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Borate esters: Simple catalysts for the sustainable
synthesis of complex amides
Marco T. Sabatini,1 Lee T. Boulton,2 Tom D. Sheppard1*

Chemical reactions for the formation of amide bonds are among the most commonly used transformations in
organic chemistry, yet they are often highly inefficient. A novel protocol for amidation using a simple borate
ester catalyst is reported. The process presents significant improvements over other catalytic amidation methods
in terms of efficiency and safety, with an unprecedented substrate scope including functionalized heterocycles
and even unprotected amino acids. The method was used to access a wide range of functionalized amide
derivatives, including pharmaceutically relevant targets, important synthetic intermediates, a catalyst, and a
natural product.
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INTRODUCTION
Amide linkages are at the basis of all life processes, as the key connec-
tions in proteins. Although their importance iswell recognized in chem-
istry as a common motif in pharmaceuticals and polymeric materials
(1), their synthesis is often overlooked as a contemporary challenge. Im-
proved methods for the synthesis of amide functionality are key to the
sustainable future of chemical synthesis andmanufacturing, especially if
they can offer high efficiency and reduced environmental impact. This
is a consequence of the fact that amide formation is typically achieved
using inefficient and often hazardous reagents, which generate large
quantities of waste products leading to high disposal costs (2). Accord-
ingly, there have been recent calls from numerous major pharmaceuti-
cal companies for research into methods for “amide bond formation
avoiding poor atom economy reagents” (3).

Despite recent reports of new strategies for amide bond forma-
tion from alcohols, aldehydes, or alkynes (4–6), direct condensation
of a carboxylic acid and amine remains the most common approach
to amide bond formation, owing to the ubiquity and stability of these
functional groups. Conventional methods for direct amidation (Fig. 1A)
formally proceed via a two-step sequence involving activated carboxylic
acid derivatives, which then undergo aminolysis (7, 8). Indirect amide
formations of this sort are expensive and waste-intensive and often suf-
fer from functional group incompatibilities. The ideal approach would
involve direct condensation of a carboxylic acid and amine in the pres-
ence of a catalyst because the only by-product of the reaction would be
water. Direct thermal reaction without a catalyst has relatively limited
scope and usually requires high temperatures (9, 10). In recent years,
the use of group IV metal salts or boron compounds as catalysts has
enabled amidation reactions to take place at lower temperatures (10–24).
However, the use of these catalytic reactions in an industrial context is
rare because of their limited reactivity with functionalized substrates and
the inefficient procedures used [high dilution conditions and large
quantities of waste-intensive molecular sieves (0.8 to 2.5 kg/mol)] (Fig.
1B) (10–24). Only boric acid has been applied as an amidation catalyst
to any great extent on an industrial scale, but it is effective only for rela-
tively reactive acid/amine combinations (25).

To address this key issue of sustainability, we sought to develop an
operationally simple catalytic method for direct amidation of the car-
boxylic acid/amine pair at high concentrations in “industrially preferred”
solvents and without the need for any additives or dehydrating agents
(26, 27). Our interest in the application of borate esters in stoichiometric
amidation reactions led us to explore the use of these compounds as am-
idation catalysts, with a view to their suitability for application of preparing
multigram quantities of amide. Here, we disclose a novel efficient protocol
for amidationusing a borate ester catalyst (Fig. 1C),with anunprecedented
substrate scope. This method offers significant improvements in terms of
safety and ease of setup and leads to a large reduction in the overall waste
generated in an amidation reaction [process mass intensity (PMI)].
RESULTS AND DISCUSSION
Development of a highly versatile method for amidation
Borate esters have been demonstrated tomediate amidation reactions of
functionalized carboxylic acids and amines (28, 29), yet a priori it was
uncertainwhether effective catalytic turnover could be achieved because
the partially hydrolyzed borate ester 1 could readily undergo decom-
position to leave a poorly reactive oligomeric boron oxide (Fig. 2A).
Pleasingly, it was observed that effective turnover could be achieved
using a Dean-Stark apparatus as an economical and efficient method
for water removal, hence avoiding the need for wasteful molecular
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Fig. 1. Approaches to amide bond formation. (A) Conventional methods for am-
idation proceeding via an activated carboxylic acid. (B) Recent catalytic amidations
using group IV metal or boronic acid catalysts. THF, tetrahydrofuran. (C) Borate ester–
catalyzed amide bond formation. TAME, tert-amyl methyl ether; PhMe, toluene.
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sieves. Following a solvent screen, tert-amyl methyl ether [TAME;
boiling point (bp), 86°C] and PhMe (bp, 110°C) were identified as
the most effective solvents. The former was preferable in most cases be-
cause it led to improved reactivity with functionalized substrates, and
the lower bp reduces the energy requirements of the process. There
was no background reaction under these conditions in the absence of
a catalyst, and all boron-based catalysts examined gave measurably im-
proved yields of amide 2 (Fig. 2B). Evaluation of a series of borate esters
confirmed that a commercially available borate ester B(OCH2CF3)3 was
the most effective catalyst for this transformation. As can be seen from
the time-course plot (Fig. 2C), borate esters B(OMe)3 andB(OCH2CF3)3
significantly outperformboric acid, demonstrating that the alkoxy group
on the boron atom substantially enhances the catalytic activity.

The efficiency of the amidation process was further enhanced through
the use of an operationally simple method for purification of the amide
products using scavenger resins (Fig. 3), which remove unreacted acid
and amine, as well as boron-containing impurities. This significantly
reduces the solvent requirements of the process by removing the need
for aqueous/organic separations and/or chromatographic purification
in most cases.

Scope of the reaction
To evaluate the reaction scope, we explored the preparation of a selec-
tion of amides (Fig. 3). A variety of primary amines were successfully
coupled with simple carboxylic acids to give secondary amides 2 to 13
in excellent yields. In contrast to existing catalytic amidation reactions,
a range of tertiary amides could also be prepared, including examples
derived from both cyclic (14, 15, 20, and 21) and acylic (16 to 19)
secondary amines, the latter being particularly difficult compounds to
prepare via catalytic amidation. Furthermore, challenging amides were
prepared from functionalized/heterocyclic carboxylic acids or amines
(22 to 33), demonstrating the unprecedented scope of this catalytic am-
idation reaction. It was even possible to acylate a poorly nucleophilic
sulfonamide to give the corresponding derivative 30, albeit in moderate
yield. Naturally occurring carboxylic acids such as biotin (32) and litho-
cholic acid (33) were also amenable to amide bond formation. Non-
steroidal anti-inflammatory ibuprofen also smoothly reacted to form
the corresponding amide 31. Our studies also suggested that B(OMe)3
was a reasonably effective and very low-cost catalyst for synthesizing
relatively unfunctionalized amides when PhMe is used as solvent (6,
17, 25, and 37).

We next directed our efforts to amidation reactions of amino acids
due to their importance as low-cost renewable rawmaterials that can be
Sabatini, Boulton, Sheppard, Sci. Adv. 2017;3 : e1701028 22 September 2017
applied to the synthesis of many biologically active targets. As such, the
compatibility of our methodology with this type of building block was
an important aspect to examine because many of the existing catalytic
amidation methods are unsuccessful with these compounds (11–24).
Coupling of N-Boc–protected amino acids with a range of amines, in-
cluding both simple aliphatic amines (36 to 39) and functionalized
examples (34 and 35), gave the corresponding amides in excellent
yields. The synthesis of dipeptides (40 to 44) and even a tripeptide
(45) was also demonstrated successfully. Pleasingly, the free hydroxyl
functionality of threonine didnot require protection, and the correspond-
ing amino amides (35 and 38) and dipeptides (43 and 44) were obtained
in excellent yields.Nodetectable racemizationwas observed for anyof the
amino acid derivatives.

Amidation with unprotected amino acids
In an effort to address the unmet need for novel chemoselective strate-
gies in chemical synthesis and thereby further prevent the generation of
unnecessary waste by-products, we sought to test the application of our
catalytic amidation reaction with unprotected amino acids. Protecting
group manipulations and amide bond formation account for about a
third of the reactions carried out in the synthesis of pharmaceutical in-
termediates (30, 31), so overcoming these synthetic hurdles could pave
the way toward greater sustainability in the chemical industry. Perhaps
themost impressive feat of thismethodology, catalytic amidation of un-
protected amino acids, could be achieved in a chemoselective manner,
thereby circumventing the need for protection/deprotection of the
amino group (Fig. 4) (32). This represents a novel, practical, and more
atom-economical route to primary amino acid derivatives, which are a
well-documented class of potent anticonvulsants and agents for neuro-
pathic pain treatment (33, 34). Owing to the unreactive/insoluble nature
of free amino acids, a higher catalyst loading and a slight excess of amine
were necessary for this type of reaction to go to completion. This unique
catalytic and chemoselective amide bond formation displayed a broad
substrate scope with a variety of functionalized free amino acids and
amines. Simple unfunctionalized amino amides (47, 48, 50, 51, and 53
to 59)were obtained in high yields.Diverse functional groups, including
hydroxyl groups (52), heterocycles (46), and sulfides (49), were well tol-
erated. A b-amino acid could also be converted to the corresponding
amide, albeit in lower yield (55). Pleasingly, glutamic acid underwent
a tandem cyclization/amidation to give the corresponding pyrogluta-
mide (60) in good yield. This method provides a highly efficient route
for the catalytic synthesis of amino amides directly in one step from
readily available free amino acids.
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Fig. 2. Towards a borate-catalyzed amide coupling. (A) Proposed catalytic cycle for amidation. (B) Catalyst selection. (C) Time course of borate amidation with
different boron catalysts.
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One-pot sequential condensations
Given that B(OCH2CF3)3 has previously been shown to promote imine
formation when used stoichiometrically (35), we also explored a one-
pot unprotected amino acid amidation/condensation reaction to pro-
vide access to imidazolidinones in a single step. Using this approach,
we were able to prepare a Macmillan-type organocatalyst (61) and a
Seebach-type auxiliary (62), as well as cyclohexanone derivative 63, in
one-pot procedures starting from the unprotected amino acid. Further-
more, we were also able to synthesize the natural product (±)-Tricladin
A (65) from alanine in a two-step, rather than a five-step, sequence (36):
Sabatini, Boulton, Sheppard, Sci. Adv. 2017;3 : e1701028 22 September 2017
The one-pot sequential direct amidation/condensation with 2-butanone
provided64 in 81%yield, which could then be converted into the racemic
natural product via a literature oxidation method.

Synthetic applications of the reaction
We then went on to explore the application of our methodology to the
synthesis of active pharmaceutical ingredients (APIs) (Fig. 5). The amide
bond formation stepswithin the syntheses of several top-selling pharma-
ceuticals, including Valsartan (Diovan) (66), Bunazosin (Andante) (67),
GVS-111 (Noopept) (68), Atorvastatin (Lipitor) (69), Granisetron
Fig. 3. Scope of borate-catalyzed amide bond formation. (A) Secondary amides. (B) Tertiary amides. (C) Challenging amides. (D) Amino acid amides. mol %, mole
percent; Boc, tert-butoxycarbonyl. Reactions run according to general procedure A for 24 hours unless stated otherwise. *Amide synthesized using 20 mole percent
(mol %) B(OCH2CF3)3. †Reaction performed in PhMe instead of TAME. ‡Amide synthesized using 1 mol % B(OCH2CF3)3. §Amide synthesized using 5 mol % B
(OCH2CF3)3.
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(Kytril) (70), and Sitagliptin (Januvia) (71 and 72), and all, proceeded
well using our new amidation procedure. Similarly, Fasoracetam (73)
was synthesized in one step from glutamic acid, a cheap and readily
available chemical feedstock.

Because our goal was to develop a highly efficient and scalable am-
idation protocol, we sought to demonstrate the efficiency of ourmethod
Sabatini, Boulton, Sheppard, Sci. Adv. 2017;3 : e1701028 22 September 2017
by benchmarking it against other known catalytic amide bond forma-
tion processes. The PMI [PMI = (raw material input)/(bulk product
output)] provides a widely usedmeasure for the efficiency of a chemical
process and was used to compare a selection of recently reported cata-
lytic amidation reactionswith the presentmethod (Fig. 6) (37). The syn-
thesis of phenylacetamide 10 is ubiquitous in the amidation literature,
Fig. 4. Chemoselective amide bond formation from amino acids. (A) Chemoselective amino acid couplings. (B) Sequential amidation/condensation to form imi-
dazolidinones. dr, diastereomeric ratio. Reactions run according to general procedures B and C for 24 hours unless stated otherwise. *Using 30 mol % B(OCH2CF3)3.
†Using 2 equiv. of amine. ‡Using 1.2 equiv. of benzylamine.
Fig. 5. Application to the synthesis of APIs. Reactions run according to general procedures A or B for 24 hours unless stated otherwise. *Using 1.5 equiv. of homo-
piperazine. †Using 2 equiv. of H-Gly-OttBu. ‡Using 1.0 equiv. of B(OCH2CF3)3.
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so this compound was selected for comparison (12–24, 38). Pleasingly,
our procedure showed clear improvements over existing catalytic ami-
dation methods with regard to the PMI for both (i) the reaction con-
ditions (more concentrated; no additives or molecular sieves) and (ii)
the workup (no liquid-phase extraction). The PMI values were also
calculated for two further large-scale borate-catalyzed amide syntheses.
Although the solid-phase workup procedure is still highly efficient on a
multigram scale (36), direct crystallization of the amide product from
the reaction mixture leads to a further improvement in the PMI (74).
Sabatini, Boulton, Sheppard, Sci. Adv. 2017;3 : e1701028 22 September 2017
Mechanism of the reaction
Because the alkoxy group present on the borate ester exerts a significant
effect on the catalytic activity (Fig. 2B), at least one of these groups must
remain attached to the boron atom during the catalytic cycle. Analysis of
the contents of the Dean-Stark trap by 19F nuclear magnetic resonance
(NMR) showed that less than1 equivalent of trifluoroethanolwas removed
from the reaction mixture over the course of the amidation reaction, sug-
gesting that the active catalyst has a general structure XB(OCH2CF3)2.

Using a graphical method involving variable time normalization
developed by Burés (39, 40), we were able to elucidate the reaction
orders from concentration profiles of the reaction. As expected, analysis
of the reaction kinetics for the formation of amide 6 suggests a positive
dependence on the concentration of borate ester catalyst (0.8th order).
This is consistent with a reaction that is first-order in catalyst, but with
some competitive decomposition of the active species (41). The reaction
rate was independent of amine concentration (0th order) but displayed
a positive correlation with acid concentration (0.5th order). The non-
integer reaction order with respect to the carboxylic acid could be ex-
plained by off-cycle equilibria, for example, reversible formation of the
amine carboxylate salt 75 (equil. 1) (Fig. 7A) (41).

As a consequence of these observations, we propose that the active
acylating agent is likely to be an acyloxyboron compound (76) bearing
two trifluoroethoxy groups, related to the intermediates previously sug-
gested for stoichiometric amidation reactions mediated by alkoxyboron
compounds (42, 43). The 11BNMRof the reactionmixture only showed
that tetrahedral boron species are present, so 76 is likely present as a
Lewis base adduct 77 with the amine or solvent (L = amine, trifluoro-
ethanol, or TAME). The former is more likely because the amine is a
stronger Lewis base. Note that the first-order dependence on catalyst
does not preclude an active species containing two or more boron
atoms with bridging carboxylate ligands (for example, [77]2) (41, 44).
On the basis of the kinetic data, we propose a catalytic cycle as shown
(Fig. 7A), in which condensation of the carboxylic acid with the mono-
hydroxyboron species 78, with concomitant water removal, is the
turnover limiting step.

Finally, an alternative pathway in which a trifluoroethyl ester, such
as 80, acts as the acylating species (45, 46) was excluded on the basis that
ester 80 is not a competent acylating agent for poorly nucleophilic
amines such as aniline (Fig. 7B). Further work is under way to fully elu-
cidate the mechanism of this amidation reaction to facilitate the design
of more active catalysts.
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Our new borate-catalyzed amide coupling reaction has many advan-
tages over existingmethods for amidation: It uses a simple, commercial-
ly available catalyst, and the protocol proceeds with high efficiency (low
PMI value), with a remarkably broad substrate scope, including appli-
cation to the synthesis of many pharmaceutically relevant compounds.
The procedure can easily be performed on a multigram scale, and the
products can be isolated either via a filtration workup or by direct crys-
tallization from the reactionmixture.We anticipate that thismethodwill
find many applications in the synthesis of amides in a wide range
of fields.
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MATERIALS AND METHODS
General amidation procedure A
A stirred suspension of an amine (5.0 to 5.5 mmol) and carboxylic acid
(5.0 mmol) in TAME (5 ml) was heated to reflux (bp, 86°C) in Dean-
Stark apparatus (side arm filled with TAME), and B(OCH2CF3)3
(0.5 mmol; 5 ml of a 0.1 M solution in TAME) was added into the
reaction mixture through the Dean-Stark apparatus. An air condenser
was fitted, and the reaction mixture was stirred for 2 to 36 hours. Upon
completion, the reactionmixturewas cooled down to room temperature
and concentrated in vacuo. The crudemixturewas dissolved indimethyl
carbonate (10 ml) and H2O (0.5 ml); Amberlite IRA743 (0.25 g),
Amberlyst A15 (0.5 g), and Amberlyst A-26(OH) (0.5 g) resins were
added; the resulting suspension was stirred for 30 min. After the dis-
appearance of any remaining startingmaterials [monitored by thin-layer
chromatography (TLC)], MgSO4 (~0.5 g) was added. The reaction was
filtered, the reaction flaskwaswashedwithdimethyl carbonate (2×10ml),
and the combined filtrates were concentrated in vacuo to give pure amide.

General amidation procedure B for unprotected amino acids
A stirred suspension of an amine (7.5 mmol) and unprotected amino
acid (5 mmol) in TAME (2.5 ml) was heated to reflux (bp, 86°C) in a
Dean-Stark apparatus (side arm filled with TAME), and B(OCH2CF3)3
(1 mmol; 2.5 ml of a 0.4 M solution in TAME) was added through the
Dean-Stark apparatus. An air condenser was fitted, and the reaction
mixture was stirred for 24 hours. Upon completion, the reaction mix-
ture was concentrated in vacuo and dry-loaded onto silica gel for col-
umn chromatography.

General procedure C for synthesis of imidazolidinones
Following general procedure B, after heating to reflux for 24 hours, a
solution of aldehyde or ketone (10 mmol) in TAME (5 ml) was added
dropwise over 10 min into the reaction mixture (fig. S2). The reaction
was left to stir for 1 hour. If the reactionwas not complete, as seen by the
disappearance of the intermediate amino amide by TLC (revealed with
ninhydrin stain) or high-performance liquid chromatography (HPLC),
a further portion of aldehyde or ketone (5 mmol) in TAME (2 ml) was
added dropwise over 5 min into the reaction mixture, which was left to
stir for another hour. Once complete, the reaction was cooled to room
temperature and concentrated in vacuo. The product was purified by
flash column chromatography.
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/3/9/e1701028/DC1
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