 

According to Hillyard et.al. [26] stimulus-evoked neuronal activity can be modified 
by an attentional induced additive bias or by a true gain modulation (present model 
parameters vb, G(t) ∼ g). Increase of gain is correlated with increased blood flow 
through the respective cortical areas. Recent experimental evidence on perception – 
attention coupling with ambiguous stimuli was presented by Nakatani & van Leeuven 
[19] using EEG recording of frontal theta and occipital alpha bands and eye blink rate 
measurement. Accordingly in the present model, like in [8], the feedback gain serves 
as adaptive control parameter (∼ attention parameter G) which induces the quasi - dis-
continuous transitions between the alternative stationary perception states P1 and P2, 
through attention satiation or fatigue [4]. A strongly damped (overdamped) feedback 
system is assumed with time constant τ >> coefficient of d2v/dt2 which is neglected. 
Formally the model is described by coupling a nonlinear 1st order differential delay 
equation for v(t) with a linear equation for the control parameter dynamics G(t). In a 
first approach to model the unavoidable random disturbances due to dissipative proc-
esses, a stochastic force L(t) with Gaussian white noise (variance s2) is added to the 
attention equation G(t), similar to[8].  
  

( )( )[ ]BtTtTt vvπμcos1Gvvτ ++=+ ++&  . (1) 

( ) ( ) tGtofftbt L/τG-G/γvvG ++−=&  . (2) 

   
The rhs. of equ. (1a) describes the conventional interference between two coherent 

fields. In what follows I assume the phase bias vB = 0 mod 2. The attention parameter 
G(t) = κ I g(t)/ Uπ with phase – voltage modulation factor dΦ/dU = π/Uπ is the prod-



uct of feedback gain g(t) and input (stimulus strength) I (=1 in what follows). The at-
tention dynamics is determined by attention bias vb (determining the relative prefer-
ence of P1 and P2), satiation speed 1/γ, recovery time constant τG  and Goff = attention 
(gain) parameter for stimulus off, defined by μ = μoff < 0.18 (see below). 

The detailed block diagram of the model in Fig. 2 represents the highest hierarchy 
of an implementation in the graphical programming dynamical systems tool Matlab-
Simulink: 

Fig. 2. Matlab – Simulink implementation (highest hierarchy level) of recursive interference 
model displaying subroutines (blocks) of the reentrant loops of perception circuit v(t) in the 
upper half and attention circuit G(t) in the lower half of the diagram. Stimulus of strength I and 
difference of meaning mu (=μ) are fed into perception circuit as control parameters with inter-
ference term and integrator loop with time constant τ. Attention circuit G(t) with satiation term 
(fatigue) (vb – v(t))/γ  and recovery term (Goff – G(t))/τG controls as gain factor the perception 
dynamics. v(t) and G(t) output into the data evaluation block at the right 

2.2 Stationary Solutions of the Recursive Interference Equation 

Two types of instabilities are observed with recursive systems described by equation 
(1): period doubling and node bifurcation. Figure 3 depicts the stationary solutions 
(dv/dt = 0) including period doubling up to period 8, vt + iT = vt = v*, i = 1, 2, 4, 8. 

Period doubling pitchfork bifurcations are observed on both positive slope regions. 
The graph yields the control parameter values at the first three bifurcation points pro-
viding a first approximation to the Feigenbaum constant 6692.4=δ∞  via 

( ) ( )2312
1 / GGGG −−≈∞δ . The period doubling behavior proves that within certain 

parameter ranges (μ, τ) any system noise has chaotic contributions. This is confirmed 
by numerical evaluation of the Lyapunov coefficient [22]. 
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In [21] I have shown the stationary solution of v*(μ, G) to exhibit a topology simi-
lar to a cusp catastrophe. This finding agrees with a proposal of Poston & Stewart 
[20] who developed a qualitative deterministic model of cognitive bistability based on 
catastrophe theory. 

At the critical value, μn = 0.18, node bifurcation is observed and the slope of the 
stationary system state  v* as function of G becomes infinite. For μ < μn both percepts 
are fused into a single meaning. For  μ > μn the stationary solution v*(G) becomes 
multivalued. For maximum contrast μ = 1 the horizontal slope (dG / dv)-1 = 0 yields 

12ivi −=∞ , i = 1,2,3,… as stable perception levels in the limit G → ∞.  

Fig. 3.  Stationary solutions of equation (1) exhibiting v* - hysteresis and  period doubling bi-
furcations. Percept 1 (P1) = lower positive slope v*-level; Percept 2 (P2) = higher v*-level 

Node bifurcation is required for explaining the existence of ambiguous perception 
within the present model. Under increasing stimulus strength I or feedback gain g the 
stationary (1st order) perception state v* jumps discontinuously from P1 to P2 at the 
turning points of the S-shaped hysteresis curve (= extrema of the inverse curve 
G(v*)). The transition of P2 back to P1 occurs at a lower stimulus or gain parameter 
(∼attention) value due to the hysteresis. The width of the instable negative slope sec-
tion and the multivalued G – range is controlled by μ. A similar hysteresis is observed 
for the coupling constants of columns of the visual cortex within the neuronal mean 
field theory [13]. 

A linear stability analysis of equation (1) yields the regions of instability, i.e. limit 
cycle and chaotic oscillations as dependent on the ratio τ/T of damping time constant 
and feedback delay time [21][22]. Eigenfrequencies β = 2πf are obtained via 

( )βTtanβτ −= .The analytical approximation for τ << T yields f ≈ f0 i / (1 – τ/T), i = 0, 
1, 2, … with f0 = 1 / 2T, i.e. half of the inverse feedback delay time. With T = 40 ms 
(delay between stimulus onset and V1 - response, see above) we obtain f0 = 12.5 Hz. 
With large damping time τ of the order of T, period doubling oscillations are sup-
pressed. 
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3 Computer Experiments 
3.1 Simulated Perception – Attention Dynamics 

In this section I present numerical evaluations of the coupled differential – delay 
equations (1, 2) as obtained with the dynamical systems tool Matlab – Simulink 
(solver ode23tb for stiff problems). Figure 4 shows time series v(t) and G(t) for I = 1, 
μ = 0.6, T = 2 TS = 40 ms, time scale in units of the simulation interval TS, τ/T = 0.1, γ 
= 60, τG = 500,  attention bias vb = 1.5, noise variance s2 = 0.001, with stimulus – off 
sections (μoff = 0.1, Goff = 1.5) at the beginning and end of the time series. 

Fig. 4. Numerical evaluation of equations (1)(2) with stochastic noise variance s2 = 0.001. Left: 
perception state time series v(t); right: attention parameter G(t); Stimulus off (μ = 0.1) during 
initial and final simulation phases. See text for simulation parameters 

The time series of the perception state v(t) exhibits the spontaneous transitions be-
tween stationary perception states P1 (near v* ≈ 1) and P2 (near v* ≈ 2.5) with the 
expected superimposed limit cycle and chaotic oscillations. The transition time be-
tween P1 and P2 is of the order of 5 - 10 TS ≈ 100 - 200 ms, in reasonable agreement 
with the time interval between stimulus onset and conscious perception [11]. 

The phase space plot v vs. G in Fig. 5 exhibits separated regions of the stimulus – 
off and stimulus – on (P1 and P2) states with trajectories of fast oscillations superim-
posed on the slow satiation (fatigue) dynamics.  

The reversal time period is determined by the slow G(t) variation with satiation and 
recovery time constants γ, τG , with an absolute scale given by T = 2TS. Limit cycle 
oscillations and deterministic chaos within P1, P2 is a characteristic of the individual 
perception states and has its origin in the finite delay time T.  

The effects of decreasing T and variation of attention bias vb are depicted in Figure 
6. The phase space trajectories in the left plot clearly show that with zero delay (T = 
0) the limit cycle and chaotic oscillations vanish which are superimposed on the sta-
tionary perception states of  the time series of Fig. 4 and the corresponding hysteresis 
loop in Fig. 5. 

The v – G – phase space plots exhibit a clear separation of stimulus – off (μ = 0.1) 
and – on (μ = 0.6) states due to the node bifurcation at μ = 0.18. The scattering of the 
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reversal time period, however as indicated by the scattering of the P1 – P2 transitions, 
appears not to be significantly effected. 

Fig. 5. Phase space trajectories v vs. G of the time series in Fig. 4 with the two control parame-
ter values μ = 0.1  (=stimulus off) and μ = 0.6 (= stimulus on)  

The right graph in Fig. 6 shows how the attention bias vb determines the relative 
dominance of one of the two percepts. In this example (noise variance s2 = 0.001), af-
ter stimulus on (percept 0 with μ = 0.1 is switched to μ = 0.6) the offset vb = 0.9 
forces the perception to iterate to the lower perception state P1 with suppression of 
P2. Other parameters are the same as in Figure 5. vb may be used as a control parame-
ter to model experimental results with perception biased towards one of the two per-
cepts as reviewed in [3]. 

Fig. 6. Left: Perception – attention dynamics with zero feedback delay (T = 0) exhibiting van-
ishing limit cycle and chaotic oscillations. Phase space plot of perception – attention dynamics 
with attention bias vb = 0.9 and T = 2 
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3.2 Reversal Time Statistics 

Figure 7 depicts the relative frequencies of the perceptual duration times of simula-
tions as obtained by averaging 10 time series of N = 50000 iterations each, with T = 
2, τ = 0.2, γ = 60, τG = 500, vb = 1.5 and s2 = 0.03. Time series differ by noise (ran-
dom number generator) seed value and perception state initial value v(t=0).  

 

Fig. 7. Relative frequencies of perceptual duration time Δ, in units TS = T/2. Simulation pa-
rameters μ = 0.6, vb = 1.5, τ /T = 0.1, γ = 60, τG = 500, s2 = 0.03. Fit with Γ-distribution (solid 
line). Left: Percept P1 (v* ≈ 1), Right: Percept P2 (v* ≈ 2.5) 

Plotted are the two distributions of the perceptual durations Δ(P1) of percept 1 and 
Δ(P2) of percept 2. As suggested by a number of experimental results (e.g. [5][19] 
[27][29]) the relative frequencies are fitted by a Γ – distribution as probability density 
with shape parameter α and scale parameter λ. Mean and variance are given by Δm = 
α/λ and σ2 = α / λ2 respectively. For percept P1 and P2 mean and standard deviation 
are respectively Δm = 159 TS, σ = 95 TS and Δm = 134 TS, s = 62 TS. The ratios s/Δm ≈ 
0.4 – 0.6 are in good agreement with the experimental findings reported in the litera-
ture.  

4 Discussion 

In contrast to [21] with simulation of a purely deterministic recursive process, and in 
agreement with [22] the addition of the stochastic attention noise L(t) leads to a sig-
nificant increase of the variance, whereas the mean reversal times remain roughly the 
same as without noise, indicating the dominating influence of the deterministic dy-
namics on Δm. The limit cycle and chaotic contributions to the total variance in the 
present delay – differential model is significantly smaller as compared to the recursive 
approximation [22] without differential term. A dominating influence of stochastic 
processes was reported for binocular rivalry [7][28][29] where no significant chaotic 
contribution in the reversal time statistics was detected. It appears that with the given 
choice of model parameters the deterministic "noise" of the perception states P1, P2 is 
hardly detectible by analysis of reversal time measurements because the variance of 
the latter is dominated by the stochastic (attention) contribution. 
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Table 1 lists results of Γ-distribution fits to the relative frequencies of perceptual 
duration times as obtained from computer simulations with delay times T/ TS = 0, 1, 2 
(noise variance  s2 = 0.03). 

Table 1. Shape parameter, mean (in seconds), relative standard deviation and correlation coef-
ficient for Γ – distribution fit to relative frequencies of perceptual duration times (separate for 
P1, P2) as obtained with different delay times 

 T/TS α Δm / s σ / Δm R2 
P2 0 6.6 1.89 0.39 0.97 
P2 1 7.5 2.62 0.37 0.98 
P2 2 5.0 2.64 0.45 0.96 
P1 0 3.5 2.69 0.53 0.95 
P1 1 3.2 3.27 0.56 0.94 
P1 2 2.5 3.22 0.63 0.93 

 
Fitting of the data by means of a Γ – distributions for all T values yields correlation 

coefficients which show that only 3 – 7 % of the total scattering is not explained by 
the Γ – density function. The relative standard errors of the shape and scale parame-
ters α and λ respectively are around 3% for all simulations. An important result is the 
fact that even with zero delay (T = 0) the mean reversal time Δm(T=0) and the vari-
ance σ2 is of the same order of magnitude as with finite delay. This indicates that the 
unavoidable contribution of the deterministic limit cycle oscillations and chaos (due 
to T > 0 for any realistic nonlinear physical system) to the reversal time variance is 
small as compared to the stochastic noise, in agreement with [28] and [10]. The shape 
parameter α is of interest with regard to the question if the dynamics is dominated by 
a Poisson process as suggested by Levelt [29]: in this case the α's should cluster 
around natural numbers, a prediction which was verified in experiments by Murata 
et.al. [30]. 

5 Conclusion 

A behavioral recursive nonlinear and stochastic phase oscillator model of spontaneous 
perceptual switching is presented which is related to previously published dynamical 
models [8][9]. The model is expected to help clarifying attention and perception re-
lated problems of augmented vision based human machine interfaces (e.g. [1][2]). 
The perception state is assumed to originate from interference between stimulus in-
duced phase synchronized perception fields as proposed by the neuronal mean field 
theory [13], and it is coupled to the dynamics of an attention control parameter. Ex-
perimental results of Nakatani & van Leeuwen [19] support the assumption that atten-
tional effort which is expressed by eye blinking and saccade frequencies controls 
switching rates. By associating feedback delay time T with the  stimulus onset - pri-
mary visual cortex (V1) response delay of ∼ 40 ms [11] absolute values of mean per-
ceptual duration times of Δm ≈ 3 s are obtained, in reasonable agreement with pub-
lished experimental results (1 – 10 s, e.g. [5][27]). The large inter – subject variations 



of Δm can be modeled by suitable choice of contrast (difference of meaning) parame-
ter μ, satiation (fatigue) and recovery time constants γ and τG respectively, and noise 
variance s2. The relative duration of dominance vs. suppression times is determined 
by the attention bias parameter vb. The magnitude of limit cycle and chaotic oscilla-
tions with eigenfrequencies < 100 Hz is controlled by the ratio τ/T of perceptual 
damping time constant and delay time. Because the reversal time statistics is only 
weakly dependent on T it is concluded that the limit cycle and chaotic oscillations 
which are superimposed on the stationary perception states, also contribute only 
weakly to the reversal time statistics, in agreement with results of other authors 
[28][10]. The present model thus supports the proposal of Poston & Stewart [20] of a 
deterministic catastrophe topology as the basis of the  perception reversal dynamics, 
with the higher moments of the statistics determined by a stochastic process which in 
certain cases (binocular rivalry) hides the deterministic contribution. Ongoing work 
aims at quantifying the amount of long range correlations of the time series by evalu-
ating the Hurst parameter as proposed by Gao et.al.[31] and the reproduction of the 
proposed Poisson process [29][30] superimposed on the deterministic dynamics by 
generating a sufficient statistical basis of shape parameters α of the Γ – distributions.  
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