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Abstract 

In this paper we explore the growth of mathematical knowledge and in particular, seek 

to clarify the relationship between abstraction and context. Our method is to gain a deeper 

appreciation of the process by which mathematical abstraction is achieved and the nature of 

abstraction itself, by connecting our analysis at the level of observation with a corresponding 

theoretical analysis at an appropriate grain size. In this paper we build on previous work to 

take a further step towards constructing a viable model of the micro-evolution of 

mathematical knowledge in context. 

The theoretical model elaborated here is grounded in data drawn from a study of 10-11 

year olds’ construction of meanings for randomness in the context of a carefully designed 

computational microworld, whose central feature was the visibility of its mechanisms--how 

the random behavior of objects actually ―worked‖. In this paper, we illustrate the theory by 

reference to a single case study chosen to illuminate the relationship between the situation 

(including, crucially, its tools and tasks) and the emergence of new knowledge. Our 

explanation will employ the notion of situated abstraction as an explanatory device that 

attempts to synthesize existing micro- and macro-level descriptions of knowledge 

construction. One implication will be that the apparent dichotomy between mathematical 

knowledge as de-contextualized or highly situated can be usefully resolved as affording 

different perspectives on a broadening of contextual neighborhood over which a network of 

knowledge elements applies. 
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The Micro-Evolution of Mathematical Knowledge: The Case of Randomness 

Mathematical meanings are elusive. We know surprisingly little about their genesis. It 

has become fashionable, almost obligatory, to display constructivist credentials, and 

acknowledge that mathematical meanings are built on existing knowledge, that children (and 

adults) do not come to learning situations as tabula rasa, and that meanings are constructed by 

the individual (or, depending on taste, the relevant cultural group).  

The trouble is that this begs as many questions as it answers. It fails to address at a 

micro-level, the problem of how--if meanings are layered one on another--anything new is 

learned at all. What kind of grain-size do mathematical resources have? Are they like mini-

theories of the way the mathematical world works? Or are they atoms of fragmentary 

mathematical meanings, essentially standalone? If the former, how is change possible? If the 

latter, what structures these atoms and how does restructuring occur? By asking these sorts of 

questions, we create a hostage to fortune, as we cannot pretend to do more than point to some 

partial answers to a subset of these questions, not least because they pose problems which are 

independent of the mathematical knowledge domain, while we focus on just one. In this 

paper, therefore, we position ourselves firmly in the domain of theory construction, building 

on previous theoretical work (particularly in Noss and Hoyles, 1996) and we will illustrate 

our case by reference to a single case study of two children, drawn from a considerably larger 

corpus of data (Pratt, 1998a). 

Underpinning much discussion concerning the origin of mathematical knowledge lies 

the question of mathematical abstraction. It is a thorny question, whose problematic status 

has recently been addressed by a number of authors whose contributions we will consider 

below. A central issue is the extent to which mathematical abstraction depends on de-

contextualization, or more generally, to explicate the relationship between abstraction and 

context. One of the difficulties surrounding the clarification of the relationship between 
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mathematical abstraction and de-contextualization, is that the finished ―product‖--

mathematical abstraction considered as an achieved state of thought--certainly appears to 

involve a state of having cut loose from contextual boundaries, and a breadth of application 

across settings. But this does not, in itself, deal sufficiently with the process. If mathematical 

abstraction means de-contextualization, does this involve a blurring of boundaries between 

contexts? Or a new cognitive mechanism to map abstraction onto different contexts? What, 

in any case, is it that is abstracted? Does mathematical abstraction involve a process of 

transfer, conceived in traditional psychological terms, in which knowledge in a single context 

is mapped out of old contexts and into new ones?  

A common approach is to regard mathematical abstraction as a strictly hierarchical 

process, progressing through a series of stages. For example, Dubinsky (1991) forwards the 

notion of a ―process,‖ an interiorized version of an action in which a repeatable physical or 

mental transformation of an object or objects takes place. At some point, a process can be 

transformed by an object, when, according to this theory, the process has been encapsulated 

to become an ―object.‖ Sfard (see, for example, 1991) also regards the isolation of 

mathematical objects as a key achievement of mathematical abstraction.  

These process/object models have taken steps beyond identifying and labeling stages of 

mathematical abstraction: For example, Sfard (1994), in a paper in which she adopts a richer 

and more sociolinguistic stance than that of her 1991 work, has described reification as the 

birth of metaphor, which renders the knowledge more integrative and manipulable; Gray and 

Tall (1994) refer to the ambiguous nature of process and object. 

While these and other contributions represent a helpful development in the theoretical 

literature, they are nonetheless somewhat limited in their capacity to describe the process by 

which the various states of abstraction are achieved (other workers have similar misgivings: 

see, for example, Confrey and Costa, 1996). We believe that a further step would result from 
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reappraising the relationship between mathematical abstraction and de-contextualization and 

elaborating the process by which knowledge becomes abstracted. This project would need to 

pay particular attention to the role of the setting in the construction of mathematical 

knowledge.  

One way of thinking about the role of setting has been strongly influenced by the 

paradigm of situated cognition. The strength of this view derives, in no small part, from the 

work of Jean Lave (1988) who showed convincingly how settings shape strategies for 

individuals, how problems are solved in the course of action, structured by activity. 

Overarching strategies or generalized solutions have little place in everyday experience; 

mathematics in situ has no need for universal laws, consistency, generality--it is concerned 

with getting the job done using whatever affordances are available. People do just enough to 

cope with the demands of the setting in which they find themselves. The strong case is made 

by Resnick, who argues that: ―every cognitive act must be viewed as a specific response to a 

specific set of circumstances. Only by understanding the circumstances and the participants’ 

construal of the situation can a valid interpretation of the cognitive activity be made‖ 

(Resnick, 1991, p. 2).  

We have argued elsewhere (Noss & Hoyles, 1996) that this view leads into a 

mathematical cul-de-sac. For if it is really true that every act is nothing more than a specific 

response to a specific set of circumstances, how does mathematical knowledge grow? What 

can be salvaged from the idea of mathematical abstraction? Mathematics is the science of 

structure and pattern, the study of relationships between relationships; and to that extent at 

least, it cannot be immutably tied to real referents, situations whose meaning is contingent 

upon the particularities of setting: at least not in the traditional sense of ―real‖. 

Other workers have proposed alternative ways of conceptualizing mathematical 

abstraction. For example, Wilensky (1991) proposes that one should view the concreteness of 
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a concept as a function of the relationship between the learner and the concept. He suggests 

that, as one becomes more and more familiar with an idea, one makes more and more 

connections with it; one concretizes the concept. According to this view, ideas become 

increasingly concrete. Advanced mathematical concepts are neither more nor less abstract per 

se. For an individual who has not had the opportunity or does not yet possess the internal 

connections, a concept will be abstract, disconnected. That same concept may be quite 

concrete for another individual. 

Noss & Hoyles (1996) go beyond considering the individual in the process of 

abstracting knowledge. Building on Wilensky’s theme of connections, they extend the idea to 

considering a whole network of such links, encompassing not only the individual but also 

resources external to that person. We will use the word ―resources‖ from now on, rather than 

variations on ―meanings,‖ ―knowledge,‖ ―concepts,‖ etc., to emphasize the complementary 

roles played by internal (cognitive) and external (physical or virtual) sources of meaning 

making. Thus the term resource will encompass both external tools and internal knowledge, 

including both informal knowledge like intuitions and formal conceptual knowledge. To 

describe this network, Noss and Hoyles use the idea of webbing to evoke the ways that 

learners come to construct new mathematical knowledge by forging and reforging internal 

connections through the interaction of internal and external resources during activity and in 

reflection upon it. The notion of webbing aims, therefore, to recognize the central 

significance of tools as external resources that shape the nature of the mathematical resources 

constructed, resources that have been observed to be highly dependent upon the particular 

attributes of those tools as cognized by students. 

As a way of pinpointing what kind of knowledge emerges in the course of activity, 

Noss and Hoyles propose the notion of situated abstraction (see Hoyles and Noss, 1992; Noss 

and Hoyles, 1996). Situated abstractions emerge during activity as internal resources that 
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serve as relatively general devices for making sense of situations that arise within a setting. 

The idea tries to describe the types of knowledge that enable learners to reflect on the 

structures within a setting and make sense of phenomena that hold true across it. At the same 

time, a situated abstraction, or, to put it more exactly, the relationships and actions based 

upon the situated abstraction, are expressed in a language (not necessarily verbally 

articulated) that remains embedded in the situation in which it was constructed, potentially 

constraining its validity in new contexts, with different tools and affordances. 

Formal abstraction is, by definition, characterized by its separation from the situation(s) 

that give rise to it. A crucial property of formal abstraction is that it occurs within a discourse 

which has its own syntax and semantics, and which is distinct from its genetic context. It is 

this which gives formal abstraction its appearance of containing objective essence, and which 

is responsible for the assumption that this essence exists in a form which allows it to be 

―transferred‖ to new situations (see Noss, Hoyles, & Pozzi, in press, for a study which uses 

the idea of situated abstraction in the context of understanding professional practices). 

It is precisely that mathematical abstraction is generally expressed in a formalism with 

its own rules of transformation that affords it its extraordinary power. The closure of the 

formal system is crucial for this capacity: it arises because relationships within the formal 

system can be articulated without the ―noise‖ that is characteristic of real systems. Situated 

abstraction, on the other hand, emphasizes connection with situations, not seeking to 

challenge the utility of formal abstraction, but maintaining that abstraction can take place in 

situ rather than only within a self-contained system mentally and/or physically remote from it. 

The central premise is that individuals can and do find invariances which span settings, 

but this is not always best described as a mapping from a situation to some other mental 

realm and back again. Individuals can abstract knowledge within settings and remain tied to 

the objects and relationships within the situation, its tools, linguistic conventions and 
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structures. Situated abstraction is observable as more or less tacitly articulated invariance of 

relationships, framed within the situation itself. 

By blurring external and internal resources, Noss and Hoyles bring into close proximity 

mathematical abstraction and its setting. Other workers have made similar observations, 

notably Nemirovsky (in press) who has described situated generalizing, as a recognition of 

the generalization process where there is no fixed boundary between experienced phenomena 

and ―the realm where the generalization takes place.‖ His approach focuses a little more 

closely on the process of generalization, whereas, in this paper at least, our interest centers 

more on the conceptual domain.  

The foregoing ideas offer variations on a theme that blur any strong distinctions 

between experience out there and mathematical abstraction in here. Whilst such theories 

provide constructs that elaborate the relationship between mathematical abstraction and de-

contextualization at the macro-level, there is much to do in elaborating what processes of 

abstraction in situ might mean at a greater level of detail. Thus, in the remainder of this 

paper, our goal will be to refine macro-level descriptions of the emergence of new 

mathematical knowledge by studying the relationship between tool-use and situation, and in 

so doing, elaborate some of the micro-level details of the webbing idea.  

In order to achieve this objective, we need to integrate the macro-level ideas of 

webbing and abstraction into existing micro-level descriptions of knowledge construction. 

This is what we mean by the term ―micro-evolution‖ in the title. A good place to start is to 

ask how intuitive or primitive knowledge gets there in the first place. diSessa (1983) 

proposes that we abstract primitive intuitions directly from experience, that knowing is 

essentially phenomenological. He argues that ―p-prims‖ (phenomenological primitives) are a 

collection of heterarchical and rich ways of seeing and sometimes explaining the world (e.g., 

things move in the direction you push them). They are relatively minimal abstractions of 
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simple common phenomena and are stored in what he calls the ―causal net,‖ a network of 

primitive sense-making causal relationships. As learning develops, these p-prims become 

increasingly structured and ―co-ordination classes‖ are formed. This structuring can be 

thought of as connections between p-prims that enable clusters of p-prims to be 

simultaneously (more or less) triggered by observed characteristics of phenomena. Such 

clusters roughly parallel what other writers might refer to as a ―concept‖ but which diSessa 

calls a ―co-ordination class‖ (diSessa, 1993). 

According to diSessa, conceptual change occurs in three ways, each involving a 

transformation of the causal net: (i) by the addition of new p-prims, (ii) by the formation of 

new connections between p-prims, and (iii) by changes to the priorities which fix how likely 

a p-prim is to be triggered by incoming data (its cueing or reliability priority), in terms of its 

consistency with other p-prims or with further incoming data. The unstructured p-prims live 

in relative isolation, and although they may be triggered individually by phenomena, they will 

not then reliably trigger further p-prims. P-prims would remain unstructured if incoming data 

were not inconsistent with those p-prims or if there were no further incoming data. When p-

prims are seen to be consistent with each other on a regular basis, they become highly 

structured so that a whole cluster is always triggered at the same time. 

diSessa’s detailed model of conceptual change is helpful, not only because it offers 

clarity at both micro and macro-levels, but also because it makes provision, through the 

clustering of p-prims and through the mechanism of priorities attached to p-prims, for the 

construction, and possible evolution, of situationally-dependent knowledge.  

While diSessa’s formulation is an attractive starting point for our own work, there are a 

number of issues that caution against a too-casual application of the theory to the task at 

hand. The first concerns diSessa’s focus on physics, which leads him to consider causality as 

the phenomenological basis for p-prims. This seems at first sight to stand in contrast with 
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mathematical knowledge, which seeks to express meanings through inference, independent of 

context. In what follows, we will not elaborate the causal/inferential distinction. More 

generally, we will have to be cautious about an oversimplified mapping of p-prims to situated 

abstraction: As observables at the macro-level, situated abstractions are relatively (to p-prims 

at the micro-level) complex and likely to depend upon collections of p-prims (and much more 

besides).  

The second issue relates to the role of tools in shaping the construction of mathematical 

knowledge. It would be useful to elaborate the relationship between the cueing of p-prims (or 

any similar mechanism) and the perceived functions of tools within a setting. If we could 

understand this issue more clearly, we might be able to elaborate how the web is shaped to 

make some resources more likely to be used than others in any particular situation. 

The third issue involves the problem of de-contextualization. DiSessa uses the term 

―tuning towards expertise‖ to describe the move towards more expert forms of knowledge. In 

mathematics, one characteristic of expert knowledge is its apparent cutting away from 

context. Any model of mathematical meaning-making should account for some process by 

which elements of knowledge take on more coherent structures, in which, perhaps, learners 

constructing situated abstractions come to coordinate them with each other, or with existing 

knowledge. We would like to address, therefore, how re-structuring might provide some 

insight into the decontextualization problem.  

These three issues will guide our discussion in what follows, and we now consider each 

in turn. 

The Problematic Nature of Context and Mathematical Abstraction 

(i) What is abstracted? 

The urge to describe how things work is, it seems, primitive to humans. The sense that 

contact with moving things conveys motion, or that pushing harder makes objects move 
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faster, relates to a recognition that the world works in a (mostly) causal way, that phenomena 

have explanations for the way they work. What is the equivalent insight for mathematics? Is 

the insight that ―multiplication makes bigger‖ or--more relevantly for our own study--

―random sequences are patternless‖ causal in nature? Perhaps so. The distinction between 

inference and causality is, after all, an adult rather than a child distinction, and there is little 

reason to doubt that children’s beliefs about randomness are shaped by their experiences with 

throwing dice and tossing coins. P-prims, whether causal or inferential, are abstractions of 

reality, not mere descriptions of it. On the other hand, the intuition that, say, randomly-

generated events give rise to patternless sequences does appear--at this stage we are being 

necessarily vague--to necessitate a degree of inference that, say, ―force causes movement,‖ 

does not. We note, however, that diSessa (1993) recognizes that the genesis of p-prims 

―might be more complex than a simple abstraction schematization of a phenomenon‖ (p. 

151), a statement which identifies the possibility that sense-making devices such as p-prims 

can be made out of other, more primitive devices.  

We ought at this point to discuss the question of language in the process of knowledge 

construction and application, as we have several times in the foregoing discussion, loosely 

used terms like ―articulation‖ and ―expression.‖ In this respect, we need to consider the 

micro-level and macro-levels separately. From a micro-level perspective, it is reasonable to 

agree with diSessa that p-prims are not strongly associated with dictionary lexicon: 

Much less do they have explicit propositional form. . . . Subjects may make 

predictions on the basis of a p-prim, but the prediction is not the p-prim. 

(Ibid. p. 119.) 

However, if we consider a larger grain size of knowledge, there may be some 

interesting differences. A situated abstraction is an articulated expression of invariant 

relationships perceived within a setting, and expressed within the tools and linguistic forms 
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of the setting. Note that this may, or may not, have much to do with dictionary lexicons: the 

linguistic structures may well have as much to do with mouse-clicks or gesture as spoken 

language. In this case, while we may certainly agree that the prediction is not the p-prim--or 

any other knowledge structure--it might sometimes be quite difficult to distinguish between 

the two. We will have more to say on this when we have illustrated our thinking with data on 

children’s ideas about randomness below. 

 (ii) How is it abstracted? What is the role of tools? 

We take it as axiomatic that the external resources available for making sense shape the 

knowledge development in fundamental ways. Our particular interest centers on the 

relationship between external tools and the set of internal resources--however structured--that 

the learner possesses at any time. If we wish to understand how new knowledge is developed, 

it might help to get a clearer picture of how specific pieces of knowledge and the 

relationships between them are activated by the experience of encountering the (real or 

virtual) world. This is, of course, a tall order. But a model that shed light on the relationship 

between external resources and the evolution of mathematical knowledge would have 

pedagogic value: We could gain a handle on how to provide tools and activity structures with 

optimal opportunities for supporting the construction of new knowledge.  

This is, in essence, the fundamental design problem of mathematics education. And it is 

here that we believe that digital technologies hold particular promise. Our use of digital 

technologies in the study we report here is not at all centered on any a priori belief that we 

can build the right tool to ―enhance understanding.‖ Rather, our aim is to harness what 

Seymour Papert (1982) has called the ―Protean‖ quality of digital technologies, the 

possibilities they afford for building and rebuilding virtual structures and to observe the ways 

in which people interact with them. This is what we mean when we call the computer a 

―window‖ on mathematical meanings (Noss and Hoyles, 1996): it is a screen on which we 
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and our students can express aspirations and ideas, and which — because these ideas must be 

made more or less explicit — afford considerable insight to the researcher in the process. It is 

in this sense that we claim the process of design as a contribution to the process of theory 

building.  

(iii) Is mathematical abstraction de-contextualized? 

We stated earlier that de-contextualization appears to play a crucial role in the process 

of mathematical abstraction. Yet all of the literature on situated cognition and much besides, 

shows just how problematic this is, as even without the strong version of the situated 

cognition thesis, we accept that knowledge in general tends to remain tied to the situation that 

gave rise to it. If we consider that phenomenological knowledge exists as some kind of causal 

network, then it appears incontrovertible that it maintains a strong link to the original 

primitive intuitions abstracted directly from experience.  

From the point of view of mathematics, two questions arise. First, what exactly is de-

contextualization? It will be necessary to refine what we mean by a mathematical context, 

and try to characterize what we mean by situational specificity in order to see whether and 

how learners sometimes break out of contexts (and, of course, whether ―break out‖ is the 

right metaphor at all). 

A second question concerns abstraction. The etymology of the word speaks for itself: 

the assumption is that abstraction demands a pulling away from context. Once achieved, there 

is no doubt that from a mathematical point of view, it is this that lends mathematics its power 

as a means to describe the world. But how is it achieved? In what circumstances? And, more 

importantly, is it a binary state system, in which one either has or has not abstracted? 

Whatever the case, we ought to be able to say something about mathematical abstraction-in-

progress, particularly if we set things up so that we can study learning in a relatively 

transparent way within appropriate computational settings.  
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We now wish to set out as clearly as possible our goal, which in general terms is to 

develop a model of the micro-evolution of mathematical knowledge in context.  

Elements of a Model for Mathematical Abstraction in Context 

The study of abstraction must involve the consideration of currently accessible external 

and internal resources. Even if, finally, mathematical abstraction appears to be de-

contextualized, it would be remiss to assume that context plays no part in the process of 

abstracting. Indeed, there is every reason to believe the role of tools is fundamental, begging 

the question as to how mathematical abstraction comes to appear cut off from context. This 

approach to the study of mathematical abstraction leads us to the conclusion that a model for 

how mathematical knowledge grows must contain five essential elements: 

1. A clear description of the nature of naïve mathematical knowledge including the 

grain size of emergent mathematical knowledge. 

2. A description of the setting, including structuring resources designed to perturb 

thinking and to act as a window onto conceptual evolution. 

3. A detailed elaboration of the nature of new knowledge and its relation during 

evolution to prior knowledge. 

4. The relationship between new knowledge and the setting in which that knowledge 

is constructed. 

5. A proposition that elaborates whether and how prior knowledge illuminates sense-

making in unfamiliar settings. 

Elements 1 and 3 consider the potential role for current mathematical knowledge in the 

development of new knowledge. Elements 2 and 4 consider the analogous role for external 

resources. Element 5 aims to present a coherent statement in which the respective role of both 

internal and external resources are discussed in relation to the situatedness of mathematical 

knowledge. These five elements will act as organizing points for the subsequent sections. 
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We will illustrate the five elements with reference to the developing ideas of a pair of 

children, part of a larger study of 10-11 year-old children’s construction of resources for 

randomness (Pratt, 1998a, 1998b, 2000). At the risk of repeating ourselves, we should 

emphasize that the model we outline here is derived from a number of prior studies (some of 

which are collected in Noss & Hoyles, 1996) and, with respect to the issue of randomness 

discussed in this paper, from detailed data analysis of Pratt’s (1998a) study. The data reported 

in this paper, therefore, should be viewed as exemplifying the theoretical construction, rather 

than as a corpus of data from which we are attempting to (over-)generalize. 

The theoretical framework presented here has emerged through reflection on the data 

from the original study. Although in this paper we present fragments of that data chosen for 

its illustrative value, it is helpful for the reader to know some of the methodological details of 

the original study. (The computer environment itself will be described in Element 2.) 

The methodology of the broader study was founded on an iterative design in which the 

study of the children alternated with the development of computer-based tools and resources. 

We worked with a new group of children in each iteration. 32 children, aged 10 and 11 years, 

were studied in all, with the final iteration involving 16 children. Each child was interviewed 

individually using a semi-structured schedule in which the children expressed their ideas 

about randomness before working with the computer-based tools. The early interactions with 

the tools provided further insights into the nature of this initial knowledge. Element 1 of our 

theoretical model represents insights gained from those interviews and early interactions with 

the microworld. The children worked with the microworld in pairs for between 2 and 2.5 

hours. In these activities, the researcher acted as a participant observer, interacting with the 

children in order to probe the reasons behind their actions, later interpreting these reasons in 

the light of observations based on their and other children’s work. The approach throughout 

was to allow the children to be in control of their explorations, making decisions and moving 
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in directions of their own choice. Most interventions were intended to be neutral with respect 

to changing the direction of the children’s thinking. Typically such interventions were 

concerned with explaining technical matters or probing what lay behind a child’s actions. 

More directed interventions were used when the children were clearly stuck or embarked 

upon a path with no potential pay-off from either research or learning perspectives. 

Experimental interventions were also used to probe for the maximal level of performance that 

the child’s internal resources, supported by the computer’s tools, could achieve. Such 

interventions were only used when a child seemed to be particularly confident and already 

performing with some degree of fluency. 

The actions and discussions of the children were video-taped. Case accounts, avoiding 

as far as possible interpretation, were developed from the transcripts. (Some of the illustrative 

transcripts in this paper include descriptive comments from the case accounts.) These 

accounts were the basis for subsequent case analyses in which various inferences were made 

as to why and how the children’s internal resources were modified. The case analyses drew 

on the transcripts of the pre-interviews as well as the case accounts of the activities. These 

case analyses were made available for a colleague and differences of opinion about the 

inferences were discussed and resolved. 

A trace of each pair’s work was developed. This trace indicated the path taken 

including the situated abstractions articulated during that journey. (The trace in Figure 5 is a 

graphical summary of what were very detailed traces.) The case analyses and traces were 

studied and compared across children to identify consistencies and marked differences. 

Consistency of an issue from case to case provided a check on reliability whilst variations 

suggested the limitations. The theoretical model developed here is based on this corpus of 

data although we only provide one case as an illustration of the theory. 
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Element 1: Naïve knowledge 

In these data, children were observed to use four separable resources for articulating 

randomness, namely unsteerability, irregularity, unpredictability and fairness. In each case, 

we use a single example to illustrate how the resource was expressed more generally. In this 

way, we provide a first glimpse of our view of the nature of naïve mathematical knowledge. 

(i) Unpredictability 

Objects like dice were often described as unpredictable. For example, in response to the 

question, ―Do you think there is any number which is harder to get than any other number?‖ 

one child commented, ―No . . . because it just comes out at random and any number could 

come out at any time so you don’t really know which one is going to come out or which one 

is not going to come out.‖ 

The apparent connection between unpredictability and random devices was very commonly 

expressed. Indeed, for many children, a way of checking the randomness of a device was to 

see if it was possible to predict outcomes. 

(ii) Unsteerability 

Phenomena were often seen as random when no known agent was involved in 

determining the result. For example, when asked to summarize how he would decide on 

randomness, one child responded, ―Well, you decide by . . . if you’re not controlling it or if 

you’re not affecting it by doing anything, and if it’s like not bad weather or anything or 

nothing’s blowing it over or anything, that will be quite random, but if the wind was blowing 

it or you were putting force or it or something then it’s not that random.‖ 

The primitiveness of unsteerability is also seen in the way it is often used to ―explain‖ 

other resources for randomness. Very frequently, children associated unpredictability with 

unsteerability. On such occasions, unpredictability was usually seen as the outcome of 

uncontrolled input.  
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(iii) Irregularity 

A third way of making sense of random phenomena was through reference to the lack 

of a regular pattern in sequences of results. This resource was often linked closely to 

prediction so that patterns were conjectured on the basis of past results and then used to make 

predictions, which were tested by further trials. For example, when asked how he would test 

the fairness of a dice, one child answered, ―Testing it, I’d roll it and if it kept on going on one 

or another then I might think it’s got like a magnet or something inside it . . . I’d test it about 

ten, fifteen times.‖ 

(iv) Fairness 

Fairness was often a defining characteristic of randomness. For example, one set of 

questions in the interview was designed to ascertain how the child thought about two 

spinners, one of which had uniform sectors and another, which had unequal size sectors. On 

the first uniform spinner, children often expressed concerns that the spinner may not be 

unsteerable but nevertheless recognized that there was no particular bias towards one number. 

In contrast, the same child would often regard the non-uniform spinner as non-random. One 

child commented, ―No, because whoever made this, made the one and the three bigger so 

you’ll get the one and the three most of the time.‖ 

The excerpts illustrate the nature of naïve knowledge of randomness as observed 

throughout our interviews and as frequently observable in early interactions with the 

software. Below we outline five aspects of this naïve knowledge. 

We observed children articulating different naïve resources within moments of each 

other. For example, a child referred to the unsteerability of a device and moments later 

referred instead to its unpredictability; the fact that situations that were not controlled were 

often not predictable apparently encouraged children to express these resources 

interchangeably. 
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It seemed that different aspects of the setting cued different resources. For example, the 

physical appearance of an everyday spinner sometimes cued an awareness of a lack of 

fairness, whereas in the computer setting, attention was drawn to the use of the strength 

control (see Figure 1) and so unsteerability and unpredictability were cued. The change in 

focus of attention for the child seemed to stimulate different resources. 

Their interchangeability suggests that these naïve resources were connected in the sense 

that when one resource was triggered another (connected) resource was automatically 

available as well. It is important to have some sense of the strength of that connection within 

naïve resources. We often noticed children articulating different naïve resources as if they 

were interchangeable when to the expert they may have seemed contradictory. For example, a 

non-uniform spinner was often regarded as non-random because it was not fair, even though 

it was neither predictable nor controllable. Some children resolved this by expressing degrees 

of predictability (a uniform spinner being less predictable than a non-uniform one) but most 

children never articulated any awareness of such contradictions. If the fairness and 

unpredictability resources had been strongly connected, the triggering of fairness would have 

triggered unpredictability and one would have expected the children to recognize some 

dissonance. It seems then that the apparent interchangeability of naïve resources was not due 

to a strong connection between them, and may simply have been because attributes of the 

setting that triggered one resource often appeared coincidentally with aspects that triggered 

another. 

Naïve resources were used, at least initially, to construct meanings for long-term as 

well as short-term behavior. There was little attempt in the early interactions with the gadgets 

to diagnose their behavior in terms of aggregated results. Even when relatively large numbers 

of trials were generated, the children searched for local regularities in results. 
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Our final observation regarding naïve knowledge of randomness relates to the 

relationship in children’s minds between random and deterministic behavior. The short-term 

behavior of the gadgets was often explained by reference to cause and effect. A typical way 

of working was for the children to begin by conjecturing possible deterministic reasons for a 

gadget’s initial behavior. Further results though did not support that conjecture and an 

alternative deterministic conjecture was found. When this failed too, yet another reason for 

the behavior was proposed, though at some point, when sufficient testing has been carried 

out, the search for such explanations came to an end and the behavior was described as 

random. 

There is a strong sense in which stochastic meanings are constructed to deal with those 

aspects of the world that cannot be deterministically explained. It is no coincidence that the 

children’s actions usually involved searching for deterministic behavior since it is impossible 

to look for stochastic behavior when it is characterized only in terms of the absence of 

various attributes: a lack of predictability, a lack of sequential patterns, and a lack of control 

(fairness is a notable exception being sometimes observable from the physical characteristics 

of the device). A richer appreciation of the stochastic must involve the identification of 

positive features and these lie in long-term behavior. 

The above characterization of naïve resources for randomness is strikingly resonant 

with diSessa’s, who describes p-prims as multitudinous, small pieces of knowledge that are 

self-evident, not needing justification and weakly connected. Naïve knowledge of 

randomness then seems to have many of the characteristics of diSessa’s p-prims. 

The children in this study hardly ever articulated in the initial interviews an 

appreciation of the significance of aggregating results over the long term. When asked how to 

determine the fairness of a dice, children referred to the appearance of the dice (fairness) or 

they threw the dice a relatively small number of times (irregularity). Children never referred 
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to the frequencies of a particular outcome over a period of time. If any aggregating strategy 

existed at all for these children, it had low cueing priority. We will see later how new 

knowledge of this kind did begin to emerge. 

Element 2: The Setting 

A detailed model of mathematical abstraction in context demands a clear description of 

the context itself, including the available tools and resources. We chose to use a 

computational setting because we believe that a computational environment provides a 

unique opportunity to tune the tools available within the setting to our research agenda. We 

iteratively designed a stochastic microworld, Chance-Maker, based upon Boxer,
1
 which is 

particularly suited to our purposes. The aim was that this setting would enable us to observe 

children’s naïve and emergent knowledge through their actions with the tools. In addition, we 

required that the virtual environment would enable us to look closely at the children’s 

thinking as they moved from one setting to another. Let us consider exactly how Chance-

Maker provided these three windows--on naïve knowledge, on emergent knowledge and on 

new knowledge across settings. 

Providing a window on naïve knowledge 

In order to observe naïve knowledge, we had to design tools that would cue current 

resources for randomness, unpredictability, unsteerability, irregularity and fairness. Chance-

Maker contained a number of gadgets that behaved in many identifiable respects like their 

everyday counterparts. Consider for example the COIN gadget. 

The COIN gadget can be activated using a ―strength bar‖ causing it to spin much like 

its everyday equivalent. Figure 1 depicts the strength as a solid black bar with a circular 

switch at one end. Imagine the child controlling the strength by allowing a tube (the black 

bar) to fill with a red fluid until the switch is clicked. The strength of the throw, 30% in this 

case, is represented by the amount of red fluid. Clicking directly on the COIN causes it to be 
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tossed with the strength already indicated on the strength bar i.e. the strength used on the 

previous occasion. It spins like a coin, indicating the result on its front surface. 

Figure 1 

We hoped that asking children about the behavior of the COIN, and specifically whether they 

thought it was working properly, would provide a valuable window on how they thought 

about randomness. 

Providing a window on new knowledge 

In order to observe the evolution of new knowledge, we needed to provide tools that 

would perturb thinking. We did this by offering structuring resources that went beyond those 

to be found in everyday situations. For example, the COIN gadget can in fact be opened up to 

reveal a range of new tools (Figure 2). 

Figure 2 

Of particular importance is one tool that we encouraged the children to call the 

―workings box.‖ This tool captures the mathematical essence of how the COIN works. In one 

sense, the workings box is a formal symbolic description of the behavior of a coin. In this 

respect, it encapsulates the notion of a probability distribution. In addition, and we see this as 

a critical design attribute, the workings box can be edited by the child. When the workings 

box is modified, the behavior of the COIN will change correspondingly. We intended that the 

child’s re-programming of the workings box would provide a window on how they began to 

understand that correspondence. 

We also provided a repeat tool (Logo-style), to facilitate the use of large numbers of 

trials. The ON/OFF button allows the graphics to be toggled essentially to save time when 

repeating many trials. The NEW button allows the start of a new experiment by clearing out 

old results; the results box simply lists all results since the NEW button was last clicked. By 

clicking on one corner of the results box, a chart of the results is displayed instead of the list. 
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Two types of chart are possible, generated by clicking on the PIE or PIC buttons. A pie chart 

shows the proportions of the results for each outcome whilst a pictogram indicates in absolute 

terms the frequency of each outcome. The pictogram is not automatically scaled and so 

differences between the number of results for each outcome are often brought to the child’s 

attention. There is a feature to scale the pictogram; by increasing the scale, differences 

between rows in the pictogram will then be reduced proportionately. We intended that the use 

of the repeat and charting tools would provide a window on emerging ideas about 

aggregation of results and the relationship with the configuration of the workings box. 

Asking the children to mend the COIN gadget provided a sense of purpose for their 

activity and, through their activity with the workings box, a window on their emerging 

knowledge about randomness. 

Providing a window on different settings 

We needed to create different settings to enable us to observe children’s thinking 

during the transition from one setting to another. We replicated the features of the COIN 

gadget in a series of new gadgets. By keeping the structuring resources more or less invariant 

across the different gadgets, we could observe the influence of prior expectations, differences 

in appearance, and differences in detail, for example in the contents of the workings box. In 

this paper, we will focus on the children’s engagement with just three gadgets, the COIN, the 

SPINNER and the DICE. Figure 3 illustrates the workings of the SPINNER gadget. The 

workings box and the graphic of the SPINNER indicates a bias towards 1. When the child 

modifies the workings box, the graphic automatically changes to remain consistent. 

Figure 3 

Figure 4 depicts the workings box of the DICE gadget, which contains a bias towards 

sixes. 

Figure 4 
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By tracing children’s actions and articulations across gadgets as they explored whether 

the gadget was working properly and as they attempted to mend a broken gadget, we were 

able to observe the relationship between the specificities of the setting and the construction of 

new knowledge. We were also able to observe whether and how knowledge constructed in a 

previous setting (a prior gadget) was utilized, or not, in making sense of activity in an 

unfamiliar setting (a new gadget). 

Element 3: New knowledge 

We are not proposing at this point to present the chronology of how new resources 

evolved, but, rather unconventionally, to set out in advance the nature of the new knowledge 

as it eventually emerged in order subsequently to focus on how that ending was reached. 

More specifically, in elements 4 and 5 we will trace the evolution of this knowledge in 

relation to the settings in which it was constructed, and at that point we will illustrate in much 

more detail the nature of those new resources. For now, we offer a definition of two new 

resources, but a proper appreciation of those definitions will emerge during elements 4 and 5. 

We have labeled the new resources Large Number (N) and Distribution (D). 

The Large Number resource (N) 

As children worked, they naturally used the graphing tools to display the frequencies (or in 

the case of the pie chart, the relative frequencies) of each possible outcome. They tried to use 

this graphical information to make sense of the gadget and in particular to decide whether 

further mending was necessary. Typically, they began using small numbers of trials to test the 

operation of the coin and spinner gadgets, but as time went by they worked with larger 

numbers of trials and began to observe invariants in the appearance of the pie chart. In 

situations where the workings box had been modified to represent a uniform distribution, 

they eventually recognized that the pie chart had roughly equal sectors when the number of 

trials was large. We regard this insight as intuitively related to the Law of Large Numbers, 
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and we label it the Large Number resource, N, which can be expressed as ―the larger the 

number of trials, the more even the pie chart.‖ 

The Distribution resource (D) 

In order for N to develop in such a way that it can be applied successfully to non-uniform 

distributions, there is a need to recognize the formal description of distribution inherent in the 

workings box in the gadgets. This involved the construction of the second resource. Children 

played with many controls to identify the source of variation in results. Indeed the number of 

trials is one such control. In their search for powerful explanations and control over the 

behavior of the gadgets, children would typically discover or conjecture that the workings 

box could influence the appearance of the graphical output. Even when the number of trials 

was small, they would articulate expectations that changing the appearance of the workings 

box might have direct consequences for the appearance of the pie chart. We regard this 

insight as intuitively related to the concept of distribution. The Distribution resource, D, can 

be schematized as ―the more frequent an outcome in the workings box, the larger its sector in 

the pie chart.‖
2
 Some children were able to relate N and D to each other, expressing the idea 

that ―the more frequent an outcome in the workings box, the larger its sector in the pie chart, 

provided the number of trials is large‖. We regard this type of articulation as indicative of 

coordination across N and D. 

Let us summarize our argument to date. We have illustrated a model in which 

stochastic knowledge starts out as connected to a weakly coordinated set of primitive 

resources for randomness, abstracted from everyday experience, and with many of the 

attributes of p-prims. There appear to be few (if any) high-priority resources associated with 

long-term aggregated behavior. Tuning towards expertise can occur in the sense that two new 

resources, the Large Number and the Distribution resources might emerge through interaction 

with carefully designed external resources, and illustrative evidence for how these new 
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resources emerge will be presented in the next two sections. Further, we will illustrate the 

apparent coordination of N and D. 

We now turn to elements 4 and 5, the relationship between the knowledge and the 

setting. The data in elements 4 and 5 is chronological and is offered as illustration for theory 

for the micro-evolution of mathematical knowledge. The story begins with two children, 

Anne and Rebecca, both age 10, engaging with the gadgets at top level i.e. not using the 

mending tools that reside inside each gadget. The story develops as they first play with the 

COIN gadget, then the SPINNER and finally the DICE gadget. 

Element 4: The role of setting 

Anne and Rebecca at top level 

We have already illustrated (in element 1) the nature of naïve knowledge and (in 

element 3) the Large Number, N, and the Distribution, D, resources. We now wish to trace 

the cueing and construction of N and D alongside that of more naïve knowledge and the use 

of external resources. 

Figure 5 summarizes the data in the form of a trace, which charts the evolution of the 

internal resources as articulated by Anne and Rebecca. Figure 5 displays the approximate 

times when Anne and Rebecca articulated particular internal resources. The ―events‖ 

indicated on the trace often spanned several minutes; the positioning of the resources on the 

trace gives a rough indication of the timing. On some occasions these resources were 

expressed as conjectures, ―perhaps the strength controls the number on the dice,‖ whereas on 

others the children seemed to be proposing a conclusion, ―the more often you throw the dice, 

the more even the pie chart gets.‖ It is not always easy to make this distinction. For our 

purposes, the distinction is not critical, since, whether conjecturing or forming a conclusion, 

the same internal resource is being cued. 

Figure 5 
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In Figure 5, we see many events in the first section of the trace where naïve knowledge 

was cued. During this first period, Anne and Rebecca were asked to play with the gadgets at 

top level, partly to gain a feel for the gadgets but also to form some initial views as to which 

gadgets seemed to be working properly and which might be broken. This play was at top 

level; they had not yet been introduced to the tools within each gadget. The main control 

available to Anne and Rebecca was the strength control. In playing with the coin, Anne said 

that she was testing it
3
: 

1. Anne: . . . to see if it comes up tails again. 

We can interpret this comment either as testing the COIN’s irregularity, based on a 

perceived pattern in previous results, or as testing its unpredictability as shown on the trace. 

A few moments later, the girls were proposing that the computer was exerting control, a 

special case of steerability. 

2. Dave: Do you think the COIN is random? 

3. Rebecca: Not really . . . it’s probably been programmed to do it, in a loop. 

4. Anne: I don’t know. 

5. Dave: What do you mean by ―in a loop?‖ 

6. Rebecca: Well, it’s programmed to do heads, then maybe heads again and then 

tails. 

7. Dave: In some sort of pattern? 

8. Rebecca: Yes. 

9. Dave: Did you pick up some sort of pattern? 

10. Rebecca: Not really. 

In line 2, Rebecca is dealing directly with the task of deciding which gadgets are working 

properly. Rebecca’s argument is that the COIN is not random because it is programmed. 

(Rebecca had a fairly sophisticated appreciation of the operation of computers.) We take this 
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as further support of how Rebecca regarded unsteerability as a facet of how a coin should 

behave. 

When they moved onto the SPINNER, Anne’s fairness resource was cued (line 11). 

11. Anne: I think it might be a bit unfair because the one is much bigger than the 

others . . . The two, three, four and five is much smaller than the one, so one has 

more of a chance. 

The unsteerability resource was also apparently cued since the girls tried to test whether the 

size of the strength control influenced the outcome (line 12). 

12. Rebecca: I don’t think you can really control it, because if you do it slowly, you 

never know, it could come on a three, if it starts off on a different number. 

Rebecca felt at that time that the strength did not seem to control the outcome and instead 

conjectured that the outcome might be connected with the position of the number on the 

spinner. Anne and Rebecca frequently returned throughout the interview to similarly 

deterministic explanations of phenomena, which they could not find a way of describing 

otherwise. 

We believe that the prevalence of conjectures and conclusions based on naïve 

knowledge during this preliminary stage can be accounted for in two main ways: 

(i) Anne and Rebecca described phenomena in terms of their naïve resources, since these 

were of much higher cueing priority than resources associated with longer-term 

aggregated behavior (or more extremely the girls may, as yet, have had no access to 

such resources for aggregated behavior). 

(ii) The strength control tool available at top level cued the use of unsteerability and 

unpredictability. In effect, the natural thing to do was to play with the strength control 

and test out ideas based on it. In contrast, there was no specific encouragement at top 

level to record or aggregate results. 
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Anne and Rebecca inside the COIN 

When Anne and Rebecca moved onto work with the tools within the COIN gadget, 

similar p-prims were cued. In addition, the availability of the results box cued irregularity by 

offering a means of recording results. This period of exploration allowed Anne and Rebecca 

to try out conjectures related to the effect of strength. They found that none of these resources 

provided a consistent explanation of the COIN’s behavior, as illustrated by this extract in 

which the girls had been conjecturing that there was a regularity to the COIN’s results. 

13. Dave: What do you feel, Rebecca, about what you were saying before that it would 

work to a pattern? Do you think there is a pattern? 

14. Anne: Oh yes, I can see a bit of a pattern. Because that’s got head, head, head, tail, 

and it’s got . . . oh, where was it? I can’t think . . . oh yes, it’s got a head, oh no, 

that’s not right, it’s got tail, tail, tail, tail, that time. 

15. Rebecca: I’m not too sure. 

16. Anne: I don’t think there’s much of a pattern really. 

17. Dave: Did you expect there to be a pattern from what you were saying before? 

18. Rebecca: Yes, I did. 

The availability of the pie chart led to Anne and Rebecca to consider aggregated 

patterns. The speed with which the computer generated results also made it easy for them to 

consider large-scale experiments. Even so, there was some reluctance to do so. Because Anne 

and Rebecca did not start new experiments, there was a gradual accumulation of results, and 

a tendency to increase the number of trials each time as confidence grew. At each stage, the 

charts were consulted and comments were made about the evenness or otherwise of the pie 

chart or pictogram. This process resulted in a recognition that the pie chart became ―more 

even‖ as more trials were included in the experiment, the first articulation of N, after twenty 

minutes of trying to make sense of the COIN gadget. 
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19. Anne: I think it’s the highest the number, the even more it gets. 

20. Dave: The higher the number, the more even it gets? (Dave reverses the two words 

―more‖ and ―even.‖) 

21. Anne: Yes.  

22. Dave: Do you agree, Rebecca? 

23. Rebecca: Because the other time, when we did less numbers, it was half um . . . 

even really. 

24. Dave: Do you agree with that--the more times you do it, the more even it’s getting? 

25. Rebecca: Yes, it seems to be. 

The context made it clear that by ―number‖ in line 19, Anne meant the number of trials 

in the experiment. 

We believe that the Anne and Rebecca articulated N at this time because: 

(i) The pie chart and the pictogram focused attention on aggregated results. 

(ii) The design of the Chance-Maker environment made accumulation of results natural 

and the researcher’s interventions gave such activity positive feedback. 

(iii) Resources like unpredictability were insufficient to explain the emerging 

predictability of the pie chart. 

Anne and Rebecca inside the SPINNER 

When Anne and Rebecca began to work with the SPINNER gadget, one might have 

expected them to begin by using N. In fact, this did not happen. The ―unfair‖ appearance of 

the SPINNER caught their attention. The numbered lines up to this point have all referred 

directly to transcripts of discussions with or between Anne and Rebecca. In places, such as 

line 29, we have also numbered descriptive notations of the videotape, where these are direct 

quotations from our own translations of the tape. 

26. Anne: Oh, look, it’s got to choose from different numbers. 
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27. Rebecca: That’s definitely more chance of it landing on one then. 

28. Anne: Yes . . . There’s more chance of it because that’s (pointing to the 1 sector) 

much bigger than these (pointing to the other four sectors). 

29. They make the strength 50 and do 50 trials. The pictogram shows most ones, then 

fours with threes the least. The pie chart confirms this. 

30. Anne: It’s a bit like that really (pointing to the spinner). I thought it would be more 

because one’s more of a chance of getting there because it is much bigger. 

31. Dave: Is the SPINNER random? 

32. Rebecca: Not really . . . because there is more chance of it landing on one, than the 

other numbers. 

Anne and Rebecca wanted to make the SPINNER fair and the only way to do this was 

through the workings box. For the first time, the workings box became a focus of their 

activity. They edited the workings to read: choose-from [1 2 3 4 5]. However, they only 

chose to carry out 50 trials and the pie chart did not appear fair, showing a larger 5 sector. 

Dave asked the girls how the pie chart might be made to look fair expecting to cue N. 

33. Dave: If your aim was to make that pie chart look more even, what would you do? 

34. Anne: I’d make the five a bit smaller. . . 

35. Rebecca: I’d make the others a bit bigger. 

36. They begin to edit the workings. 

37. Anne: Why don’t you put them all the same number? That would be even then. 

Like put three on one, three on two. That would be fair because that would be even 

then. 

The question (line 33) was answered first in terms of the pie chart itself and then in 

terms of the workings box. Anne’s response showed that she understood that the workings 

box could influence the appearance of the pie chart (and thus is an articulation of D) but she 
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did not have a proportional view. In fact, the girls settled on a workings box that read: 

choose-from [1 1 2 2 3 3 4 4 5 5]. They again used 50 trials as a new experiment 

suggesting that N was still not being cued. The pie chart was not fair, displaying most ones, 

provoking this reaction: 

38. Rebecca: I wonder what would happen if we took one more away? 

Again Rebecca showed that she appreciated a link between the workings box and the pie 

chart but she did not yet recognize that they were using too few trials. They went on to edit 

the workings to read: choose-from [1 2 2 3 3 4 4 5 5]. After 50 trials, the pie chart 

showed most threes. They edited the workings back to read: choose-from [1 2 3 4 5] but 

50 more trials still showed a bias, now towards 1s. 

39. Anne: It’s a tiny bit even but there are more ones. 

40. Rebecca: Yes, definitely more ones. 

41. Anne: Yes, but it’s fairly even, if you see what I mean. 

42. Dave: So, if you are trying to make this pie chart more even what could you do? 

43. Rebecca: Maybe throw it more times like we did with the coin? 

44. Anne: Yes. 

For the first time during the work with the SPINNER, N had been cued. Over the next 

few minutes, Anne and Rebecca tried increasing numbers of trials and found that the pie 

chart came out more and more fair. 

45. Rebecca: There’s a higher number, so the more chance of it being even, I think . . . 

The more times you throw it, the evener it seems to get. And I think that’s because 

there’s more chances for a number to come up than if you do it say fifty times. 

Anne and Rebecca had been working with the SPINNER intensively for nearly 15 

minutes before N was cued even though they had articulated N at the end of working with the 

COIN gadget. We make the following observations about Anne and Rebecca’s activity: 
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 N, as constructed during the COIN activity, was available as a resource for sense-making 

as evidenced towards the end of the SPINNER activity. 

 N, during the early part of the SPINNER activity, had low cueing priority as shown by the 

considerable delay before it was evoked as a resource. 

 N had low cueing priority at this time because the SPINNER’s appearance cued the 

fairness p-prim, in effect blocking the cueing of N. 

 The need to make the SPINNER fair encouraged the use of the workings box, which led 

to the construction of D. The focus on seeing the workings box as a control distracted the 

girls from considering the number of trials as a control. 

 N was eventually cued because neither D nor any part of their naïve knowledge could 

satisfactorily explain the SPINNER’s unfair pie chart. 

The unfolding of the above activity structure reveals how the children brought their 

naïve internal resources to bear towards their goal of making the spinner work properly. The 

setting allowed the children to explore the gadgets with some confidence to search for 

patterns of behavior. The interaction of internal and external resources allowed the children 

to construct new internal resources to make sense of the COIN’s behavior. 

Element 5: Unfamiliar settings 

Anne and Rebecca inside the DICE 

The trace in Figure 5 shows a marked difference in the nature of the internal resources 

cued during DICE activity and during SPINNER activity. There is relatively little evidence of 

the use of naïve knowledge (though it has not, of course, completely ―disappeared‖). Now, N 

is cued quickly and D is cued soon after. In fact, Anne and Rebecca began using 1000 trials 

from the start of their work with the DICE gadget. 

46. Dave: What’s the advantage of doing it a thousand times? 

47. Anne: You get more and you can sort of estimate. 
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48. Dave: What do you think will happen to the pie chart? 

49. Anne: Maybe a bit even. 

50. Rebecca: Maybe it’s going to be even again because it seems to go more even the 

more times you throw it. 

51. Anne: I think it’s the more you throw it, the more even it gets. 

52. Rebecca: Yes, that seems to be the case. 

53. Anne: Because that’s what happened most of the times, the more you get, the more 

even you get. 

Here, N was used inappropriately; they assumed the unfairness in the pie chart could be 

smoothed out by applying more trials. Having proved to have explanatory power in both the 

COIN and the SPINNER, N has taken on high priority, thus dominating the recently 

constructed D. Anne and Rebecca also have available the fairness resource, which perhaps 

makes them predisposed to an expectation that the pie chart should be fair. The mutually 

supportive nature of N and the fairness resource possibly raise the cueing priority of both.  

When the pie chart showed too many sixes, Anne and Rebecca’s attention was drawn to 

the workings box. 

54. Anne: I think sixes is popular because there’s quite a lot of sixes in the choose-

from (pointing to the workings box) . . . There might be a lot more sixes so it’s got 

more chances of getting more sixes on it. 

A few minutes after beginning to work with the DICE gadget, Anne articulated the 

influence of the workings box in the sense that the bias towards the sixes was causing the pie 

chart to look non-uniform. As a result, Anne and Rebecca began to edit the workings box 

and, after considering choose-from [1 1 2 2 3 3 4 4 5 5 6 6], they settled on 

choose-from [1 2 3 4 5 6]. They carried out 1000 trials and the pie chart appeared fair. 
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Dave wished to probe how Anne and Rebecca understood this result and the earlier one when 

the DICE had been biased towards sixes. 

55. Dave: So, doing it lots of times, like a thousand, has made it more even this time, 

but, before we altered it when the workings were as before, it didn’t make it more 

even. So, what do you think it did do? 

56. Rebecca: Because there’s more chance of getting a six. When it stops it might land 

on a six. 

57. Anne: Because the workings were unfair. 

Now, about 13 minutes after beginning to work with the DICE gadget, Dave probed Anne 

and Rebecca’s emerging sense of the role of the workings box. 

58. Dave: Let’s say we were playing a game, and for some peculiar reason in this 

game, it would have to be a computer game because we are using the computer 

dice, we wanted there to be a good chance of getting ones, and a fairly good chance 

of getting twos but a pretty low chance of getting anything else. It’s a strange 

game. How would we make this dice behave like that? 

59. Rebecca: You have to put more of the numbers on here. 

60. She begins to edit the workings until they read: 

choose-from [1 1 2 2 3 4 5 6]. They test this out by repeating 1000 trials. 

61. Dave: What will the pie chart look like? 

62. Rebecca: More twos, more ones and less of the others. 

63. Dave: How will the ones and twos compare? 

64. Anne: Roughly even. 

Anne and Rebecca were now recognizing limitations of N, which had not been apparent 

when they began working with the DICE gadget. In other words, they seemed to have begun 

to construct a relationship between N and D. 
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We now wish to illustrate how N and D can became coordinated. Anne and Rebecca 

were able to discuss how the pie chart’s appearance reflected that of the workings box, 

provided the number of trials was high; we will refer to the coordinated resource as N-D. A 

corollary to N is that small numbers of trials are likely to generate non-uniform pie charts. 

When the two resources are coordinated properly, the corollary can be articulated as a 

suggestion that the pie chart may not reflect the appearance of the workings box when the 

number of trials is low. Anne and Rebecca expressed this idea towards the end of their period 

of working with the DICE. 

65. Dave: If we had done it only fifty times, instead of a thousand, do you think we 

would have got a picture like that? 

66. Anne and Rebecca (simultaneously): No. 

67. Anne: A bit more uneven. 

68. Rebecca: There’d be more ones and twos. 

69. Anne: They’d probably be about even. 

70. Rebecca: Maybe. 

71. Dave: What I had really wanted was for the ones to have a very good chance and 

the twos to have only a fairly good chance. 

72. Rebecca immediately edits the workings box to read: 

choose-from [1 1 1 2 2 3 4 5 6]. 

Anne’s comment (line 67) seems to indicate a coordination of N and D, though subsequently 

(lines 68-70) Anne and Rebecca may still have been cueing N inappropriately. 

We make the following observations about Anne and Rebecca’s activity at this point: 

 N had taken on higher cueing priority as a result of it having been found to be a reliable 

sense-making resource for two different contexts, the COIN and the SPINNER 

 N was also likely to be cued because of its consistency with the fairness resource (even 

though it was inappropriate to apply fairness to long-term behavior in this way). 
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 Less initial stress was placed on the workings box than had been the case with the 

SPINNER because there was no visual cue of unfairness in the appearance of the DICE. 

We believe that the coordination of N and D took place at this time because neither 

individually was sufficient to ―explain‖ the unfairness of the pie chart for an unfair workings 

box. 

Discussion 

We summarize the findings as follows. The children (exemplified by Anne and 

Rebecca) came to the computer-based interviews with access to four naïve resources, which 

we have called unpredictability, unsteerability, irregularity and fairness. These resources, 

similar to those employed by diSessa to describe p-prims in his model of conceptual change, 

dominated what children said throughout the interviews, although gradually--as new 

resources for long-term aggregated behavior emerged--they became restricted in use to 

describing short term behavior. 

During the interviews, we noted the emergence of two new resources: Large Number, 

N, and Distribution, D, which differed from the initial resources, in that: 

 they were associated with a mathematically coherent structure for randomness; 

 they were not isolated nor weakly connected but offered mutual support through their 

coordination;  

 they included within their articulation a consequence e.g. more trials leads to the 

consequence of a more even pie chart. 

N and D represented abstractions of long-term behavior, a sense of an invariant relation 

that connected the number of trials, the configuration of the workings box and the appearance 

of the pie chart. At the same, the articulation of N and D was bounded strongly within the 

linguistic and material resources available within the activity. N and D are situated 

abstractions, initially having low cueing priority, evidenced from the continued reliance on 
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naïve resources by Anne and Rebecca in moving from the COIN to the SPINNER gadgets. 

But as the task-interviews progressed, N and D took on higher cueing priority, until these 

became mutually coordinated. By coordinated here, we mean that by the end of the work with 

the DICE gadget, both resources were being used together as mutual support rather than in 

isolation--the graphical representation of the results was now seen as contingent on both the 

number of trials and the configuration of the distribution in the workings box.  

A model for the construction of situated abstraction 

We claimed earlier that a model of the micro-evolution of mathematical knowledge 

required five elements. We claim some progress in respect of elaborating these elements at 

the required level of detail which will offer further illumination on our three fundamental 

questions: (i) What is abstracted? (ii) How do abstractions evolve? (iii) Is mathematical 

abstraction de-contextualized? We believe that to attempt to answer these questions we must 

connect macro and micro models: our approach is to relate our macro construct of situated 

abstraction to the micro construct of p-prim. 

For the first element, we sought a clear description of the nature of naïve mathematical 

knowledge including the grain size of emergent mathematical knowledge. The naïve 

resources for randomness, unpredictability, unsteerability, irregularity and fairness, operate as 

a means of contextualizing phenomena. That is to say, the child identifies an aspect of a 

phenomenon, which triggers the unpredictability resource, say, enabling the triggering of 

other connected naïve resources such as unsteerability. Piaget and Inhelder (1951) have 

argued that the concept of randomness first emerges because, in contrast to all previous 

experiences, such phenomena are not explainable in terms of reversible operations. 

According to this view, random phenomena are fundamentally different from previously 

encountered situations and remain as such until the individual accommodates the concept of 
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probability. We suppose that contextualizing allows the organism to partition phenomena that 

do not conform to an operational structure. 

These naive resources for randomness do not have consequences and as a result have 

limited value for making sense of phenomena. In contrast, the typical p-prim enfolds a class 

of implications (for example, Ohm’s p-prim: more effort implies more results). In common 

with p-prims, we believe that naïve resources for randomness are abstracted directly from 

experience (playing with coins, dice and so on). Each becomes linked to aspects of the game-

playing situation in such a way that specificities (quite possibly superficial) of the 

environment trigger particular resources. Hence, the appearance of a dice might trigger 

fairness at one point in a game whereas a focus on how the player is throwing the spinner or 

dice might trigger unsteerability. The apparent structuring of these resources (in the sense that 

when one is cued so might another) is based mainly on their coincidental appearance in the 

same situation (such as game playing). Any such structuring is weak because of a lack of 

justification, which might suggest that two coincidental resources are in fact contradictory. 

The nature of what is abstracted changes through tuning towards mathematical expertise as 

we shall see in revisiting elements 3 to 5 of the micro-evolutionary model. 

Before then, we must consider the second element of the model. We described a setting 

that encouraged children to make conjectures and provided tools with which to express ideas 

and test out conjectures. The setting was designed to offer a range of situations in which 

mathematical resources for the aggregated behavior of random gadgets might prove to have 

explicative power. The Boxer environment was designed to provide a window for the 

researchers to observe the micro-evolution of knowledge about randomness, but at the same 

time to enable the children to scrutinize their own knowledge. We do not wish to suggest that 

the Chance-Maker environment itself (or any computer-based environment for that matter) 

has independent power to change children’s thinking. On the contrary, other factors in the 
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setting contributed in significant ways. The task of mending the gadgets was important as it 

pointed the children’s activity towards sense-making, and provided a point of reference for 

them in deciding whether that activity was complete. The questions and support from the 

researchers were sometimes critical in encouraging reflection and supporting them through 

technical difficulties. Nevertheless, Chance-Maker provided a framework in which this type 

of activity could naturally take place across contexts that differed in controlled ways, but 

contained certain common structures, such as the workings box and the graphing tools. We 

claim that the detailed elaboration of the setting, including the role of Chance-Maker, 

provides the second element of the model. 

For the third element of the model, we sought a detailed elaboration of the nature of 

new knowledge and its relation during evolution to prior knowledge. At the macro-level, we 

are able to refer to the children’s articulations, and it is these linguistic and physical actions 

that betray a dependence upon the structuring resources of the situation, and indicate the 

emergence of a situated abstraction. Linguistically, the children typically expressed their 

ideas in terms of the tools and resources available within Chance-Maker. More revealing still 

is the way that Anne and Rebecca appeared to reinvent, rather than simply re-use, the 

previously constructed situated abstraction, N, when moving from the COIN to the 

SPINNER. For them at least, N appeared to have narrow scope, at least in the first instance. 

Schematically we think of a situated abstraction as surrounded by a contextual neighborhood 

that describes the essential conditions, purposes, and features under which the situated 

abstraction was constructed. Recognition of the characteristics of the contextual 

neighborhood by the individual assists the identification of similar conditions under which 

the situated abstraction is triggered. In this sense, the idea of contextual neighborhood seems 

to be closely associated with diSessa’s micro-level notion of cueing priority. 



 The Micro-Evolution of Mathematical Knowledge 41 

We would like to share a useful metaphor we use for thinking about the relationship 

between the macro and micro-levels. We observe children through their actions and their 

words at the macro-level. We hear their explanations of phenomenological behavior. On 

analysis, we classify some of these articulations as situated abstractions. But now imagine 

applying a microscope to these situated abstractions. What we would see, according to this 

metaphor, is a collection of linked p-prims in the process of being triggered. We believe there 

are examples where we can identify the p-prims that underlie Anne and Rebecca’s 

articulations.  

On many occasions, Anne (lines 19, 47, 51, 53) and Rebecca (lines 23, 43, 50) 

articulate the N situated abstraction, underlying which we recognize an idea of ―more begets 

more‖, a precisely equivalent structure to the Ohm’s p-prim. Thus there seems, in this case at 

least, a simple mapping between situated abstractions at the macro-level and p-prims at the 

micro-level. 

More generally, it seems that the experience of working within the Chance-Maker 

setting allowed children to construct the N and D situated abstractions and that these 

articulations at the macro-level may signal new connections between the naive resources of 

randomness with existing or new p-prims. For example, a link between the unpredictability 

resource and the p-prims underlying the N situated abstraction would imply that, whilst a 

phenomenon may be recognized as random, it might still possess some degree of 

predictability in the long term. Furthermore, the co-ordination of N and D may have signaled 

further processing at the micro-level, the connecting of p-prims ―beneath‖ the two situated 

abstractions. 

For the fourth element of the model, we demanded an understanding of the relationship 

between new knowledge and the setting in which that knowledge is constructed. At the 

macro-level, Chance-Maker encouraged the construction of situated abstractions. In the study 
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reported above, randomness was instantiated as a manipulable computational system, so that 

children could see and act on the mechanisms of objects such as dice and coins. In other 

words, we built a system that phenomenonalized the abstract, making it concrete. This is the 

key affordance of mathematical microworlds. A continuity of structuring resources from 

situation to situation (for example, the role and appearance of the workings box was common 

across the gadgets), though not necessarily immediately recognized by children, offered the 

opportunity for situated abstractions involving those structuring resources to have 

explanatory power beyond specific situations. At the same time, mathematically redundant 

tools (such as the strength control) built into the design allowed children to recognize that 

redundancy. In other words, the setting was designed to optimize tuning towards expertise by 

giving maximal support to expert-like resources. 

Our analysis of children’s articulations across situations enables us to elaborate the fifth 

element of the model, illuminating the degree of dependence on context. As part of tuning 

towards expertise, knowledge within a contextual neighborhood becomes less tied into the 

specific context of its genesis. Given new situations which have some similar features to 

those already experienced, and particularly in an environment--like Chance-Maker--in which 

prior resources can be road-tested, the contextual neighborhood can evolve and broaden into 

a domain of validity that describes the variety of circumstances in which a p-prim might be 

triggered. In other words, knowledge cannot escape from context, but the range of contexts in 

which it might be cued can and does broaden, as new connections are made. We saw how, in 

the study, the children began with a narrowly defined contextual neighborhood for the Large 

Number situated abstraction, N, applied precisely to the COIN gadget. When they began 

work with the SPINNER, there was no reason to suppose that N applied, or to put it more 

succinctly, that the phenomena observed while playing with SPINNER lay within the 

contextual neighborhood defined by COIN. Anne and Rebecca found that the resources they 
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had to hand were insufficient for making sense of the COIN, and used N as a way of 

overcoming the difficulty. In doing so, they found that it worked for both the COIN and the 

SPINNER: the contextual neighborhood for N expanded, with the result that N was called 

upon relatively quickly when Anne and Rebecca began to work with the DICE gadget. 

Concluding remarks 

We have described in some detail five elements that constitute a model for the micro-

evolution of mathematical knowledge in the case of randomness. There are obvious 

limitations to the generalizability of our data, not least that the analysis emerges from 

reflection on data from just 32 children, and is illustrated here through the activity of just 

two. Despite these limitations, we believe that our model may have some explanatory and 

predictive power for making sense of the evolution of children’s ideas of randomness and 

probability and may perhaps offer a framework for understanding the construction of 

mathematical meanings more generally. 

From the point of view of randomness and probability, one of the striking findings of 

the literature is the inconsistent nature of student responses to stochastic situations (for 

example, Konold et al., 1993), responses that appear to be sensitive to the situation (Nisbett 

et al., 1983). Searching for a model of learning about the stochastic has, as a result, been 

problematic. The proposed model in this paper provides a micro-level explanation for such 

inconsistency, in the sense that naïve resources for randomness only serve to contextualize 

randomness and have no power to offer rational explanations of long-term behavior. At the 

same time, the model suggests that settings with particular properties (e.g., those attributes of 

Chance-Maker highlighted above) would support the construction of more expert-like, but 

situationally dependent abstractions about aggregated  behavior. 

It is reasonable to ask whether the types of insights gained by children from working 

with Chance-Maker are transferable to domains that are not computationally mediated. The 
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abstractions, N and D, are situated in the sense that they are constituted within the Chance-

Maker context and derive their immediate meaning from that context. In this sense, the 

notion of situated abstraction is entirely consistent with Lave’s hypothesis that knowledge is 

situated and the notion of transfer is an irrelevance. However, through reflection on 

children’s attempts to make sense of new gadgets within the microworld, we predict in our 

model what will happen when children explore situations beyond the confines of Chance-

Maker. We regard those situations as new domains for sense-making, just as the DICE was a 

new domain beyond the spinner, and the SPINNER was a new domain after the COIN. N and 

D live in the minds of those children. Some of the 32 original children will have organized N 

and D with greater priorities than others. They may well call upon N and D more readily than 

other children in situations where they are trying to make sense of stochastic phenomena. If 

the new situation is superficially different from that experienced in Chance-Maker then naïve 

resources, such as unpredictability, may be triggered. These resources will only be rejected if 

they fail to have explanatory power in those new situations. Real world situations often fail to 

provide feedback that indicates such failure, and under those circumstances N and D may 

remain dormant. 

Of course, treating the world as just another domain of abstraction is highly 

speculative, and is not – at least on the basis of the study reported here – justified by the 

corpus of data on which the model is grounded
4
. Nevertheless, the micro-level mechanism at 

work in the model for generating and coordinating situated abstractions do not, on the face of 

it, appear necessarily to be tied to the specificities of the domain we constructed, except, of 

course, that we designed it as carefully as we could to maximize the probability of conceptual 

change.  

Our final word briefly outlines a possible framework for applying the model beyond the 

case of randomness, and to revisit the question of context with which we began. We propose 
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that de-contextualization and contextualization might usefully be viewed not as antithetical 

but as different perspectives on the same micro-evolution of mathematical knowledge. 

Meanings--internal resources--are created by experiences, which can evolve from webbing 

connections between mental states as much as between a mental state and the physical world. 

These resources remain rooted in actual experience. Both naïve resources and situated 

abstractions are abstracted through making connections at the micro-level, the latter with 

consequences. So far so good. But what of mathematics as viewed by mathematicians, in 

which mathematical meaning appears to depend on being cut loose from context? We believe 

that what appears to the mathematician as an abstraction away from, and independent of, 

context, is in fact a broadening of contextual neighborhood. It is this model of abstraction 

taking place within, rather than outside, a context that elaborates the notion of situated 

abstraction. De-contextualization is a post-hoc perspective on mathematical knowledge that 

does not necessarily assist in understanding the trajectories of learning, which, according to 

our model, emerges out of a broadening of, rather than a cutting away from, context.  

On the other hand, it is unhelpful to offer a perspective in which mathematical 

knowledge is trapped within a situation. When knowledge is constructed, new ideas may 

gradually gain higher priority within that domain but will continue to possess low priority in 

unfamiliar settings. When environments are made available in which those same ideas prove 

to be the most powerful sense-makers of activity within that environment, our model would 

suggest that these apparently situated meanings will take on higher priority within the 

unfamiliar setting.  
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1
 Andy diSessa heads a team at Berkeley, which is developing a ―computational 

medium,‖ named Boxer. This project is seen as extending the notion of literacy to a new 

domain, where users express themselves in various ways, including mathematically, in 

various modalities (graphic, literal, computational . . .). 

2
 This schematisation places no emphasis on proportion, which is probably a fair 

reflection of the how the D resource was articulated. A few children discovered that a 

workings box that read: choose-from [1 2 3 4 5 6] was essentially the same as one 

which read: choose-from [1 1 2 2 3 3 4 4 5 5 6 6]. Most children however 

articulated D in terms of the frequency of an outcome rather than its proportion. 

3
 We have re-numbered the lines from our case accounts in a way that is convenient for 

this paper. The excerpts are taken from various sections of the data and, even though different 

excerpts are numbered consecutively in this paper, they did not necessarily occur 

immediately one after the other in real time. 

4
 We have, however, made some  progress  in this direction in the context of studying 

mathematical knowledge in workplace contexts: see,  for example,  Hoyles, Noss and Pozzi 

(2001); Noss, Hoyles and Pozzi (in press). 
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Figure captions 

 

Figure 1. The COIN gadget 

 

 

 

Figure 2. The tools in the COIN gadget 
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Figure 3. The workings inside the SPINNER gadget 

 

 

Figure 4. The workings inside the DICE gadget 

 

 

Figure 5. A time trace showing when Anne and Rebecca articulated various resources 

Light circle = primitive resource; Bold circle = new resource; Filled circle = coordinated 

resource. 

P = unpredictability; S = unsteerability; F = unfairness. 

I = irregularity; N = large number; D = distribution. 


