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Abstract: In many practical systems, limit cycles can be predicted with suitable precision by frequency 

domain methods using describing functions. Within such an approach, limit cycles can be predicted using 

the “eigenvalue method” [7]. This contribution presents a novel and advantageous implementation of this 

method, using singular value instead of eigenvalue calculations, and enhancing computational efficiency 

by avoiding a so called “frequency iteration”. 
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1. Introduction 

When a dynamic system acts as a low pass filter, limit cycles can be predicted by frequency domain 

methods in combination with describing functions. Describing functions have been widely discussed 

throughout the literature, e.g. [1] and [3]. It was shown in [7] that, within such an approach, estimates for 

frequency and amplitude of limit cycles of a nonlinear system can be determined via eigenvalue 

calculation. The method was called the “eigenvalue method”. For this purpose a quasi-linear system is 

derived from the original nonlinear one and the eigenvalue approach is then used. The method is 

practicable if a model is available consisting of linear differential equations with one or more separable 

nonlinearities, which may be static or multivalued and which are connected by linear frequency response 

relations. The approach is not limited to low order systems. Using efficient numerical software for 

eigenvalue calculation, the method represents a systematic, fast and precise tool [7], provided the low 

pass filter hypothesis is true. This hypothesis is standard in connection with the application of describing 
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functions [1], [3]. 

This contribution presents a novel and advantageous implementation of the “eigenvalue method” which 

proposes the use of singular value instead of eigenvalue calculations, and enhances computational 

efficiency by avoiding a so called “frequency iteration”. 

 

2. A short review of the eigenvalue method 

This section strongly follows [7]. Consider a zero input nonlinear system with separable nonlinearities. A 

simple example with one nonlinearity is shown in Figure 1. Replace every nonlinear block by a complex 

gain defined by its sinusoidal describing function [3]. Call this the quasi-linearized system. The sinusoidal 

describing function presupposes the existence of a sinusoidal oscillation of amplitude Ai ≥ 0 at the 

entrance of the i-th nonlinear block. The describing function usually is a function of oscillation amplitude, 

Ai, at block entrance and in some cases also of oscillation frequency, ω [3]. It is assumed that, whenever 

persistent oscillation exists, its frequency is the same throughout the whole system. 

If the system has several nonlinear blocks which cannot be lumped into one (i.e. if the nonlinear blocks 

are neither in series nor in parallel), then at the entrance of every nonlinear block there will be a different 

amplitude Ai (see [3]). System structure will be restricted by the hypothesis that all amplitudes Ai of the 

nonlinear block inputs can be related to one another by functions of frequency, i.e. for any two inputs Aj 

and Ak there exists a function of frequency Ljk(ω) such that: 

jjkk ALA )(ω= . 

Thus one chooses reference amplitude A and relates all other amplitudes to that one. 

As shown in [7], within the validity of the low pass filter hypothesis, system stability can be checked by 

inspecting the eigenvalues of the (complex) system matrix FN(A, ω) of the quasi-linearized system: 

• all eigenvalues of FN(A, ω) in the left half of the complex plane for all values of A and ω indicate 

system stability; 

• an imaginary eigenvalue of FN(A, ω) with magnitude ω  for some amplitude value A = ALC 

indicates a limit cycle with amplitude ALC and frequency ω . 

The eigenvalue method reduces limit cycle determination to calculation and verification of eigenvalues of 

FN(A, ω), while sweeping through the values of A and ω. Because ω is the absolute value of an eigenvalue 
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of FN and at the same time may be an argument of FN(A, ω), a special procedure called “frequency 

iteration” was proposed in [7] to calculate ω in such cases. 

As discussed in [7], limit cycle stability can be decided by observing the evolution of the eigenvalues of 

FN(A, ω) while applying small variations to limit cycle amplitude ALC. Decision criteria are as follows: 

a) A limit cycle exists with amplitude ALC and frequency ω if there exists an imaginary eigenvalue of 

FN(ALC, ω) with magnitude ω.  

b) The limit cycle with amplitude ALC and frequency ω will be stable if: 

• all eigenvalues of FN(A, ω) lie in the left half complex plane for A = ALC + δ, where δ is a small 

positive perturbation, and 

• some eigenvalue(s) of FN(A, ω) lie(s) in the right half complex plane for A = ALC – δ. 

c) The limit cycle with amplitude ALC and frequency ω will be unstable if: 

• all eigenvalues of FN(A, ω) lie in the left half complex plane for A = ALC – δ, and 

• some eigenvalue(s) of FN(A, ω) lie(s) in the right half complex plane for A = ALC + δ. 

d) The limit cycle with amplitude ALC and frequency ω will be semi-stable (stable for small, unstable for 

large A) if some eigenvalue(s) of FN(A, ω) lie(s) in the right half complex plane for both, A = ALC + δ and 

A = ALC – δ. 

e) The limit cycle with amplitude ALC and frequency ω will be semi-stable (unstable for small, stable at 

large A) if all eigenvalues of FN(A, ω) lie in the left half complex plane for both, A = ALC + δ and  

A = ALC – δ. 

 

3. A novel implementation without eigenvalue calculation 

 

3.1 Looking for a limit cycle: 

There exists an imaginary eigenvalue of FN(ALC, ω) with magnitude ωLC  iff  [jωI – FN(ALC, ω)] is singular 

at ω = ωLC [4]. Thus instead of calculating the eigenvalues of F(A, ω) while sweeping through the values 
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of A and ω in the search for limit cycles, one may look for zero singular values of [jωI – F(A, ω)]. This 

can be conveniently accomplished by solving the minimization problem: 

 )],([min
,

ωωσ
ω

AFIj N
A

−  (1) 

where [.]σ  indicates the least singular value. An imaginary eigenvalue of FN(ALC, ωLC) with magnitude 

ωLC will exist iff 0)],([ =− LCLCNLC AFIj ωωσ . 

This approach has 2 advantages: 

• smallest singular value calculation is used instead of calculating all eigenvalues; 

• limit cycle frequency is the result of optimization problem (1), rather than the absolute value of 

an eigenvalue and an optimization parameter. Thus the special procedure of [7] called 

“frequency iteration” is not needed. 

Alternatively, if the system is a unity negative feedback system and the open loop state space 

representation {G(A, ω), B(A, ω), C(A, ω), D(A, ω)} of the quasi-linearized system is available, one may 

also solve the following alternative optimization problem without determining the closed loop system 

matrix: 
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An imaginary eigenvalue of FN(ALC, ω) with magnitude ωLC will exist iff  

0
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Problems (1) and (2) are equivalent, because looking for imaginary transmission zeros of 

[I + C(sI – G)–1B+D] is equivalent to checking for imaginary closed loop eigenvalues [2], i.e. the 

eigenvalues of FN = [G – B(I + D)–1C]. 

 

3.2 Checking the stability of a limit cycle: 

Once a limit cycle is found, the eigenvalue criteria given in section 2 can be used to decide if the limit 

cycle is stable, unstable or semi-stable. Thus in the original proposal [7] the eigenvalues of FN(A, ω) are 
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tested for ω = ωLC and for values of A slightly larger and slightly smaller than ALC. Alternatively, the 

Lyapunov equation FN
HP+PFN = –I can be solved for these situations and then the positive definiteness 

of solution P (which is a necessary and sufficient stability condition) checked by one of the following 

criteria:  

• A positive definite Hermitian matrix has positive principal minors. 

• A positive definite Hermitian matrix has only positive eigenvalues. 

• The Cholesky decomposition exists for positive definite Hermitian matrices. 

Higham [5] suggests the use of a Cholesky factorization attempt as a stable and efficient test for positive 

definiteness. Such use of Cholesky factorization algorithms is supported by numerical tools currently in 

use (such as Matlab®) and therefore is suggested here as an alternative test for limit cycle stability 

verification through Lyapunov equation solution. Henceforth this test will be called the Lyapunov - 

Cholesky stability test. 

 

4. Examples 

To illustrate the application of the proposed implementation and its advantage, two systems will be 

considered of the general form given in Figure 1. 

Let the linear dynamics be: 
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Two different nonlinearities with describing functions N1(A) and N2(A, ω) will be considered, where A is 

oscillation amplitude at the nonlinearity’s input and ω is the oscillation frequency in rd/s. Let the 

describing functions be: 
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N1(A) is the describing function of a relay of amplitude π and appropriate hysteresis width [3]. N2(A, ω) is 

the describing function of a switching actuator with amplitude π, subject to switching restrictions as 

described in [6].  

For these two systems, the closed loop approach (Equation 1) and the open loop approach (Equation 2) 

were applied. Results were compared to those obtained with an implementation of the original eigenvalue 

method proposal [7]. In all cases, values obtained for ALC and ωLC were equal up to five significant digits. 

For System 1, a system described by Figure 1 and Equations 3, 4 and 5, calculations yield a stable limit 

cycle with amplitude ALC = 3.0467 and ωLC = 0.89152 rd/s. For System 2, a system described by Figure 1 

and Equations 3, 4 and 6, calculations yield a stable limit cycle with amplitude ALC = 2.5376 and ωLC = 

0.97779 rd/s. Within the usual error bounds known for the describing function method, these values 

match simulation results. 

Computational costs were assessed using flop counts in Matlab® 5. Table 1 summarizes the results. 

Procedures 1 to 3 are procedures without search. Flop counts for procedures 4 - 9 depend on the search 

methods used, as well as on single iteration costs, which are those of procedures 1 - 3. Procedures 4, 5, 7 

and 8 used the simplex search from Matlab® Optimization Toolbox. Procedures 6 and 9 used scalar 

bounded search from the same toolbox.  

From Table 1 it is seen that the implementation proposed herein yields expressive gains over the original 

proposal from [7] when the so-called “frequency iteration” is needed, i.e. when FN is a function of A and 

ω, as is the case of System 2. When this is not the case, as for System 1, the original proposal results in 

less computational cost, because the determination of ALC and ωLC is done sequentially.  

The Lyapunov - Cholesky limit cycle stability turns out to be approximately 3 to 5 times more costly than 

the direct eigenvalue verification outlined in section 2. The Lyapunov - Cholesky stability test for the 

limit cycle of System 1 resulted in a flop count of 26,552 against 7,978 for the direct eigenvalue test. For 
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the limit cycle of System 2 the flop counts were 27,642 and 8,932 respectively. Thus, generally the direct 

eigenvalue test is to be preferred. However, the Lyapunov - Cholesky test stands as a viable alternative 

verification tool.  

 

5. Comments and conclusion 

In the foregoing sections a novel implementation of the eigenvalue method for limit cycle determination 

of nonlinear systems was proposed. The main advantage over the original proposal of the method in [7] is 

the avoidance of the so called „frequency iteration“. Additionally, singular value calculations generically 

are more robust and less computationally expensive than eigenvalue calculations. Thus the proposed 

implementation results in significantly less computational effort in all cases were in the original proposal 

a „frequency iteration“ is needed. 

Limit cycle stability can be checked via eigenvalue verification, as in the original proposal, or 

alternatively via a Lyapunov - Cholesky test outlined in section 3.2. Experiments with built-in 

implementations of eigenvalue calculation and Lyapunov equation solution in Matlab® indicate that the 

approach to limit cycle stability check via eigenvalue calculation is computationally less expensive. 
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FIGURE: 

 

Fig. 1: Control system with linear subsystem and separable nonlinearity 
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TABLE: 
 
 
 

Table 1: Assessment of computational cost 

 

Procedure label Procedure description FLOP count 

1 )],([ ωωσ AFIj N−  for System 1 1,626 
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⎦
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 for System 1 2,363 

3 Calculation of the eigenvalues of ),( ωAFN  for System 1 4,660 

4 )],([min
,
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−  for System 1 134,529 
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ωωω

σ
ω ADIAC

ABIjAG
A

 for System 1 181,490 

6 Determination of A, ω for System 1 as described in [7] 

(no “frequency iteration” needed) 71,337 

7 )],([min
,

ωωσ
ω

AFIj N
A

−  for System 2 143,584 

8 ⎥
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, ωω
ωωω

σ
ω ADIAC
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 for System 2 200,835 

9 
Determination of A, ω for System 2 as described in [7] 

(“frequency iteration” needed) 339,383 

 


