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Abstract 

This work presents a Mixed Integer Linear Programming (MILP) approach based on a combination of a 

rolling horizon and stochastic programming formulation. The objective of the proposed formulation is the 

optimal management of the supply and demand of energy and heat in microgrids under uncertainty, in order 

to minimise the operational cost. Delays in the starting time of energy demands are allowed within a 

predefined time windows to tackle flexible demand profiles. This approach uses a scenario-based stochastic 

programming formulation. These scenarios consider uncertainty in the wind speed forecast, the processing 

time of the energy tasks and the overall heat demand, to take into account all possible scenarios related to the 

generation and demand of energy and heat. Nevertheless, embracing all external scenarios associated with 

wind speed prediction makes their consideration computationally intractable. Thus, updating input 

information (e.g., wind speed forecast) is required to guarantee good quality and practical solutions. Hence, 

the two-stage stochastic MILP formulation is introduced into a rolling horizon approach that periodically 

updates input information. 

Keywords: energy planning; rolling horizon; stochastic programming; scheduling; mathematical 

programming; microgrid; MILP. 

1. Introduction 

Conventional power grids are based on centralised networks where power plants (i.e., 

nuclear or hydroelectric power stations) generate energy that is used at industrial and domestic 

levels. These grids were designed to take advantages of economies of scale. However, these kinds of 

grids have some disadvantages, including the energy losses in power transmission, the difficulty of 

supply to keep up with growing energy demand and the concern over environmental damage. One 

of the main causes that contribute to the negative environmental impact in centralised networks is 

the generation of energy using fuel-based sources. This negative environmental impact includes an 

increase in the pollution and the climate change. In this context, the European Union (EU) has set 

targets for 2020 regarding the climate change and sustainability. The EU’s renewable energy 

directive sets a target of 20% of energy from renewable sources by 2020, as well as a reduction by 

20% in GHC emissions (considering 1990 as a baseline) and improving the energy efficiency by 

20% (European Commission, 2010). 

There are significant progresses in the area of Energy Systems Engineering (ESE), by the 

enhancement of efficient and sustainable energy supply chains. ESE provides a methodological 
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framework to obtain realistic solutions in the decision making of complex energy systems 

problems, by adapting a holistic system-based approach (Kopanos et al., 2017). The main goals of 

managing energy systems focus on decreasing operational costs related to the use of these energy 

networks, reducing the environmental impact caused by the generation, transmission and use of 

energy and also satisfying the power requirements, subject to unpredicted disturbances.  

One area of study of ESE is the appropriate management of microgrids. These kinds of grids 

are based on the decentralised networks that combine the energy generation systems with 

information between suppliers and consumers (Hodge et al., 2011). One of the challenges of these 

networks is the integration of renewable and non-renewable energy sources. These sources are 

typically located close to consumption points, reducing energy losses in its transmission. Moreover, 

the implementation of renewable energy represents a big opportunity in terms of sustainability. 

However, the use of natural sources has the disadvantage of intermittent and unpredictable energy 

generation, and currently, forecast techniques are far from reliable. Thus, one of the main 

weaknesses of the exploitation of renewable sources is the mismatch of the unpredictability of 

energy generation from renewable sources and demand. Therefore, the coordinated management 

of generation and demand is indispensable for the appropriate decision making in the management 

of microgrids.  

Consequently, the implementation of electrical and thermal storage systems within the 

microgrid introduces more flexibility in its management. These systems allow alleviating the 

divergence between generation and demand, as well as to face the variability in generation and 

demand forecasts. Moreover, storage systems offer an extra degree of freedom to manage the 

adaptable energy demand according to time-based market prices, establishing operating flexibility 

to use times of low electricity prices and avoid peak prices, which may involve cost savings.  

The behaviour of renewable energy and heat resources (e.g., wind speed, solar radiation) 

comprises the contemplation of uncertainty in microgrids, to guarantee good quality and useful 

management solutions in the decision making (Zio and Aven, 2011). In this context, microgrids can 

be altered by different types of uncertainty. These variations may affect the generation conditions 

(i.e., variability in the weather forecast), which may involve variations in the availability and 

generation capacity of renewable generators. Also, microgrids conditions can be altered by 

variability in demand, which affects the power and heat requirements. An overview of the open 

issues in the area of modelling, control and optimisation of energy networks in terms of generation, 

storage and distribution can be found in Soroush and Chmielewski (2013). 

Therefore, multiple uncertain sources must be taken into account to ensure the feasibility 

and reliability of the obtained solutions. The most common types of uncertainty can be classified as 

follows: 

(i) Internal sources, which considers fluctuations in process parameters inside the network. 

(ii) External sources, which takes into account variability outside the considered network, like 

acquisition and selling prices, demand and availability of resources. 

(iii) Other uncertainty sources, like measurements errors or strikes. 
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Notice that the consideration of uncertainty introduces more complexity in the decision 

making. Hence, the approaches to deal with uncertainty may be grouped into reactive and 

preventive methodologies (Liu and Ierapetritou, 2008): 

 Reactive approaches are based on modifying an initial plan obtained by a deterministic 

approach, to adjust it to diverse alterations, or even updated data. Some useful reactive 

methodologies are the rolling horizon approach (Li and Ierapetritou, 2010) or the Model 

Predictive Control (MPC) technique (Oberdieck and Pistikopoulos, 2015).  

 Preventive approaches consider all possible situations, which are usually known as 

scenarios. The aim of these approaches is to find a solution for all considered scenarios. 

Although these approaches have the advantage that the resulting solution is feasible for the 

considered scenarios, this solution could be too conservative, because all scenarios are 

considered. The most common preventive procedures are the stochastic programming 

(Ierapetritou et al., 1996) and the robust optimisation (Li et al., 2011). Stochastic 

optimisation techniques consider the uncertainty in the system and generate schedules that 

account for this uncertainty. Typical sources of uncertainty which are usually modelled by 

implementing stochastic programming include demands, supply of raw materials or 

processing times (Shapiro et al., 2013). In the literature, there are several works focused on 

the application of this well-known technique (Sahinidis, 2004; Cui & Engell, 2010). Also, the 

stochastic programming can lead to rescheduling of tasks (Balasubramanian and 

Grossmann, 2002, Kopanos et al., 2008). Moreover, Schildbach and Morari (2016) proposed 

a scenario-based stochastic MPC approach for the optimal management of the mid-term 

planning of a multi-echelon multi-product Supply Chain. 

In this paper, a new discrete-time stochastic-based rolling horizon Mixed Integer Linear 

Programming (MILP) mathematical formulation is proposed to optimally manage a microgrid 

under uncertainty. This model will allow updating input information to react to any alteration from 

the nominal scenario, as well as to consider all scenarios that can take place. This work focuses on 

the scheduling of decisions within the microgrid.  

The appropriate design and scheduling of microgrids are essential to ensure the optimal 

management of the network. The design of a microgrid considers the location and capacity of the 

elements to install (e.g., generators, storage systems) and their technical characteristics (Pruitt et 

al., 2013). For instance, Asano et al. (2007) developed a model to design the number of the 

elements to be installed in a microgrid as well as their capacities, considering combined heat and 

power (CHP) systems under deterministic conditions. Koltsaklis et al., (2014) formulated a 

mathematical model for the optimal design and operational planning of energy networks, 

considering CHP generators. This work applied Monte Carlo simulations to analyse the effect of 

uncertainty. Also, Zhou et al. (2013) presented a two-stage stochastic formulation for the optimal 

design and operation of distributed energy systems under uncertain conditions.  

The scheduling of a microgrid at operational level focuses on the energy and heat 

generation, purchases and sales; as well as the storage and demand decisions at local level, given 

the elements that constitute the network (Manfren et al., 2011; Mehleri et al., 2012; Sou et al., 
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2011). Different models have been developed to manage the use of electricity and heat. Regarding 

the generation management of energy and heat within a microgrid, Carrión and Arroyo (2006) 

developed a Mixed-Integer Linear Programming (MILP) formulation to minimise the operational 

cost of a microgrid considering the power requirements to be satisfied. Moreover, a mathematical 

model for the optimal management of the generation and storage levels that deterministically 

satisfies the energy demand by minimising the operational cost was presented by Zamarripa et al. 

(2011). Kopanos et al. (2013) developed an MILP for the energy generation scheduling on a 

residential microgrid to minimise the overall operational cost. The proposed formulation 

considered the energy generation planning through the exploitation of CHP systems. A review of 

the optimal design, scheduling and control of residential microgrids is presented in Liu et al., 

(2013). Other mathematical formulations are based on a unit commitment problem. These kinds of 

mathematical formulations consider energy and heat generation restrictions, including generation 

limits, ramping limits and minimum up and down times. One challenge of these formulations is the 

fact that the consideration of these restrictions may involve non-linear constraints. The objective of 

unit commitment problems in the area of energy operations is to manage a set of generators in 

order to fulfil a pre-established demand. This is an extremely challenging optimisation problem due 

to the enormous number of possible combinations of the status (on/off) of the generators within a 

considered network (Bhardwaj et al., 2012). This kind of formulations is applied to electricity and 

heat generation (Marcovecchio et al., 2014). Hytowitz and Hedman (2015) proposed a stochastic-

based formulation to consider the uncertainty related to the generation of electricity through the 

use of photovoltaic panels under uncertain conditions. Moreover, Zhang et al. (2013a) presented a 

scenario-based MPC in order to minimise the energy consumption of a building, considering heat, 

ventilation and air conditioning systems. Menon et al. (2016) proposed a mathematical formulation 

based on the exploitation of an MPC in order to manage the optimal control strategy for the 

electricity and heat within a multi-building network. Furthermore, microgrids can operate isolated 

or connected to the main power grid. Naraharisetti et al. (2011) developed an MILP formulation for 

the optimal scheduling of microgrids connected to the power grid, in order to evaluate energy 

policies. This connection can be used to export energy when there is an excess and to purchase 

energy when the sources of the microgrid are not able to satisfy the energy requirements. 

Moreover, several mathematical formulations have been developed to deal with the 

exploitation of renewable sources. This decision making process aims to determine which 

generator to use at any time (Coroamǎ et al., 2013; Chicco et al., 2009; Xiao et al., 2011; Ahadi et al., 

2016). Moreover, the management of renewable sources in remote networks has also been studied 

(Ranaboldo et al., 2013; Akinyele and Rayudu, 2016). 

Furthermore, there is an increase in the interest for the use and implementation of smart 

grids (Balta-Ozkan et al., 2013; Xenias et al., 2015). A smart grid is defined as a network able to 

incorporate the actions of the elements involving that network, including producers and 

consumers, to distribute electricity in an efficient, sustainable, profitable and safe way. In this area, 

Sun and Huang (2012) reviewed different optimisation methodologies for the energy management 

in smart homes. Also, Honarmand et al. (2014) and Bracco et al. (2015) presented mathematical 

formulations for the management of energy generation for transport purposes. 



5 

 

Otherwise, the management of the energy and heat demand represents an open issue in the 

area of Energy Systems Engineering. Regarding the smart houses management, Nistor et al. (2011) 

developed an MILP approach for the scheduling of tasks, which may be delayed according to the 

real-time electricity price, to achieve cost savings. Posteriorly, Rastegar et al. (2016) presented an 

MILP formulation to minimise the electricity payments of a smart home, by managing the human 

behaviour to better fulfil the energy requirements. This formulation considered both real-time 

energy prices and priority to perform the considered energy consumptions. Zhang et al. (2016) 

proposed a multi-objective optimisation approach to assess the trade-off between economics and 

environmental factors while scheduling energy tasks. In the industrial area, Kato et al. (2011) 

developed an MILP formulation to reduce the energy consumption cost, considering both energy 

generation and storage in a demand-based framework. Also, Zondervan et al. (2010) presented a 

Mixed Integer Non-Linear Programming (MINLP) to reduce the operational cost for process 

industries. This mathematical formulation determined the optimal schedule of tasks, considering 

both the availability and cost of electricity. Other works consider uncertain conditions. For instance, 

Mohammadi et al. (2014) presented a scenario-based optimisation approach for the energy 

operation management taking into account uncertainties in the given energy generation, 

consumption and market price. In the same area, Zakariazadeh et al. (2014) proposed an MILP 

formulation to address the schedule of microgrids including the demand management, by 

introducing flexible energy consumption tasks. The above problem has been modelled considering 

different scenarios.  

Another significant challenge is the reduction of energy peak demands. This reduction 

involves a better exploitation of the existing power infrastructure. Peaks of power involve several 

disadvantages not only for the users, but also for the energy providers and for the grid. The 

network needs to withstand those peaks, introducing additional cost in the design of the grid. Also, 

electricity prices are based on peaks of demand, involving more expensive prices when peaks take 

place. Thereby, a peak-load shaving scheduling formulation was presented by Costanzo et al. 

(2011). Moreover, Della Vedova and Facchinetti (2012) proposed a scheduling framework to model 

the electrical availability, which involves reducing peaks of energy demand. Posteriorly, Zhang et al. 

(2013b) proposed an MILP formulation to manage the scheduling of energy and heat tasks within a 

smart building. This formulation considered the reduction of peaks by applying extra costs if 

electricity load from the power grid exceeds an established limit.  

The management of energy and heat generation and demand has been analysed in a 

sequential way, by adjusting the process schedule to the price and availability of resources. For 

example, Nolde and Morari (2010) developed an MILP model for a steel plant. The objective of the 

proposed formulation is to minimise the overall energy cost by adjusting the energy consumption 

to its availability. The mathematical model introduces an extra penalisation in case of deviation 

from the contracted energy to the power supplier. Mitra et al. (2012) presented an MILP 

formulation to achieve operational cost savings, by adjusting the generation planning according to 

the electricity price. Hadera et al. (2015) proposed a mathematical formulation to minimise the 

total energy costs. The proposed formulation considers the demand response of the schedule of a 

steel plant, obtaining the optimal generation schedule as well as the energy purchases. In the area 
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of smart houses, Mohsenian-Rad and León-García (2010) proposed a scheduling formulation 

considering domestic energy tasks, based on electricity prices.  

Although the energy generation and demand have been studied, the coordinated scheduling 

of microgrids considering simultaneously both energy and heat generation and demand constitutes 

an open challenge. The formulation of a novel model to optimally manage a microgrid can be 

applied to achieve the optimal generation and schedule of tasks. This appropriate management may 

involve considerable benefits. These benefits may include cost savings, the reduction of energy 

peaks of demand and the reduction of the dependence on non-renewable sources. Hence, a 

discrete-time MILP mathematical model was presented by Silvente et al. (2012 and 2013) for the 

coordinated management of energy generation, storage and demand in a microgrid. Also, Silvente et 

al. (2015a) presented a comparison between discrete and hybrid-time MILP formulations to 

maximise the profit of a microgrid. More recently, Silvente and Papageorgiou (2017) presented an 

MILP formulation to manage the generation, storage and demand of energy and heat within a 

microgrid. This paper studied the impact of the delays in the starting time of tasks as well as the 

impact of eventual interruptions in the tasks. 

Hence, electricity and heat generation models for the optimal management of microgrids 

have been reported in the last years. However, the management of microgrids contemplating the 

generation and demand of electricity and heat in a coordinated way constitutes a research gap. On 

the other side, rolling horizon strategies and stochastic formulations have been applied to a wide 

range of scheduling problems under uncertainty. However, the combination of both procedures to 

tackle uncertainty as well as their application to the specific area of the management of microgrids 

has not been fully-studied and still represents an open issue to the research community.  

This work proposes a novel mathematical model to manage simultaneously energy and heat 

generation, purchases, sales, storage and tasks to minimise the cost of a microgrid by optimally 

adapting energy and heat generation and demand. The main novelty of this work is the combination 

of a rolling horizon approach and a stochastic formulation to optimally manage a microgrid under 

uncertainty. One of the main characteristics of this novel formulation is the flexibility in energy 

requirements, in terms of the starting time of energy consumptions. The energy requirements are 

limited by a time windows to perform a given energy consumption task, which can be delayed. Also, 

tasks may be interrupted. Another feature is the management of the uncertainty. This is given by 

the simultaneous implementation of reactive and proactive methodologies, corresponding to the 

rolling horizon approach and the stochastic programming. The aim of this methodology is to exploit 

the flexibility of the microgrid incorporating renewable energy sources. Then, the obtained 

solutions can be updated if new information is revealed or modified or even if an unpredicted event 

occurs in either energy and heat generation or demand. This methodology is presented through a 

case study to optimally manage a microgrid under uncertainty, considering energy and heat 

generation, purchases, sales, storage levels and tasks to be satisfied. 

The work is organised as follows. In this section, the literature review on the energy 

management formulations and the application of rolling horizon and stochastic techniques have 

presented. Then, section 2 details the problem statement of the presented formulation. In section 3, 

the scheduling approach for the management of the microgrid under uncertainty is described in 
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detail. Section 4 presents the main details of the case under study. Section 5 provides a discussion 

on the obtained results. Finally, section 6 presents the concluding remarks and future research 

directions are revealed. 

2. Problem statement  

The proposed mathematical formulation considers the generation and storage levels as well 

as the timing of tasks to be managed within a microgrid. The problem also considers electricity 

purchases and sales to the power grid, considering time-varying electricity prices. The goal is to 

minimise the operational cost.  

The mathematical model includes electrical and heat generation, storage and demand 

balance constraints to describe their flows as well as technical equipment constraints, such as 

capacity constraints. Thus, the problem formulation is defined in terms of the items described 

below. Given: 

(i) A scheduling horizon 𝑆𝐻, which is divided into a number of equal-size time intervals 𝑡𝑇, 

a prediction horizon 𝑃𝐻 and a control horizon 𝐶𝐻. 

(ii) A set of scenarios 𝑠𝑆, which describes all considered uncertain profiles that can take 

place. 

(iii) A set of electricity and heat generation sources, and their technical characteristics, such 

as capacities and efficiencies. 

(iv) A set of electricity and heat storage systems, and their technical characteristics, including 

capacities, efficiencies, as well as charge and discharge limit rates. 

(v) A set of houses 𝑘𝜖𝐾 within the microgrid. 

(vi) A set of equipment units 𝑗𝜖𝐽 to perform the considered energy consumption tasks. 

(vii) A set of energy consumption tasks 𝑖𝜖𝐼. A desirable (minimum) initial time of each task 

𝑇𝑠𝑘,𝑖
𝑚𝑖𝑛 and its processing time 𝑃𝑇𝑘,𝑖,𝑠 are given. The initial time 𝑇𝑠𝑘,𝑖 of each task is 

delimited by a predefined time window, bounded by a minimum and maximum starting 

time (𝑇𝑠𝑘,𝑖
𝑚𝑖𝑛 and 𝑇𝑠𝑘,𝑖

𝑚𝑎𝑥). If a task starts outside the given time window, an extra cost is 

applied. 

(viii) A subset of operation periods 𝜃𝜖𝑖,𝑘 associated with a task a task 𝑖 at home 𝑘. This 

subset indicates the periods of time in which a task 𝑖 is active. This is used to allow 

different energy requirements as a function of the time (see Figure 1) and to allow 

eventual interruptions. Notice that the first operation period of a task corresponds to 

𝜃 = 0.  

(ix) The task capacity profile 𝐶𝑖,𝜃 (which can be constant or variable). Figure 1 represents 

consumption resource profile 𝐶𝑖,𝜃 for a given task 𝑖. 

(x) The overall heat demand of the microgrid, 𝐻𝑠,𝑡. 

(xi) The price of the electricity in the power grid, 𝑏𝑡. 

(xii) The wind forecast speed, 𝑣𝑠,𝑡. 
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Figure 1. Time-varying resource profile for a task. 

 

The goal is to minimise the operational cost of a microgrid, determining the energy and heat 

generation plan, the electricity purchases to the external power grid, the schedule of tasks, the 

electrical and thermal storage plan and the electricity to be exported to the power grid. 

Furthermore, different tasks may be allocated in the same equipment unit. Thus, the 

sequence of operations is required to avoid any eventual overlap. Another feature is the fact that 

the consumption task profiles do not follow a constant profile, given by a set of task operation 

profiles 𝜃.  

The optimal management of the microgrid is based on the characteristics of each task (i.e., 

time windows, consumption task profile), renewable energy sources forecast (e.g., wind speed 

forecast) and time-varying electricity prices for both purchases and sales. Notice that electricity and 

heat generation is scheduled from generators, but also purchases and sales to the power grid are 

allowed. Furthermore, in order to reduce the peak electricity demand from the power grid, 

additional peak demand costs are applied when the overall demand is over an agreed threshold. 

Moreover, the problem formulation has been introduced into a rolling horizon approach. 

This reactive approach is based on a scheduling formulation that solves iteratively the deterministic 

problem by moving forward the optimisation horizon in each iteration (Silvente et al., 2015b). This 

approach assumes that input information is updated once uncertain parameters (e.g., wind speed 

forecast, energy and heat demands) are revealed. Notice that these parameters may be uncertain or 

not accurate enough. Then, the optimal schedule for the updated resulting scenario (and 

optimisation horizon) may be found. This methodology takes into account different time horizons 

(Figure 2): 

 Scheduling horizon, corresponding to the overall time period to be optimised. 

 Prediction horizon, where all information related to this time horizon are assumed to be 

known with certainty,  

 Control horizon, in which decisions of the optimisation procedure are applied. 
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Figure 2. Time horizons associated with the rolling horizon scheme: scheduling, prediction and 

control horizon. 

This formulation allows updating or modifying the status of the system to optimise the 

problem according to the current/updated data. This technique has been used to solve scheduling 

problems under uncertainty. For instance, Kopanos and Pistikopoulos (2014) presented a 

mathematical formulation for the management of a network by combining both rolling horizon 

approach and multi-parametric programming. More recently, Silvente et al. (2015b) presented a 

rolling horizon formulation to manage simultaneously the energy generation and demand within a 

microgrid, in order to maximise its profit. 

The rolling horizon scheme is represented in Figure 3, which includes the time scales 

presented in Figure 2, and also links information of the past prediction horizon with the current 

prediction horizon. This approach can be applied as follows, and described in Figure 4 (Kopanos 

and Pistikopoulos, 2014): 

 Firstly, the initial conditions of the system are established, as well as the durations of the 

scheduling, prediction and control horizons are defined. 

 Then, the first prediction horizon period is solved. The values obtained through the 

optimisation process have to be fixed. 

 At this time, uncertain parameters are updated. The scheduling problem has to be solved 

again, using information from the previous optimisation. This is given by the 

implementation of linking variables (see Section 3.11). 

 If the new schedule corresponds to the final period of time, the procedure is completed. 

Otherwise, solutions obtained in the optimisation procedure for that iteration have to be 

fixed. Then, re-schedule and refresh the system until the final scheduling period. 
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Figure 3. Reactive scheduling via a rolling horizon approach (Kopanos and Pistikopoulos, 2014). 

 

 

Figure 4. Algorithm for the rolling horizon approach. 
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The rolling horizon approach allows both updating and modifying the uncertain 

parameters, which can be associated with external and internal variabilities. The solution for each 

prediction horizon is optimal for this period of time. However, this solution could be suboptimal in 

practice when the overall scheduling horizon is considered. This occurs because future data outside 

the current prediction horizon is not considered when the optimisation procedure is performed. So, 

the duration of the prediction horizon should be suitable for obtaining good quality solutions. 

Therefore, the duration of the prediction horizon depends on the features of the problem under 

study (Kopanos and Pistikopoulos, 2014). 

Moreover, the proposed rolling horizon approach is introduced into a two-stage stochastic 

formulation. This formulation contains two types of variables: 

 First-stage variables, also known here-and-now variables, which do not depend on the 

scenario.  

 Second-stage variables, also known wait-and-see variables, which will be different 

according to each scenario. 

The decision making to minimise the cost of the microgrid involves: 

(i) First-stage variables:  

a. The status (on/off) of each task 𝑖 at home 𝑘 in each time interval 𝑡, 𝑊𝑘,𝑖,𝜃,𝑡 and 𝑍𝑘,𝑖,𝜃,𝑡, 

starting inside and outside the time window, respectively. Notice that the binary 

variable 𝑊𝑘,𝑖,𝜃,𝑡 takes value 1 if task 𝑖 at home 𝑘 is active at time interval 𝑡 for the 

operation period θ for tasks started inside the corresponding time window. Also, 

binary variable 𝑍𝑘,𝑖,𝜃,𝑡 is used for tasks started outside the established time window. 

These variables determine the schedule of consumption tasks within the microgrid. 

(ii) Second-stage variables:  

a. The electric and thermal power 𝑃𝑠,𝑡
𝐵 , 𝑃𝑠,𝑡

𝐶𝐻𝑃and 𝑃𝑠,𝑡
𝑊 to be generated through the boiler, 

CHP and wind turbines, respectively, in scenario 𝑠 at time 𝑡. 

b. The electrical and heat storage levels, 𝑆𝑠,𝑡
𝐸  and 𝑆𝑠,𝑡

𝑇  respectively, in scenario 𝑠 at the end 

of time 𝑡. 

c. The electrical charge and discharge rates (𝑆𝑠,𝑡
𝐸𝐶 and 𝑆𝑠,𝑡

𝐸𝐷) and the heat charge and 

discharge rates (𝑆𝑠,𝑡
𝑇𝐶 and 𝑆𝑠,𝑡

𝑇𝐷) in scenario 𝑠 and time 𝑡. 

d. The amount of electric power to be imported from the power grid 𝐼𝑚𝑠,𝑡, and exported 

to the grid 𝐸𝑥𝑠,𝑡 in scenario 𝑠 and time 𝑡. 

e. The extra electric power purchases from grid 𝛾𝑠,𝑡 over a threshold 𝛽 in scenario 𝑠 at 

time 𝑡. 

The proposed formulation corresponds to a discrete-time formulation, forcing tasks to start 

at the boundary of an interval. The computational effort to solve discrete-time formulations 

depends on the dimension of the problem under study. The duration of the intervals depends on 

the features of the problem. The effect of the length of the time interval was previously studied by 

Silvente et al. (2015a). Although short term time intervals may be used to obtain more accurate 

solutions, the problem could become unaffordable in terms of computational time. On the other 

hand, long-time intervals may lead to suboptimal solutions.  
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3. Mathematical model 

The microgrid heat and electricity task scheduling problem is presented as a rolling horizon 

two-stage stochastic MILP model. The aim is to minimise the overall cost of the microgrid. The 

restrictions associated with the management of the microgrid are next detailed. In the presented 

formulation, 𝑡𝑇𝑅𝐻 corresponds to the time intervals 𝑡 included in the current prediction horizon, 

𝑖𝜖𝐼𝑘𝑅𝐻 includes tasks 𝑖 performed at home 𝑘 included in the present prediction horizon and 

𝜃𝑖,𝑘𝑅𝐻 represents the task operation periods 𝜃 included in the current prediction horizon. 

 

3.1. Generation and storage capacity constraints 

The electric power 𝑃𝑠,𝑡
𝑊 generated by the wind turbines is calculated by applying equation 

(1). This constraint considers the number of wind turbines 𝑁𝑊, the air density 𝜌, the wind blade 

area 𝐴, the wind speed 𝑣𝑠,𝑡 and the wind turbine efficiency 𝑤. The generation of electricity through 

wind turbines is constrained by the cut-in (𝑉𝑐𝑢𝑡−𝑖𝑛) and cut-out speed (𝑉𝑐𝑢𝑡−𝑜𝑢𝑡). The cut-in and 

the cut-out speeds depend on the characteristic of the wind turbine. The cut-in speed is the 

minimum wind speed at which the wind turbine generates electricity according to its designated 

rated power; whereas the cut-out speed corresponds to the wind speed at which the wind turbine 

would be shut down to protect the turbine from any eventual damage (Villanueva and Feijóo. 

2010). Thus, the wind turbine generates power only if the wind speed is above the cut-in speed and 

below the cut-out speed. Moreover, if the wind speed is above the nominal wind 𝑉𝑛𝑜𝑚, the 

electricity generated corresponds to the maximum output, which corresponds to the generation 

level at the nominal wind speed (Zhang et al., 2013). 

𝑃𝑠,𝑡
𝑊 = {𝑁𝑊 ∙ 0.5 ∙ 𝜌 ∙ 𝐴 ∙ 𝑤 ∙ 𝑚𝑖𝑛(𝑣𝑠,𝑡, 𝑉

𝑛𝑜𝑚)
3

0
 

∀𝑠, 𝑡𝜖𝑇𝑅𝐻, 𝑉𝑐𝑢𝑡−𝑖𝑛 ≤ 𝑣𝑠,𝑡 ≤ 𝑉𝑐𝑢𝑡−𝑜𝑢𝑡

∀𝑠, 𝑡𝜖𝑇𝑅𝐻, 𝑣𝑠,𝑡 < 𝑉𝑐𝑢𝑡−𝑖𝑛, 𝑣𝑠,𝑡 > 𝑉𝑐𝑢𝑡−𝑜𝑢𝑡
 (1) 

The electric and thermal power generated by the CHP and the boiler generators in scenario 

𝑠 at time interval 𝑡 (𝑃𝑠,𝑡
𝐶𝐻𝑃 and 𝑃𝑠,𝑡

𝐵 ) should not exceed the designed generation capacity. This is given 

by constraints (2) and (3). 

𝑃𝑠,𝑡
𝐶𝐻𝑃 ≤ 𝐶𝐶𝐻𝑃 ∀𝑠, 𝑡𝜖𝑇𝑅𝐻 (2) 

𝑃𝑠,𝑡
𝐵 ≤ 𝐶𝐵 ∀𝑠, 𝑡𝜖𝑇𝑅𝐻 (3) 

Also, the electricity and heat storage level in scenario 𝑠 at time interval 𝑡 (𝑆𝑠,𝑡
𝐸  and 𝑆𝑠,𝑡

𝑇 ) 

should not exceed the maximum storage capacity, given by equations (4) and (5).  

𝑆𝑠,𝑡
𝐸 ≤ 𝐶𝐸 ∀𝑠, 𝑡𝜖𝑇𝑅𝐻 (4) 
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𝑆𝑠,𝑡
𝑇 ≤ 𝐶𝑇 ∀𝑠, 𝑡𝜖𝑇𝑅𝐻 (5) 

 

3.2. Electrical and thermal storage constraints 

The electricity storage level in the electrical storage in scenario 𝑠 at time interval 𝑡, 𝑆𝑠,𝑡
𝐸 , is 

calculated through equation (6), considering the storage level at the previous period of time, 𝑆𝑠,𝑡−1
𝐸 , 

and the electricity charged and discharged in the storage system. The efficiency of the charge and 

discharge of the electricity storage system 𝐸 , has been considered. This efficiency involves 

electricity losses. Note that the electricity stored level at the beginning of the optimisation of the 

corresponding prediction horizon 𝑆𝑠,0
𝐸  is equal to the electricity stored at the end of the 

optimisation procedure 𝑆𝑠,𝑇
𝐸 , according to constraint (7). This corresponds to a terminal constraint 

used for the stability of the system. Moreover, electric power discharge and charge rates in scenario 

𝑠 at time 𝑡 (𝑆𝑠,𝑡
𝐸𝐷 and 𝑆𝑠,𝑡

𝐸𝐶) cannot exceed their limits (𝑆𝐸𝐷𝑚𝑎𝑥 and 𝑆𝐸𝐶𝑚𝑎𝑥). These rates are defined 

by the electrical storage characteristics. Notice that excessive discharge and charge rates would 

damage or even reduce the capacity of the storage system. 

𝑆𝑠,𝑡
𝐸 = 𝑆𝑠,𝑡−1

𝐸 + 𝛿 ∙ 𝐸 ∙ 𝑆𝑠,𝑡
𝐸𝐶 −

𝛿

𝐸
∙ 𝑆𝑠,𝑡

𝐸𝐷 ∀𝑠, 𝑡𝜖𝑇𝑅𝐻 (6) 

𝑆𝑠,0
𝐸 = 𝑆𝑠,𝑇

𝐸  ∀𝑠 (7) 

𝑆𝑠,𝑡
𝐸𝐷 ≤ 𝑆𝐸𝐷𝑚𝑎𝑥 ∀𝑠, 𝑡𝜖𝑇𝑅𝐻 (8) 

𝑆𝑠,𝑡
𝐸𝐶 ≤ 𝑆𝐸𝐶𝑚𝑎𝑥 ∀𝑠, 𝑡𝜖𝑇𝑅𝐻 (9) 

Similarly, according to equation (10), heat storage level in the thermal storage system at 

time 𝑡 in scenario 𝑠 is given by the amount stored in the previous period 𝑆𝑠,𝑡−1
𝑇 , and the heat 

charged and discharged in the heat storage system. The heat losses during the heat storage take 

into account the heat charge and discharge efficiency, 𝑇 . According to constraint (11), the heat 

storage at the end of each optimisation period (i.e., prediction horizon) 𝑆𝑠,𝑇
𝑇  must return to its initial 

value 𝑆𝑠,0
𝑇 , avoiding any net heat accumulation. This constraint forces heat stored to return to the 

initial state at the end of the prediction horizon in scenario 𝑠. Moreover, thermal power discharge 

and charge rates in scenario 𝑠 (𝑆𝑠,𝑡
𝑇𝐷 and 𝑆𝑠,𝑡

𝑇𝐶) cannot surpass their limits (𝑆𝑇𝐷𝑚𝑎𝑥 and 𝑆𝑇𝐶𝑚𝑎𝑥), given 

by constraints (12) and (13). 

𝑆𝑠,𝑡
𝑇 = 𝑆𝑠,𝑡−1

𝑇 + 𝛿 ∙ 𝑇 ∙ 𝑆𝑠,𝑡
𝑇𝐶 −

𝛿

𝑇
∙ 𝑆𝑠,𝑡

𝑇𝐷 ∀𝑠, 𝑡𝜖𝑇𝑅𝐻 (10) 

𝑆𝑠,0
𝑇 = 𝑆𝑠,𝑇

𝑇  ∀𝑠 (11) 

𝑆𝑠,𝑡
𝑇𝐷 ≤ 𝑆𝑇𝐷𝑚𝑎𝑥 ∀𝑠, 𝑡𝜖𝑇𝑅𝐻 (12) 
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𝑆𝑠,𝑡
𝑇𝐶 ≤ 𝑆𝑇𝐶𝑚𝑎𝑥 ∀𝑠, 𝑡𝜖𝑇𝑅𝐻 (13) 

 

3.3. Starting and time of tasks 

The initial time of a task could be within an established time window or outside the time 

window, according to constraint (14a). The time window for each task 𝑖 is limited by a minimum 

and maximum starting time. Then, when a task starts inside the time window, the value of binary 

variable 𝑊𝑘,𝑖,𝜃,𝑡 takes value 1 for the first value of the set 𝜃. The first value of this set (𝜃 = 0) 

corresponds to the first time operation period. This binary variable corresponds to a first-stage 

variable, which does not depend on the scenario. Analogously, if a task starts after the time window, 

𝑍𝑘,𝑖,𝜃,𝑡 takes value 1 in the starting time for the first value of the set 𝜃. Note that if any task starts 

outside the current prediction horizon, 𝑊𝑘,𝑖
𝑜  or 𝑍𝑘,𝑖

𝑜  takes value 1. So, all tasks are forced to start. If 

the demand side management is not considered, equation (14b) is applied instead of equation 

(14a). Constraint (14b) forces all tasks to start at the minimum starting time, not allowing any 

delay. Equation (15) is applied to ensure all tasks to be completed before the end of the overall 

scheduling horizon. This constraint avoids a task to start in a period of time where it cannot be 

finished. 

∑ 𝑊𝑘,𝑖,𝜃,𝑡

𝑡𝜖𝑇𝑅𝐻

𝑡≥𝑇𝑠𝑘,𝑖
𝑚𝑖𝑛

𝑡≤𝑇𝑠𝑘,𝑖
𝑚𝑎𝑥

+ ∑ 𝑍𝑘,𝑖,𝜃,𝑡

𝑡𝜖𝑇𝑅𝐻
𝑡>𝑇𝑠𝑘,𝑖

𝑚𝑎𝑥

+ 𝑊𝑘,𝑖
𝑜 + 𝑍𝑘,𝑖

𝑜 = 1 

∀𝑘, 𝑖𝜖𝐼𝑘𝑅𝐻, 𝜃𝑖,𝑘𝑅𝐻, 𝜃 = 0 (14a) 

∑ 𝑊𝑘,𝑖,𝜃,𝑡

𝑡𝜖𝑇𝑅𝐻

𝑡=𝑇𝑠𝑘,𝑖
𝑚𝑖𝑛

+ 𝑊𝑘,𝑖
𝑜 = 1 

∀𝑘, 𝑖𝜖𝐼𝑘𝑅𝐻, 𝜃𝑖,𝑘𝑅𝐻, 𝜃 = 0 (14b) 

∑ 𝑍𝑘,𝑖,𝜃,𝑡

𝑡𝜖𝑇𝑅𝐻
𝑡>𝑆𝐻−𝑃𝑇̅̅ ̅̅ 𝑘,𝑖

= 0 
∀𝑘, 𝑖𝜖𝐼𝑘𝑅𝐻, 𝜃𝑖,𝑘𝑅𝐻, 𝜃 = 0 (15) 

 

3.4. Penalties for delays in the starting time of tasks 

In the first task operation period (which corresponds to 𝜃 = 0), binary variables 𝑊𝑘,𝑖,𝜃,𝑡 or 

𝑍𝑘,𝑖,𝜃,𝑡 are active when a task 𝑖 at home 𝑘 starts at time 𝑡. These restrictions have been reformulated 

as a set of big-M constraints, according to equations (16) and (17), to determine the starting time of 

a task, 𝑇𝑠𝑘,𝑖. Moreover, a penalisation 𝐶𝑃𝑒𝑛𝑘,𝑖 is applied, considering the postponement in the 

starting time from the minimum starting time and the penalty cost of each task, according to 

equation (18). This set of equations is used to avoid unnecessary delays, since the solution of the 
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current prediction horizon may lead to solutions where the solution can be to perform the task 

outside the current prediction horizon, minimising the solution of the current prediction horizon. 

𝑇𝑠𝑘,𝑖 ≥ 𝑇𝑡 − 𝑀 ∙ (1 − 𝑊𝑘,𝑖,𝜃,𝑡 − 𝑍𝑘,𝑖,𝜃,𝑡) ∀𝑘, 𝑖𝜖𝐼𝑘𝑅𝐻, 𝜃𝑖,𝑘𝑅𝐻, 𝜃 = 0, 𝑡𝜖𝑇𝑅𝐻 (16) 

𝑇𝑠𝑘,𝑖 ≤ 𝑇𝑡 + 𝑀 ∙ (1 − 𝑊𝑘,𝑖,𝜃,𝑡 − 𝑍𝑘,𝑖,𝜃,𝑡) ∀𝑘, 𝑖𝜖𝐼𝑘𝑅𝐻, 𝜃𝑖,𝑘𝑅𝐻, 𝜃 = 0, 𝑡𝜖𝑇𝑅𝐻 (17) 

𝐶𝑃𝑒𝑛𝑘,𝑖 = (𝑇𝑠𝑘,𝑖 − 𝑇𝑠𝑘,𝑖
𝑚𝑖𝑛) ∙ 𝜇𝑘,𝑖 ∀𝑘, 𝑖𝜖𝐼𝑘𝑅𝐻 (18) 

 

3.5. Processing time and sequence of tasks 

Equation (19) forces all tasks to be completed. According to this equation, the summation of 

the active periods of time where the task takes place must be equal to the (roundup) processing 

time of the task. Notice that �̃�𝑘,𝑖 and �̃�𝑘,𝑖 are used to consider the processing time before the 

previous prediction horizon, inside and outside the time window, respectively. Equation (20) 

constrains the processing time of task 𝑖 at home 𝑘 to be performed outside the current prediction 

horizon, 𝜑𝑘,𝑖. This value is limited by its maximum value, given by the term 𝜏𝑘,𝑖. Furthermore, 

equations (21) and (22) avoid any overlap in the task, establishing that only one operation period 

can be performed at time 𝑡. Note that �̅�𝑘,𝑖,𝜃,𝑡 and �̅�𝑘,𝑖,𝜃,𝑡 are used to consider the status of any task 

in previous prediction horizons, inside and outside the time window, respectively. Moreover, 

equations (23) and (24) determine the sequence of the time operation periods within and outside 

the given time window, respectively. This set of two equations forces to follow the pre-established 

order in the consumption task profile. Furthermore, equation (25) is used to avoid any overlap in 

an equipment unit 𝑗 able to perform more than one task 𝑖. Particularly, this equation forces that a 

task cannot start if the previous one has not finished (performed in the same equipment unit), not 

allowing neither an overlap nor a modification in the established task sequence. 

∑ ∑ 𝑊𝑘,𝑖,𝜃,𝑡

𝑃𝑇̅̅ ̅̅ 𝑘,𝑖−1

𝜃𝑖,𝑘𝑅𝐻

𝜃=0

𝑡𝜖𝑇𝑅𝐻

+ ∑ ∑ 𝑍𝑘,𝑖,𝜃,𝑡

𝑃𝑇̅̅ ̅̅ 𝑘,𝑖−1

𝜃𝑖,𝑘𝑅𝐻

𝜃=0

𝑡𝜖𝑇𝑅𝐻

+ �̃�𝑘,𝑖 + �̃�𝑘,𝑖 + 𝜑𝑘,𝑖 = 𝑃𝑇̅̅̅̅
𝑘,𝑖 ∀𝑘, 𝑖𝜖𝐼𝑘𝑅𝐻 (19) 

𝜑𝑘,𝑖 ≤ 𝜏𝑘,𝑖 + 1 ∀𝑘, 𝑖𝜖𝐼𝑘𝑅𝐻 (20) 

∑ (𝑊𝑘,𝑖,𝜃,𝑡 + �̅�𝑘,𝑖,𝜃,𝑡 + 𝑍𝑘,𝑖,𝜃,𝑡 + �̅�𝑘,𝑖,𝜃,𝑡)

𝑃𝑇̅̅ ̅̅ 𝑘,𝑖−1

𝜃𝑖,𝑘𝑅𝐻

𝜃=0

≤ 1 ∀𝑘, 𝑖𝜖𝐼𝑘𝑅𝐻, 𝑡𝜖𝑇𝑅𝐻 (21) 

∑ (𝑊𝑘,𝑖,𝜃,𝑡 + �̅�𝑘,𝑖,𝜃,𝑡 + 𝑍𝑘,𝑖,𝜃,𝑡 + �̅�𝑘,𝑖,𝜃,𝑡)

𝑡𝜖𝑇𝑅𝐻

≤ 1 ∀𝑘, 𝑖𝜖𝐼𝑘𝑅𝐻, 𝜃𝑖𝑘𝑅𝐻 (22) 

http://www.sciencedirect.com/science/article/pii/S036054421500609X#fd10
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∑ (𝑊𝑘,𝑖,𝜃,𝑡′ + �̅�𝑘,𝑖,𝜃,𝑡′ − 𝑊𝑘,𝑖,𝜃+1,𝑡′)
𝑡′𝜖𝑇𝑅𝐻
𝑡′≤𝑡

≥ 0 ∀𝑘, 𝑖𝜖𝐼𝑘𝑅𝐻, 

𝜃𝑖𝑘𝑅𝐻, 𝑡𝜖𝑇𝑅𝐻 
(23) 

∑ (𝑍𝑘,𝑖,𝜃,𝑡′ + �̅�𝑘,𝑖,𝜃,𝑡′ − 𝑍𝑘,𝑖,𝜃+1,𝑡′)
𝑡′𝜖𝑇𝑅𝐻
𝑡′≤𝑡

≥ 0 ∀𝑘, 𝑖𝜖𝐼𝑘𝑅𝐻, 

𝜃𝑖𝑘𝑅𝐻, 𝑡𝜖 𝑇𝑅𝐻 
(24) 

∑ (𝑊𝑘,𝑖,𝜃,𝑡′ + �̅�𝑘,𝑖,𝜃,𝑡′ + 𝑍𝑘,𝑖,𝜃,𝑡′ + �̅�𝑘,𝑖,𝜃,𝑡′)
𝑡′𝜖𝑇𝑅𝐻
𝑡′≤𝑡

≥ 𝑊𝑘,𝑖′,𝜃′,𝑡 + �̅�𝑘,𝑖′,𝜃′,𝑡 + 𝑍𝑘,𝑖′,𝜃′,𝑡 + �̅�𝑘,𝑖′,𝜃′,𝑡 

∀𝑘, 𝑖𝜖𝐼𝑗, 𝑖
′𝜖𝐼𝑗, 𝑖

′ > 𝑖, 

𝜃𝑖𝑘𝑅𝐻, 𝜃 = 𝑃𝑇̅̅̅̅
𝑘,𝑖 − 1, 

𝜃′𝑖𝑘𝑅𝐻, 𝜃′ = 0, 

𝑡𝜖 𝑇𝑅𝐻 

(25) 

3.6. Interruption of tasks 

The proposed formulation allows any eventual interruption in a task 𝑖. The following set of 

constraints is applied to manage interruptions. Hence, equation (26) is used to determine the 

potential status (on/off) of a task starting in the established time window. This equation considers 

the first and the last period of time where the task 𝑖 is active, given by the minimum and maximum 

𝜃 for each task. Thus, �̂�𝑘,𝑖,𝑡 takes value 1 between the initial time and the calculated ending time. 

Observe that if a task 𝑖 has started before the current prediction horizon, 𝑊𝑘,𝑖
𝑜  takes value 1, and 0 

otherwise. 

�̂�𝑘,𝑖,𝑡 = 𝑊𝑘,𝑖
𝑜 + ∑ (𝑊𝑘,𝑖,𝜃,𝑡′ + �̅�𝑘,𝑖,𝜃,𝑡′) 

𝑡′𝜖𝑇𝑅𝐻
𝑡′≤𝑡

− ∑ 𝑊𝑘,𝑖,𝜃′,𝑡′  

𝑡′𝜖𝑇𝑅𝐻
𝑡′<𝑡

 
∀𝑘, 𝑖𝜖𝐼𝑘𝑅𝐻, 𝑡𝜖𝑇𝑅𝐻, 

𝜃𝑖,𝑘𝑅𝐻, 𝜃 = 0, 

𝜃′𝑖,𝑘𝑅𝐻, 𝜃′ = 𝑃𝑇̅̅̅̅
𝑘,𝑖 − 1 

(26) 

Equations (27), (28) and (29) follow a general disjunctive programming (GDP) formulation, 

which is detailed in Appendix A. 

Equation (27) establishes that if the potential status of a task is inactive (�̂�𝑘,𝑖,𝑡 = 0), there 

can be interruptions (𝑖𝑘,𝑖,𝑡
𝑊 = 𝑠𝑘,𝑖,𝑡

𝑊 = 0). Equation (28) is applied to determine that an 

interruption is produced (𝑖𝑘,𝑖,𝑡+1
𝑊 = 1) if a task is active at time 𝑡 but inactive at time 𝑡 + 1 

(𝑊𝑘,𝑖,𝜃,𝑡 = 1,𝑊𝑘,𝑖,𝜃,𝑡+1 = 0) if the potential status of a task is active (�̂�𝑘,𝑖,𝑡 = 1), which means that a 

task has started but it is not finished. This also avoids contemplating the end of a task as an 

interruption. Equation (29) is used to determine if a task continues interrupted at time 𝑡 + 1 

(𝑠𝑘,𝑖,𝑡+1
𝑊 = 1), for tasks which are inactive at 𝑡 and at 𝑡 + 1 (𝑊𝑘,𝑖,𝜃,𝑡 = 𝑊𝑘,𝑖,𝜃,𝑡+1 = 0), but its 

potential status is active (�̂�𝑘,𝑖,𝑡 = 1). 

�̂�𝑘,𝑖,𝑡 ≥ 𝑖𝑘,𝑖,𝑡+1
𝑊 + 𝑠𝑘,𝑖,𝑡+1

𝑊  ∀𝑘, 𝑖𝜖𝐼𝑘𝑅𝐻, 𝑡𝜖𝑇𝑅𝐻 (27) 
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∑ 𝑊𝑘,𝑖,𝜃,𝑡+1

𝜃𝑖,𝑘𝑅𝐻

𝜃≤𝑃𝑇̅̅ ̅̅ 𝑘,𝑖

− ∑ 𝑊𝑘,𝑖,𝜃,𝑡

𝜃𝑖,𝑘𝑅𝐻

𝜃<𝑃𝑇̅̅ ̅̅ 𝑘,𝑖

− ∑ �̅�𝑘,𝑖,𝜃,𝑡

𝜃𝑖,𝑘𝑅𝐻

𝜃<𝑃𝑇̅̅ ̅̅ 𝑘,𝑖

− �̂�𝑘,𝑖,𝑡 + 𝑖𝑘,𝑖,𝑡+1
𝑊 + 1 ≥ 0 

∀𝑘, 𝑖𝜖𝐼𝑘𝑅𝐻, 𝑡𝜖𝑇𝑅𝐻 (28) 

∑ 𝑊𝑘,𝑖,𝜃,𝑡

𝜃𝑖𝑘𝑅𝐻

𝜃<𝑃𝑇̅̅ ̅̅ 𝑘,𝑖

+ ∑ �̅�𝑘,𝑖,𝜃,𝑡

𝜃𝑖𝑘𝑅𝐻

𝜃<𝑃𝑇̅̅ ̅̅ 𝑘,𝑖

+ ∑ 𝑊𝑘,𝑖,𝜃,𝑡+1

𝜃𝑖𝑘𝑅𝐻

𝜃≤𝑃𝑇̅̅ ̅̅ 𝑘,𝑖

− �̂�𝑘,𝑖,𝑡 + 𝑠𝑘,𝑖,𝑡+1
𝑊 ≥ 0 

∀𝑘, 𝑖𝜖𝐼𝑘𝑅𝐻, 𝑡𝜖𝑇𝑅𝐻 (29) 

Figure 5 explains the meaning of the following binary variables: 𝑊𝑘,𝑖,𝜃,𝑡, �̂�𝑘,𝑖,𝑡, 𝑖𝑘,𝑖,𝑡
𝑊  and 

𝑠𝑘,𝑖,𝑡
𝑊 . In this figure, a task whose processing time is 4 time intervals is represented. Thus, the task 

starts when 𝜃 = 0 and finishes when 𝜃 = 5 − 1 = 4. Hence, �̂�𝑘,𝑖,𝑡 = 1 during the first and the last 

time interval of the mentioned task. Also, observe that the figure remarks only the binary variables 

that are equal to 1. 

 

Figure 5. Explanation of binary variables involved in the interruption of tasks. 

 

Equations (26) to (29) can be applied to those tasks that start outside the established time 

window, by implementing constraints (30) to (33). 

�̂�𝑘,𝑖,𝑡 = 𝑍𝑘,𝑖
𝑜 + ∑ (𝑍𝑘,𝑖,𝜃,𝑡′ + �̅�𝑘,𝑖,𝜃,𝑡′) 

𝑡′𝜖𝑇𝑅𝐻
𝑡′≤𝑡
𝜃=0

− ∑ 𝑍𝑘,𝑖,𝜃′,𝑡′  

𝑡′𝜖𝑇𝑅𝐻
𝑡′<𝑡

𝜃′=𝑃𝑇̅̅ ̅̅ 𝑘,𝑖

 

∀𝑘, 𝑖𝜖𝐼𝑘𝑅𝐻, 𝑡𝜖𝑇𝑅𝐻 (30) 

�̂�𝑘,𝑖,𝑡 ≥ 𝑖𝑘,𝑖,𝑡+1
𝑍 + 𝑠𝑘,𝑖,𝑡+1

𝑍  ∀𝑘, 𝑖𝜖𝐼𝑘𝑅𝐻, 𝑡𝜖𝑇𝑅𝐻 (31) 

∑ 𝑍𝑘,𝑖,𝜃,𝑡+1

𝜃𝑖,𝑘𝑅𝐻

𝜃≤𝑃𝑇̅̅ ̅̅ 𝑘,𝑖

− ∑ 𝑍𝑘,𝑖,𝜃,𝑡

𝜃𝑖,𝑘𝑅𝐻

𝜃<𝑃𝑇̅̅ ̅̅ 𝑘,𝑖

− ∑ �̅�𝑘,𝑖,𝜃,𝑡

𝜃𝑖,𝑘𝑅𝐻

𝜃<𝑃𝑇̅̅ ̅̅ 𝑘,𝑖

− �̂�𝑘,𝑖,𝑡 + 𝑖𝑘,𝑖,𝑡+1
𝑍 + 1 ≥ 0 

∀𝑘, 𝑖𝜖𝐼𝑘𝑅𝐻, 𝑡𝜖𝑇𝑅𝐻 (32) 
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∑ 𝑍𝑘,𝑖,𝜃,𝑡

𝜃𝑖,𝑘𝑅𝐻

𝜃<𝑃𝑇̅̅ ̅̅ 𝑘,𝑖

+ ∑ �̅�𝑘,𝑖,𝜃,𝑡

𝜃𝑖,𝑘𝑅𝐻

𝜃<𝑃𝑇̅̅ ̅̅ 𝑘,𝑖

+ ∑ 𝑍𝑘,𝑖,𝜃,𝑡+1

𝜃𝑖,𝑘𝑅𝐻

𝜃≤𝑃𝑇̅̅ ̅̅ 𝑘,𝑖

− �̂�𝑘,𝑖,𝑡 + 𝑠𝑘,𝑖,𝑡+1
𝑍 ≥ 0 

∀𝑘, 𝑖𝜖𝐼𝑘𝑅𝐻, 𝑡𝜖𝑇𝑅𝐻 (33) 

 

3.7. Sequence of tasks 

A task 𝑖 in equipment unit 𝑗 cannot overlap another task 𝑖′ in the same equipment unit 𝑗. 

Equation (34) avoids a task 𝑖′ to start if the previous task 𝑖 in the same equipment unit 𝑗 has not 

finished. 

�̂�𝑘,𝑖,𝑡 + �̂�𝑘,𝑖,𝑡 + 𝑊𝑘,𝑖,𝜃,𝑡 + 𝑍𝑘,𝑖,𝜃,𝑡 ≤ 1 ∀𝑘, 𝑖𝜖𝐼𝑘𝑅𝐻, 𝑖′𝜖𝐼𝑘𝑅𝐻, 𝑖′ > 𝑖, 𝑗, 𝑖𝜖𝐼𝑗, 𝑖
′𝜖𝐼𝑗, 𝑡𝜖𝑇𝑅𝐻, 𝜃 = 0 (34) 

 

3.8. Energy and heat balances 

Equation (35) determines the total electricity consumption at time interval 𝑡 for each 

scenario 𝑠, for tasks performed within the established time window, which corresponds to the 

summation of the power consumption requirements from all tasks at different homes 𝑘. The 

electricity consumed at time period 𝑡 considers the electricity supplied by the generators (𝛿 ∙ 𝑃𝑠,𝑡
𝑊 

and 𝛿 ∙ 𝑃𝑠,𝑡
𝐶𝐻𝑃), the energy received from the electrical storage (𝛿 ∙ 𝑆𝑠,𝑡

𝐸𝐷), the electricity purchases 

from the power grid (𝛿 ∙ 𝐼𝑚𝑠,𝑡), the electricity sent to the electrical storage 𝛿 ∙ 𝑆𝑠,𝑡
𝐸𝐶 and electricity 

exported to the grid 𝛿 ∙ 𝐸𝑥𝑠,𝑡. The energy consumption is calculated considering the task operation 

periods 𝜃 (see Figure 1). Moreover, the use of electricity generated in the microgrid to perform a 

task 𝑖 is not allowed when a task starts outside the established time window. Thus, according to 

constraint (36), electricity purchases to the grid are required to satisfy this particular energy 

requirement. The term 𝛿 ∙ 𝐼𝑚𝑡,𝑠
𝑍  represents electricity purchases to the power grid to satisfy energy 

requirements of tasks started outside the time window. 

𝛿 ∙ ∑ ∑

[
 
 
 
 

∑ 𝐶𝑖,𝜃 ∙ 𝑊𝑘,𝑖,𝜃,𝑡

𝜃𝑖,𝑘𝑅𝐻

𝜃≤𝑃𝑇̅̅ ̅̅ 𝑘,𝑖

− 𝐶𝑖,𝜃′ ∙ 𝑊𝑘,𝑖,𝜃′,𝑡 ∙ (𝑃𝑇̅̅ ̅̅
𝑘,𝑖 − 𝑃𝑇𝑘,𝑖,𝑠)

]
 
 
 
 

𝑖𝜖𝐼𝑘𝑅𝐻𝑘

= 𝛿 ∙ (𝑃𝑠,𝑡
𝑊 + 𝑃𝑠,𝑡

𝐶𝐻𝑃 + 𝑆𝑠,𝑡
𝐸𝐷 + 𝐼𝑚𝑠,𝑡 − 𝑆𝑠,𝑡

𝐸𝐶 − 𝐸𝑥𝑠,𝑡) 

∀𝑠, 𝑡𝜖𝑇𝑅𝐻, 𝜃′ = 𝑃𝑇̅̅̅̅
𝑘,𝑖 (35) 

𝛿 ∙ ∑ ∑

[
 
 
 
 

∑ 𝐶𝑖,𝜃 ∙ 𝑊𝑘,𝑖,𝜃,𝑡

𝜃𝑖,𝑘𝑅𝐻

𝜃≤𝑃𝑇̅̅ ̅̅ 𝑘,𝑖

− 𝐶𝑖,𝜃′ ∙ 𝑍𝑘,𝑖,𝜃′,𝑡 ∙ (𝑃𝑇̅̅ ̅̅
𝑘,𝑖 − 𝑃𝑇𝑘,𝑖,𝑠)

]
 
 
 
 

𝑖𝜖𝐼𝑘𝑅𝐻𝑘

= 𝛿 ∙ 𝐼𝑚𝑡,𝑠
𝑍  

∀𝑠, 𝑡𝜖𝑇𝑅𝐻, 𝜃′ = 𝑃𝑇̅̅̅̅
𝑘,𝑖 (36) 
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Note that terms 𝐶𝑖,𝜃′ ∙ 𝑊𝑘,𝑖,𝜃′,𝑡 ∙ (𝑃𝑇̅̅ ̅̅
𝑘,𝑖 − 𝑃𝑇𝑘,𝑖,𝑠) and 𝐶𝑖,𝜃′ ∙ 𝑍𝑘,𝑖,𝜃′,𝑡 ∙ (𝑃𝑇̅̅ ̅̅

𝑘,𝑖 − 𝑃𝑇𝑘,𝑖,𝑠) in 

constraints (32) and (33) are used to calculate the exact energy consumption for energy 

consumption tasks that do not take place in the overall time interval. This allows improving the 

energy balance of the microgrid, due to an enhanced adjustment of the processing time of tasks. The 

implication of this term is explained in Figure 6. Although in this figure only binary variable 𝑊𝑘,𝑖,𝜃,𝑡 

is used, the same plot can be applied to binary variable 𝑍𝑘,𝑖,𝜃,𝑡. 

 

Figure 6. Schedule of an equipment unit affected by the processing time. 

 

The heat consumed 𝛿 ∙ 𝐻𝑠,𝑡 at time interval 𝑡 in scenario 𝑠 considers the heat supplied by the 

considered CHP generator and boiler (𝛿 ∙ 𝑃𝑠,𝑡
𝐶𝐻𝑃 and 𝛿 ∙ 𝑃𝑠,𝑡

𝐵 ) as well as the heat received from the 

thermal storage 𝛿 ∙ 𝑆𝑠,𝑡
𝑇𝐷, the heat transmitted to the thermal storage 𝛿 ∙ 𝑆𝑠,𝑡

𝑇𝐶 , as well as any eventual 

unsatisfied heat demand 𝑈𝐻𝑠,𝑡.  

𝛿 ∙ 𝐻𝑠,𝑡 = 𝛿 ∙ (𝛼 ∙ 𝑃𝑠,𝑡
𝐶𝐻𝑃 + 𝑃𝑠,𝑡

𝐵 + 𝑆𝑠,𝑡
𝑇𝐷 − 𝑆𝑠,𝑡

𝑇𝐶 + 𝑈𝐻𝑠,𝑡) ∀𝑠, 𝑡𝜖𝑇𝑅𝐻 (37) 

 

3.9. Peak of power demand 

One of the objectives of the management of the microgrid is to reduce the peak of power 

demand from the power grid. Thus, equation (38) is applied to achieve this goal. According to this 

equation, if electric power purchases from grid exceed an agreed threshold 𝛽 at time 𝑡, the 

additional amount 𝛾𝑡 over threshold 𝛽 is charged with an additional rate. On the contrary, if the 

electric power purchases are below the threshold 𝛽, the variable 𝛾𝑡 takes value 0, and the normal 

electricity price is applied. 

𝛾𝑠,𝑡 ≥ 𝐼𝑚𝑠,𝑡 + 𝐼𝑚𝑡,𝑠
𝑍 − 𝛽 ∀𝑠, 𝑡𝜖𝑇𝑅𝐻 (38) 
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3.10. Objective function 

The aim of the proposed mathematical formulation is to minimise the operational cost  of 

the microgrid. This includes costs of generators and storage systems, purchases, penalties and 

revenues from electricity exported to the grid. Particularly, the following elements are considered 

in the objective function calculated in equation (39), considering the probability that a scenario 

takes place 𝑃𝑟𝑠. Notice that capital costs are independent of the schedule. Since the equipment 

capacities are predetermined, capital costs are not considered. 

 = 
Operational cost (to be minimised)  

𝛿 ∙ ∑𝑃𝑟𝑠
𝑠

∙ ∑
𝑛𝑔

𝛼
∙ 𝑃𝑠,𝑡

𝐶𝐻𝑃

𝑡𝜖𝑇𝑅𝐻

 Operation and maintenance costs of the CHP 

generator 
 

+𝛿 ∙ ∑𝑃𝑟𝑠
𝑠

∙ ∑ 𝑚𝑊 ∙ 𝑃𝑠,𝑡
𝑊

𝑡𝜖𝑇𝑅𝐻

 Operation and maintenance costs of the wind 

turbine 
 

+𝛿 ∙ ∑𝑃𝑟𝑠
𝑠

∙ ∑
𝑛𝑔

𝐵
∙ 𝑃𝑠,𝑡

𝐵

𝑡𝜖𝑇𝑅𝐻

 Operation and maintenance costs of the boiler  

+𝛿 ∙ ∑𝑃𝑟𝑠
𝑠

∙ ∑ 𝑚𝐸 ∙ 𝑆𝑠,𝑡
𝐸𝐷

𝑡𝜖𝑇𝑅𝐻

 Electrical storage costs  

+𝛿 ∙ ∑𝑃𝑟𝑠
𝑠

∙ ∑ 𝑚𝑇 ∙ 𝑆𝑠,𝑡
𝑇𝐷

𝑡𝜖𝑇𝑅𝐻

 Thermal storage costs  

+𝛿 ∙ ∑𝑃𝑟𝑠
𝑠

∙ ∑ 𝑏𝑡 ∙ 𝐼𝑚𝑠,𝑡

𝑡𝜖𝑇𝑅𝐻

 Cost of electricity imported from the grid  

+𝛿 ∙ ∑𝑃𝑟𝑠
𝑠

∙ ∑ 𝑚𝑍 ∙ 𝑏𝑡 ∙ 𝐼𝑚𝑠,𝑡
𝑍

𝑡𝜖𝑇𝑅𝐻

 Cost of electricity imported from the grid for tasks starting 

outside the time windows 

+𝛿 ∙ ∑𝑃𝑟𝑠
𝑠

∙ ∑ 𝑝𝑘 ∙ 𝛾𝑠,𝑡

𝑡𝜖𝑇𝑅𝐻

 Revenues from electricity exported to the grid  

+𝛿 ∙ ∑𝑃𝑟𝑠
𝑠

∙ ∑ 𝑚𝑈 ∙ 𝑈𝐻𝑠,𝑡

𝑡𝜖𝑇𝑅𝐻

 Penalty cost for non-satisfying the heat demand  

−𝛿 ∙ ∑𝑃𝑟𝑠
𝑠

∙ ∑ 𝑞 ∙ 𝐸𝑥𝑠,𝑡

𝑡𝜖𝑇𝑅𝐻

 Revenues from electricity exported to the grid  

+∑ ∑ ∑ 𝜇𝑖𝑖
𝑊 ∙ 𝑖𝑘,𝑖,𝑡

𝑊

𝑡𝜖𝑇𝑅𝐻𝑖𝜖𝐼𝑘𝑅𝐻𝑘

 Penalty cost if task starting inside the time 

windows is interrupted 
  

+∑ ∑ ∑ 𝜇𝑠𝑖
𝑊 ∙ 𝑠𝑘,𝑖,𝑡

𝑊

𝑡𝜖𝑇𝑅𝐻𝑖𝜖𝐼𝑘𝑅𝐻𝑘

 Penalty cost if task starting inside the time windows 

remains interrupted 

+∑ ∑ ∑ 𝜇𝑖𝑖
𝑍 ∙ 𝑖𝑘,𝑖,𝑡

𝑍

𝑡𝜖𝑇𝑅𝐻𝑖𝜖𝐼𝑘𝑅𝐻𝑘

 Penalty cost if task starting outside the time 

windows is interrupted 
 

+∑ ∑ ∑ 𝜇𝑠𝑖
𝑍 ∙ 𝑠𝑘,𝑖,𝑡

𝑍

𝑡𝜖𝑇𝑅𝐻𝑖𝜖𝐼𝑘𝑅𝐻𝑘

 Penalty cost if task starting outside the time windows 

remains interrupted 
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+∑ ∑ 𝐶𝑃𝑒𝑛𝑘,𝑖

𝑖𝜖𝐼𝑘𝑅𝐻𝑘

 Penalties in case of deviation from the initial 

starting time 
(39) 

 

3.11. Rolling horizon 

The rolling horizon approach requires linking past events with the up-to-date status of the 

system. Thus, the following equations and variables are implemented to link past decisions with the 

current prediction horizon. Equations (40) and (41) update the information related to the initial 

time of task 𝑖 at home 𝑘 inside and outside the time window, respectively. These equations are used 

to consider the starting point of a given task outside the current prediction horizon. If 𝑊𝑘,𝑖
𝑜  (or 𝑍𝑘,𝑖

𝑜 ) 

in iteration 𝑟ℎ takes value 1, this task starts outside the current prediction horizon. Since all tasks 

must start, these two equations avoid infeasibilities for non-starting tasks. The binary parameter 

𝑊𝑘,𝑖
𝑜  (or 𝑍𝑘,𝑖

𝑜 ) takes into account the value of the binary variable 𝑊𝑘,𝑖,𝜃,𝑡 (or 𝑍𝑘,𝑖,𝜃,𝑡), which takes 

value 1 for 𝜃 = 0 if task 𝑖 at home 𝑘 starts at time 𝑡. The value of these binary variables for future 

decisions can vary in each iteration 𝑟ℎ, but not for past decisions. Equations (42) and (43) update 

the processing time of task 𝑖 at home 𝑘 started before the current prediction horizon (𝑃𝐻) inside 

and outside the established time window respectively (i.e., periods of time where each task was 

active), which allows updating the remaining processing time of that tasks. Furthermore, equations 

(44) and (45) update the overall status of task 𝑖 at home 𝑘, considering the task operation period 𝜃, 

which is used to establish the consumption profile in a given task (notice that the consumption 

profile could not be constant).  

(𝑊𝑘,𝑖
𝑜 )

𝑟ℎ
= (𝑊𝑘,𝑖

𝑜 )
𝑟ℎ−1

+ (𝑊𝑘,𝑖,𝜃,𝑡) 𝑟ℎ−1
𝜃=0

𝑡=𝑇𝑡−𝐶𝐻+1

 
∀𝑘, 𝑖𝜖𝐼𝑘𝑅𝐻 (40) 

(𝑍𝑘,𝑖
𝑜 )

𝑟ℎ
= (𝑍𝑘,𝑖

𝑜 )
𝑟ℎ−1

+ (𝑍𝑘,𝑖,𝜃,𝑡) 𝑟ℎ−1
𝜃=0

𝑡=𝑇𝑡−𝐶𝐻+1

 
∀𝑘, 𝑖𝜖𝐼𝑘𝑅𝐻 (41) 

(�̃�𝑘,𝑖)𝑟ℎ
= (�̃�𝑘,𝑖)𝑟ℎ−1

+ ( ∑ 𝑊𝑘,𝑖,𝜃,𝑡

𝜃𝑖,𝑘𝑅𝐻

)

𝑟ℎ−1
𝑡=𝑇𝑡−𝐶𝐻+1

 ∀𝑘, 𝑖𝜖𝐼𝑘𝑅𝐻 (42) 

(�̃�𝑘,𝑖)𝑟ℎ
= (�̃�𝑘,𝑖)𝑟ℎ−1

+ ( ∑ 𝑍𝑘,𝑖,𝜃,𝑡

𝜃𝑖,𝑘𝑅𝐻

)

𝑟ℎ−1
𝑡=𝑇𝑡−𝐶𝐻+1

 ∀𝑘, 𝑖𝜖𝐼𝑘𝑅𝐻 (43) 

(�̅�𝑘,𝑖,𝜃,𝑡)𝑟ℎ
= (�̅�𝑘,𝑖,𝜃,𝑡)𝑟ℎ−1

+ ( ∑ 𝑊𝑘,𝑖,𝜃,𝑡′

𝜃𝑖,𝑘𝑅𝐻

)

𝑟ℎ−1
𝑡=𝑇𝑡−𝐶𝐻+1

 ∀𝑘, 𝑖𝜖𝐼𝑘𝑅𝐻, 𝜃𝑖,𝑘𝑅𝐻 (44) 
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(�̅�𝑘,𝑖,𝜃,𝑡)𝑟ℎ
= (�̅�𝑘,𝑖,𝜃,𝑡)𝑟ℎ−1

+ ( ∑ 𝑍𝑘,𝑖,𝜃,𝑡′

𝜃𝑖,𝑘𝑅𝐻

)

𝑟ℎ−1
𝑡=𝑇𝑡−𝐶𝐻+1

 ∀𝑘, 𝑖𝜖𝐼𝑘𝑅𝐻, 𝜃𝑖,𝑘𝑅𝐻 (45) 

The electrical and heat storage levels of the preceding control horizon in each scenario 𝑠 is 

connected to the initial electrical and heat storage levels of the current prediction horizon by 

applying equations (46) and (47), respectively. Also, the remaining processing time of task 𝑖 at 

home 𝑘 is also updated for each iteration, as calculated in equation (48). The current processing 

time is determined as the difference between initial processing time 𝑃𝑇0𝑘,𝑖,𝑠 and the periods of time 

where this task was active (�̃�𝑘,𝑖 and �̃�𝑘,𝑖). Finally, equation (49) updates the maximum periods of 

time outside the current prediction horizon (𝑃𝐻) where a task 𝑖 at home 𝑘 can take place, in order 

to avoid any eventual unfeasibility for non-satisfying the completion of any task. The optimisation 

problem is iteratively solved as reported by the rolling horizon scheme. This approach will be used 

to update input information to the up-to-date available data. 

𝑆𝑠,0
𝐸 = 𝑆�̂�

𝑠,𝑡+1 ∀𝑠, 𝑡 = 𝑇𝑡 − 𝐶𝐻 + 1 (46) 

𝑆𝑠,0
𝑇 = 𝑆�̂�

𝑠,𝑡+1 ∀𝑠, 𝑡 = 𝑇𝑡 − 𝐶𝐻 + 1 (47) 

𝑃𝑇𝑘,𝑖,𝑠 = 𝑃𝑇0𝑘,𝑖,𝑠 − �̃�𝑘,𝑖 − �̃�𝑘,𝑖 ∀𝑘, 𝑖𝜖𝐼𝑘𝑅𝐻, 𝑠 (48) 

𝜏𝑘,𝑖 = 𝑆𝐻 − 𝑇𝑡 ∙ 𝐶𝐻 − 𝑃𝐻 − 1 ∀𝑘, 𝑖𝜖𝐼𝑘𝑅𝐻 (49) 

Here it should be noted that not all tasks are included in each iteration. For instance, tasks 

already completed are not considered in the current iteration. Thus, tasks that could start or have 

started but are not fully completed at the time the current iteration starts are considered by the 

algorithm. Notice that a task 𝑖 is unfinished in iteration 𝑟ℎ if (𝑃𝑇𝑘,𝑖,𝑠)𝑟ℎ
> 0. As a consequence, tasks 

are not taken into account if the minimum starting time 𝑇𝑠𝑘,𝑖
𝑚𝑖𝑛 is located after the current 

prediction horizon. 

4. Illustrative example 

The scheduling problem includes electricity and heat generation, purchases, sales, storage 

and schedule of tasks of a microgrid to be optimised. Figure 7 represents a scheme of the 

considered microgrid. 
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Figure 7. Schematic diagram of the microgrid (Silvente et al., 2017). 

. 

Equal-size time intervals are considered. Input information and decisions related to 

electricity and heat generation and demand are given for every 30 min, which corresponds to the 

duration of each time interval as well as the length of the control horizon (𝐶𝐻 = 1 time interval). 

The total scheduling horizon considered is 24 h. The length of the time intervals is 30 min. 

Prediction Horizons (𝑃𝐻𝑠) of 2, 4 and 6 hours have been considered. Input data related to uncertain 

parameters (e.g., electricity and heat demands, wind forecast) are refreshed at the beginning of 

time intervals.  

The case study considers a microgrid formed of 1, 5 and 10 homes. The technical 

information and costs are detailed below: 

 Wind turbines. The capacity of the wind turbine corresponds to 10 𝑘𝑊𝑒 . The maintenance 

cost is 0.005 £/𝑘𝑊ℎ𝑒. The cut-in speed is 5.0 𝑚/𝑠, whereas the cut-out wind is 25.0 𝑚/𝑠, 

and the nominal wind speed is 12.0 𝑚/𝑠. The power coefficient is 47%, and the blade 

diameter is 4.0 𝑚. 

 One common CHP generator. The electrical efficiency is assumed to be 35%. Heat to power 

ratio is considered to be equal to 1.3. Natural gas cost is 0.027 £/𝑘𝑊ℎ. 

 One common boiler. 

 One common electrical storage unit. Charge and discharge efficiencies are 95%. Charge and 

discharge limits correspond to 0.333 𝑘𝑊𝑒 . Maintenance cost is 0.005 £/𝑘𝑊ℎ𝑒. 

 One common thermal storage unit. Charge and discharge efficiencies are 98%. Charge and 

discharge limits correspond to 0.667 𝑘𝑊𝑡ℎ. Maintenance cost is 0.001 £/𝑘𝑊ℎ𝑡ℎ. 

 The connection the power grid, which allows importing and exporting electricity. The real-

time electricity price is collected from Balancing Mechanism Reporting System. Additionally, 
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an extra cost of 0.05 £/𝑘𝑊ℎ𝑒 is applied when electric power demand per home from the 

grid is over the agreed threshold. Electricity may also be exported to the power grid with 

0.01 £/𝑘𝑊ℎ𝑒. 

The number of considered wind turbines for the different homes, as well as the maximum 

capacities for the CHP, boiler, electrical storage, thermal storage and the threshold is shown in 

Table 1. 

Table 1. Physical constraints and capacities. 

Element 1 home 5 homes 10 homes 
Number of wind turbines, 𝑁𝑊 1 4 7 
CHP capacity, 𝑃𝐶𝐻𝑃 (𝑘𝑊) 1.2 4.8 8.4 
Boiler capacity, 𝑃𝐵 (𝑘𝑊) 2.8 11.2 19.6 
Electrical storage capacity, 𝐶𝐸  (𝑘𝑊ℎ) 0.5 2.0 3.5 
Thermal storage capacity, 𝐶𝑇 (𝑘𝑊ℎ) 0.7 2.8 4.9 
Threshold, 𝛽 (𝑘𝑊) 3.0 12.0 21.0 

 

Furthermore, 12 equipment units 𝑗 per home 𝑘 are considered to operate 16 different tasks 

𝑖. These tasks allow a degree of flexibility in their starting time, accepting some delays from the 

established minimum starting time 𝑇𝑠𝑘,𝑖
𝑚𝑖𝑛. Also, all tasks except 𝑖1 and 𝑖2, have constant power 

consumption. Data related to power requirements to perform a task, minimum and maximum 

starting time (constituting the time window) and processing time of tasks can be found in Table 2. 

The power requirements for the non-constant profile tasks, corresponding to tasks 𝑖1 and 𝑖2, is 

presented in Table 3.  

Table 2. Power requirements, earliest and latest starting time and processing time of tasks. 

Task 𝑖 
Equipment 

unit 𝑗 

Power, 𝐶𝑖,𝜃 

(𝑘𝑊) 

Minimum starting 

time, 𝑇𝑠𝑘,𝑖
𝑚𝑖𝑛 (ℎ) 

Maximum starting 

time, 𝑇𝑠𝑘,𝑖
𝑚𝑎𝑥 (ℎ) 

Processing 

time, 𝑃𝑇𝑘,𝑖,𝑠 (ℎ) 

𝑖1 𝑗1 Variable 0.5 7.0 2.0 

𝑖2 𝑗2 Variable 1.0 4.0 1.5 

𝑖3 𝑗3 2.50 5.0 9.0 1.2 

𝑖4 𝑗4 3.00 0.0 4.5 1.0 

𝑖5 𝑗5 5.00 10.0 14.5 0.7 

𝑖6 𝑗6 1.70 0.0 2.0 0.5 

𝑖7 𝑗7 0.84 10.0 10.5 6.0 

𝑖8 𝑗8 0.10 9.0 16.0 2.3 

𝑖9 𝑗9 0.30 9.0 13.5 3.0 

𝑖10 𝑗10 1.20 0.0 9.5 0.8 

𝑖11 𝑗11 0.30 0.0 24.0 24.0 

𝑖12 𝑗12 3.50 10.0 14.0 3.1 

𝑖13 𝑗3 2.50 10.5 15.5 1.8 

𝑖14 𝑗6 1.70 6.5 12.0 0.9 

𝑖15 𝑗9 0.30 16.5 21.0 3.4 

𝑖16 𝑗12 3.50 17.5 22.0 1.5 
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Table 3. Variable power requirements. 

Operation period 𝜃 Task 𝑖1 Task 𝑖2 

𝜃0 1.80 2.15 

𝜃1 0.22 0.21 

𝜃2 1.80 0.45 

𝜃3 0.22  

 

Data related to heat demand, wind forecast speed as well as electricity prices are presented 

in Figures B1, B2 and B3 respectively in Appendix B. Also, penalty costs for interrupting or for 

remaining interrupted a task 𝑖 started inside or outside the time window is presented in Table B1 in 

Appendix B. This table also contains the penalty cost from deviations from the minimum starting 

time of task 𝑖 at home 𝑘. Furthermore, a penalty cost of 0.2 £/𝑘𝑊ℎ𝑡ℎ is applied when the heat 

demand is not satisfied. If any task 𝑖 starts outside the time window, an extra cost factor 𝑚𝑍 is 

applied, which takes value 1.50. This involves increasing the price of the purchases of electricity to 

the power grid by 50%.  

Different scenarios have been taken into account. These scenarios include variations in the 

nominal value of the expected wind speed, processing time of tasks and overall heat demand. This 

is introduced in the model in order to embrace all possible situations. Particularly, three different 

situations have been considered in each time interval for the wind speed 𝑣𝑠,𝑡, processing time 𝑃𝑇𝑘,𝑖,𝑠 

and heat demand 𝐻𝑠,𝑡. Each situation for each considers input parameter considers three different 

situations, which corresponds to a low, medium and high value. This corresponds to the 80%, 100% 

and 120% of the nominal value, respectively. Also, each scenario has an associated occurrence 

probability. The probability of each scenario and the values (low, medium and high) associated with 

the considered scenarios can be found in Table B2 in Appendix B. 

Notice that the seasonality may affect the operations of the microgrid, since the generation 

and the demand may be affected by the conditions of the season. Furthermore, another factor that 

may influence the management of the microgrid is the location, which can modify the availability 

and requirements of energy. In our case, the proposed illustrative example evaluates one selected 

day type, in order to highlight to potential benefits of using a rolling horizon stochastic formulation 

to deal with uncertainty in the management of microgrids. 

 

5. Results and discussion 

5.1. Monte Carlo simulation 

Monte Carlo simulation technique has been used to assess the impact of uncertain 

parameters associated with the microgrid (e.g., wind turbine speed, overall heat demand and 

processing time of a task) in the objective function. Monte Carlo simulation has been implemented 
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in GAMS. This simulation requires an iterative algorithm. Firstly, the model is solved under 

predicted conditions. Once the model has been solved, the binary decisions (i.e., schedule of tasks), 

has been fixed. Then, the model has been solved iteratively, considering variations in input 

parameters. Particularly, the model has been solved for 300 iterations, considering the following 

Normal distributions (Table 4). The normal probability distribution is commonly applied to natural 

phenomena and for observations where the mean value converge in a central point and are 

symmetric about this point. This continuous probability distribution is characterised by a mean 

value and a standard deviation. There are other representations, such as binomial and Poisson 

distributions, which are applied for discrete distributions. 

Table 4. Characteristics of the considered probability distributions. 

Parameter 
Probability 

distribution 
Mean value Standard deviation 

Wind speed Normal distribution Nominal wind speed 0.50·Nominal wind speed 

Heat demand Normal distribution Nominal heat demand 0.30·Nominal heat demand 

Processing time Normal distribution Nominal processing time 0.30·Nominal processing time 

 

Notice that binary variables are fixed. So, although variability in the processing time of tasks 

is applied, the minimum and maximum values of the processing time under uncertainty correspond 

to the boundaries of the time intervals of the nominal processing time. 

Figure 8 shows the expected cost for 1 house after running different iterations and the cost 

for the deterministic problem. The value of the objective function is worsened by 19.6% when 

variability in the above mentioned parameters are applied. So, the variability associated with the 

microgrid requires managing the uncertainty to obtain good and quality practical solutions. Thus, 

the rolling horizon stochastic formulation constitutes one way to manage the uncertainty. 

 

Figure 8. Results of the Monte Carlo simulation. 
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5.2. Rolling horizon stochastic approach 

The solution of the model stipulates the optimal schedule for electricity and heat 

generation, purchases, sales, storage and consumption that minimises the cost of the microgrid. The 

combination of the rolling horizon and stochastic programming used to tackle uncertainty, has 

allowed updating input data and considering uncertain profiles. This update includes wind speed, 

the processing time of tasks and the overall heat demand. The results next presented consider a 

single home for a prediction horizon of 4 h for the most common scenario, corresponding to 

medium values of wind forecast, processing time of tasks and overall heat demand levels, which 

corresponds to scenario 𝑠14. Figures 9a and 9b show the electrical power generation, purchases 

and sales; and the heat generation profiles, respectively. The electricity and heat storage level 

profiles are presented in Figure 9c. Also, Figure 9d plots the daily schedule of tasks. Some energy 

tasks have been delayed, applying a penalty cost for these deviations from the initial starting time. 

These delays correspond to tasks 𝑖4 (3.0 h), 𝑖5 (3.0 h), 𝑖12 (0.5 h), 𝑖13 (10.0 h) and 𝑖16 (2.0 h). The 

mentioned tasks have a relatively low penalty for delaying their initial starting time. Moreover, 

tasks 𝑖3, 𝑖7, 𝑖10, 𝑖12, 𝑖15 and 𝑖16 are interrupted. This disruption of the task is produced because is 

more economical rather than purchasing electricity to the grid. The interested reader can be 

referred to Silvente and Papageorgiou (2017) for more detail explanations related to the effect of 

the delays in the starting time of tasks as well as in their interruption. 

Notice that the intervals where tasks are active (i.e., consuming electricity) are the same for 

all scenarios, since the binary variable determining electricity consumption is a first-stage variable. 

Therefore, the active time intervals do not depend on the scenario. This is a big advantage of this 

methodology since different scenarios have been considered simultaneously. Thus, this reactive 

and proactive approach allows updating information, to react to alterations from the initial 

conditions, such as modifications in the power availability (i.e., wind speed), processing tasks of 

tasks and in the overall heat demand. Furthermore, different durations of the prediction horizon 

have been taken into account. This has been done to analyse and compare the obtained solutions by 

considering different durations of the prediction horizon. Therefore, predictions horizons of 2, 4, 6 

and 8 h have been contemplated. The control horizon for these situations has been established in 

0.5 h, which corresponds to 1 time interval. Also, the perfect information case has been considered. 

This hypothetical situation corresponds to the case where the duration of the prediction horizon is 

equivalent to the overall scheduling horizon (24 h), assuming that all input parameters are certain. 

However, this is not a realistic situation, since the system may be affected by variability. 

Table 5 contains the electric power generation, purchases and sales levels as well as 

thermal power generation level for one home considering different durations of the prediction 

horizons and the perfect information case. Based on the obtained results, there is a substantial 

reduction on the dependence to the connected grid, in terms of electricity purchases, when the 

duration of the prediction horizon is increased. The differences in the imported electricity 

according to the duration of the prediction horizon are due to the fact that as the duration of the 

prediction horizon increase, more information is received in the system to proceed to solve the 

optimisation problem. As the availability of future data is reduced when short prediction horizons 

are considered, there is no data of future power requirements. Consequently, due to this lack of 
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future information, electricity is sold to the power grid instead of been stored. Accordingly, the 

overall cost decreases for longer prediction horizons. Thus, the use of accurate forecast techniques 

will allow improving the prediction of future events, increasing the duration of the prediction 

horizon and improving the quality of the obtained solution. 
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Figure 9. a) Electric power generation, purchases and sales for a given scenario; b) Thermal power generation 
profile for a given scenario; c) Electricity and heat storage level profiles for a given scenario; d) Schedule of 

tasks for 1 home and prediction horizon of 4 hours. 

 

 

Table 5. Electricity and heat generation, purchases and sales for 1 home considering different prediction 
horizons for 1 home. 

Key Performance Indicator 𝑃𝐻 =  24ℎ 𝑃𝐻 =  8ℎ 𝑃𝐻 =  6ℎ 𝑃𝐻 =  4ℎ 𝑃𝐻 =  2ℎ 

Electricity via wind turbine (kWh) 37.6 37.6 37.6 37.6 37.6 

Electricity via CHP (kWh) 21.5 20.9 21.3 22.4 21.6 

Electricity purchases (kWh) 3.1 6.1 10.3 14.6 19.7 

Electricity sales (kWh) 10.5 13.0 17.7 23.1 28.2 

Heat via boiler (kWh) 64.9 65.6 65.0 63.7 64.7 

Heat via CHP (kWh) 27.9 27.2 27.7 29.1 28.1 

 

The duration of the prediction horizon also affects the delays associated with each task. 

Table 6 summarises the delays according to the duration of the prediction horizon. According to 

expectations, longer prediction horizons involve less delay in the starting time of tasks. Shorter 

prediction horizons involve more delays. This is because in each iteration, the optimisation 

procedure obtains the optimal solution for the mentioned iteration. Thus, postponing some tasks 

(applying a penalty) is more economical that perform them, due to the generation costs involved in 

the process. Naturally, longer prediction horizons also try to find the optimal results for the 

considered iterations, but receiving more information, such as complete information of the time 

window in which the task should be carried out. Therefore, delays are reduced compared with 

shorter time horizons. 

Table 6. Delays for different prediction horizons for 1 home. 

Tasks 
Delays (h) for prediction horizons 

𝑃𝐻 =  24ℎ 𝑃𝐻 =  8ℎ 𝑃𝐻 =  6ℎ 𝑃𝐻 =  4ℎ 𝑃𝐻 =  2ℎ 

𝑖4 3.0 3.5 3.5 3.0 22.0 

𝑖5 3.0 3.0 3.0 3.0 3.0 

𝑖7 0.0 0.0 0.0 0.0 8.0 

𝑖12 0.5 2.0 0.5 0.5 0.0 

𝑖13 1.0 0.0 7.5 10.0 11.5 

𝑖15 0.0 0.0 0.0 0.0 1.5 

𝑖16 0.0 0.0 0.5 2.0 4.5 

Total delays (h) 7.5 8.5 15.0 18.5 50.5 

 

Obviously, the duration of the prediction horizon also affects the length of the interruption 

of tasks. Thus, longer prediction horizons implicate a reduction in the duration of the interruptions. 

However, the time interruptions for the shortest prediction horizon are reduced. One reason that 
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explains this is that previous delays do not allow interrupting some tasks. For example, tasks 𝑖7, 𝑖15 

and 𝑖16 were postponed, which involve less interruptions to complete tasks within the scheduling 

horizon. Table 7 displays the interruptions for different prediction horizons for one home. 

Table 7. Interruptions for different prediction horizons for 1 home. 

Tasks 
Time interruptions (h) for prediction horizons 

𝑃𝐻 =  24ℎ 𝑃𝐻 =  8ℎ 𝑃𝐻 =  6ℎ 𝑃𝐻 =  4ℎ 𝑃𝐻 =  2ℎ 

𝑖3 0.0 4.0 11.5 14.0 3.5 

𝑖5 0.0 0.5 0.0 0.0 0.0 

𝑖7 8.0 8.0 8.0 8.0 1.0 

𝑖9 0.0 0.0 0.0 0.0 8.5 

𝑖10 0.0 0.0 0.0 23.5 23.5 

𝑖12 2.5 1.0 4.0 6.0 8.5 

𝑖13 0.0 5.0 0.0 0.0 0.0 

𝑖15 3.5 3.5 3.5 4.0 0.0 

𝑖16 1.0 1.0 0.5 0.5 0.0 

Time interrupted (h) 15.0 23.0 27.5 56.0 45.0 

 

The implementation of the rolling horizon may involve constant variations in the expected 

schedule since the problem is solved iteratively. This is produced because input data is refreshed 

and new information is received in the optimisation procedure in each iteration. The interested 

reader can be referred to Silvente et al. (2015b) for more detail explanations. To highlight these 

alterations, Figure 10 shows the changes produced in the schedule of tasks 𝑖15 and 𝑖16. The 

expected schedule considering different iterations as well as the final schedule is included. Notice 

that the schedule before the current prediction horizon cannot be modified since this corresponds 

to past events. 
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Figure 10. Evolution of scheduled tasks for 1 home and prediction horizon of 4 hours for different 
iterations. The last schedule corresponds to the final-implemented schedule. 

 

Table 8 shows the value of the overall cost of the microgrid (objective function), considering 

different durations of the prediction horizon as well as considering different number of homes 

within the microgrid. As expected, longer prediction horizon involves a reduction in the operational 

cost and closes the difference from the perfect information (𝑃𝐻=24 h) solution. The optimal daily 

cost is reduced by 2.3%, 8.1% and 8.8% for prediction horizons of 4, 6 and 8 hours respectively, 

compared with the Monte Carlo simulation. This highlights the importance of selecting an 

appropriate duration of the prediction horizon. 

The MILP formulation has been implemented in GAMS 24.7 and solved using CPLEX 12.6, in 

an Intel® Xenon® CPU E5-1650 v3 @ 3.50GHz, with 32GB of installed memory (RAM). Table 8 also 

contains the main model statistics data obtained for each iteration during the optimisation 

procedure, considering different prediction horizons as well as different number of houses. For the 

same number of houses, the number of equations and continuous and discrete variables augments 

when the prediction horizon increases. This involves an increase in the computational effort to 

solve the problem, since more decisions have to be taken.  

Table 8. Daily total cost of the microgrid considering different prediction horizons and number of homes and 
model statistics. 

Number of 

houses 

Daily total 

cost (£) 

Prediction 

horizon 

Number of 

equations 

Continuous 

variables 

Discrete 

variables 

Resource 

time (CPU, s) 

1 house 6.31 𝑃𝐻 =  2 ℎ 66,081 68,570 66,400 1.4 

5.20 𝑃𝐻 =  4 ℎ 68,505 70,470 67,520 3.4 

4.89 𝑃𝐻 =  6 ℎ 71,266 72,565 68,136 4.1 

4.85 𝑃𝐻 =  8 ℎ 74,154 74,628 68,704 11.9 
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4.82 𝑃𝐻 =  24 ℎ 105,222 96,556 76,800 409.6 

5 houses 45.04 𝑃𝐻 =  2 ℎ 323,705 337,122 332,000 11.3 

41.68 𝑃𝐻 =  4 ℎ 329,345 341,006 337,600 13.9 

37.93 𝑃𝐻 =  6 ℎ 336,670 345,865 340,680 19.9 

37.47 𝑃𝐻 =  8 ℎ 344,630 350,564 343,520 22.7 

 37.46 𝑃𝐻 =  24 ℎ 448,130 410,092 384,000 582.6 

10 houses 116.43 𝑃𝐻 =  2 ℎ 645,735 672,812 664,000 40.9 

115.82 𝑃𝐻 =  4 ℎ 655,395 679,176 675,200 71.3 

109.93 𝑃𝐻 =  6 ℎ 668,425 687,490 681,360 130.9 

109.90 𝑃𝐻 =  8 ℎ 682,725 695,747 687,040 234.5 

 100.45 𝑃𝐻 =  24 ℎ 876,765 802,172 768,000 3600.0 

 

6. Concluding remarks  

This work addresses the coordinated management of electricity and heat generation, 

purchases, sales, storage and consumption within a microgrid. Several tasks have been scheduled, 

considering consumption profiles, time windows to execute the consumption, eventual 

interruptions, time-varying grid electricity prices and peak demand penalisations.  

Monte Carlo simulations have been carried out to analyse the effect of the uncertainty on 

the objective function. According to the obtained results, the presence of uncertainty may increase 

the cost of the microgrid by 19.6%, compared with the situation in which only deterministic 

conditions are considered. Thus, techniques to handle uncertainty are required to manage the 

microgrid. A rolling horizon two-stage stochastic MILP formulation has been presented for an 

enhanced management of microgrid under uncertainty. A combination of reactive and proactive 

approaches has been used to cope with uncertainty associated with the electricity and heat 

generation as well as their demand. This methodology allows updating input information, to react 

to deviations from the nominal plan, which allows adapting electricity and heat generation, 

purchases, storage levels, consumption and sales to the current upload parameters. The 

mathematical model has been tested for different length of prediction horizons. The application of 

this methodology has allowed improving the optimal solution up to 8.8% compared with the Monte 

Carlo simulation. As a conclusion, longer prediction horizons favour obtaining enhanced solutions, 

under the assumption of precise demand and weather predictions.  

The proposed formulation has been applied to manage a case study of a microgrid. This may 

be applied as the basis for managing problems involving more advanced complexity. Moreover, the 

mathematical model can be extended by considering more details in the operations of the 

microgrid, such as the consideration of start-up profiles when a task is started or interrupted. 

 

Nomenclature 

Indices and sets 
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𝑖 set of tasks 
𝑗 set of equipment units 
𝑘 set of homes in the microgrid 
𝑡 set of time intervals 
𝜃 set of task operation periods 
𝑠 set of scenarios 
𝑟ℎ set of iteration of the rolling horizon approach 
𝑖𝜖𝐼𝑗 subset of tasks 𝑖 performed in equipment unit 𝑗 
𝑖𝜖𝐼𝑘𝑅𝐻 subset of tasks 𝑖 performed at home 𝑘 included in the current prediction horizon 
𝑗𝜖𝐽𝑘 subset of equipment units 𝑗 available at home 𝑘 
𝑡𝑇𝑅𝐻 subset of time intervals 𝑡 included in the current prediction horizon 
𝜃𝑖,𝑘𝑅𝐻 subset of task operation periods included 𝜃 in the current prediction horizon 
  
Parameters 
𝐴 wind generator blade area (𝑚2) 
𝑏𝑡 electricity buying price from the grid at time 𝑡 (£/𝑘𝑊ℎ𝑒) 
𝐶𝑖,𝜃 power consumption capacity of task 𝑖 at operation period 𝜃 (𝑘𝑊𝑒) 
𝐶𝐶𝐻𝑃 CHP generator capacity (𝑘𝑊𝑒) 
𝐶𝑊 wind generator capacity (𝑘𝑊𝑒) 
𝐶𝐵 boiler capacity (𝑘𝑊𝑡ℎ) 
𝐶𝐸  electrical storage capacity (𝑘𝑊ℎ𝑒) 
𝐶𝑇 thermal storage capacity (𝑘𝑊ℎ𝑡ℎ) 
𝐻𝑠,𝑡 heat demand in scenario 𝑠 at time 𝑡 (𝑘𝑊𝑡ℎ) 
𝑚𝐸 cost per unit input (maintenance) for electrical storage unit (£/𝑘𝑊ℎ𝑒) 
𝑚𝑇 cost per unit input (maintenance) for thermal storage unit (£/𝑘𝑊ℎ𝑡ℎ) 
𝑚𝑊 wind generator maintenance cost (£/𝑘𝑊ℎ𝑒) 
𝑚𝑍 extra cost factor due to starting the task outside the time window 
𝑛𝑔 price of natural gas (£/𝑘𝑊ℎ) 
𝑁𝑊 number of wind turbines 
𝑝𝑘 difference between peak and base electricity demand price from the grid (£/𝑘𝑊ℎ𝑒) 
𝑃𝑟𝑠 probability of scenario 𝑠 
𝑃𝑡

𝑊 electric power from wind generator at time 𝑡 (𝑘𝑊𝑒) 
𝑃𝑇0𝑘,𝑖,𝑠 initial processing time of task 𝑖 at home 𝑘 in scenario 𝑠 
𝑃𝑇𝑘,𝑖,𝑠 remaining processing time of task 𝑖 at home 𝑘 in scenario 𝑠 
𝑃𝑇̅̅̅̅

𝑘,𝑖 roundup value of the processing time of task 𝑖 at home 𝑘 
𝑞 electricity selling price to grid (£/𝑘𝑊ℎ𝑒) 
𝑆𝑠,0

𝐸  initial state of electrical storage in scenario 𝑠 (𝑘𝑊ℎ𝑒) 

𝑆�̂�
𝑠,𝑡 linking variable determining the electrical storage level at the end of interval 𝑡 in the 

current prediction horizon 
𝑆𝐸𝐶𝑚𝑎𝑥 electric power storage charge limit (𝑘𝑊𝑒) 
𝑆𝐸𝐷𝑚𝑎𝑥 electric power storage discharge limit (𝑘𝑊𝑒) 
𝑆𝑠,0

𝑇  initial state of thermal storage in scenario 𝑠 (𝑘𝑊ℎ𝑡ℎ) 

𝑆�̂�
𝑠,𝑡 linking variable determining the thermal storage level at the end of interval 𝑡 in the 

current prediction horizon 
𝑆𝑇𝐶𝑚𝑎𝑥 thermal storage charge limit in scenario 𝑠 (𝑘𝑊𝑡ℎ) 
𝑆𝑇𝐷𝑚𝑎𝑥 thermal storage discharge limit (𝑘𝑊𝑡ℎ) 
𝑆𝐻 scheduling horizon (ℎ) 
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𝑇𝑠𝑘,𝑖
𝑚𝑎𝑥 latest starting time of task 𝑖 at home 𝑘 

𝑇𝑠𝑘,𝑖
𝑚𝑖𝑛 earliest starting time of task 𝑖 at home 𝑘 

𝑣𝑠,𝑡 wind speed in scenario 𝑠 at time 𝑡 (𝑚/𝑠) 
𝑉𝑛𝑜𝑚 nominal wind speed (𝑚/𝑠) 
𝑉𝑐𝑢𝑡−𝑖𝑛 cut in wind speed (𝑚/𝑠) 
𝑉𝑐𝑢𝑡−𝑜𝑢𝑡 cut out wind speed (𝑚/𝑠) 
𝑊𝑘,𝑖

𝑜  1 if task 𝑖 at home 𝑘 starts outside the current prediction horizon but within the 
time window, 0 otherwise 

�̃�𝑘,𝑖 processing time of task 𝑖 started within the time window at home 𝑘 before the 
current prediction horizon 

�̅�𝑘,𝑖,𝜃,𝑡 1 if task 𝑖 at home 𝑘 is active at time 𝑡 starting within the time window in previous 
prediction horizons, 0 otherwise 

𝑍𝑘,𝑖
𝑜  1 if task 𝑖 at home 𝑘 starts outside the current prediction horizon and outside the 

time window, 0 otherwise 

�̃�𝑘,𝑖 processing time of task 𝑖 started outside the time window at home 𝑘 before the 
current prediction horizon 

�̅�𝑘,𝑖,𝜃,𝑡 1 if task 𝑖 at home 𝑘 is active at time 𝑡 starting outside the time window in previous 
prediction horizons, 0 otherwise 

𝛼 CHP heat-to-power ratio 
𝛽 agreed electric power peak demand threshold from the grid (𝑘𝑊𝑒) 
𝛿 time interval duration (ℎ) 
𝜌 air density (𝑘𝑔/𝑚3) 
𝐵 boiler efficiency 
𝐶𝐻𝑃 CHP generator electrical efficiency 
𝐸 electrical storage charge/discharge efficiency 
𝑇 thermal storage charge/discharge efficiency 
𝑊 wind generator efficiency 
𝜇𝑘,𝑖 penalty cost for delays in the starting time of task 𝑖 at home 𝑘 (£/ℎ) 
𝜇ℎ penalty cost for unsatisfied heat demand (£/𝑘𝑊ℎ𝑡ℎ) 
𝜇𝑖𝑖

𝑊 penalty cost for interrupting task 𝑖 started within the time window (£) 

𝜇𝑠𝑖
𝑊 penalty cost for remaining interrupted task 𝑖 started within the time window (£) 

𝜇𝑖𝑖
𝑍 penalty cost for interrupting task 𝑖 started outside the time window (£) 

𝜇𝑠𝑖
𝑍 penalty cost for remaining interrupted task 𝑖 started outside the time window (£) 

  
Continuous variables 
𝐶𝑃𝑒𝑛𝑘,𝑖 penalty cost for delays in the starting time of task 𝑖 at home 𝑘 (£) 
𝐸𝑥𝑠,𝑡 electric power exported to the grid in scenario 𝑠 at time 𝑡 (𝑘𝑊𝑒) 
𝐼𝑚𝑠,𝑡 electric power imported from the grid in scenario 𝑠 at time 𝑡 (𝑘𝑊𝑒) 
𝑃𝑠,𝑡

𝐵  thermal power from boiler in scenario 𝑠 at time 𝑡 (𝑘𝑊𝑡ℎ) 

𝑃𝑠,𝑡
𝐶𝐻𝑃 electric power from CHP generator in scenario 𝑠 at time 𝑡 (𝑘𝑊𝑒) 

𝑆𝑠,𝑡
𝐸  electricity in storage in scenario 𝑠 at time 𝑡 (𝑘𝑊ℎ𝑒) 

𝑆𝑠,𝑡
𝐸𝐶 electric power storage charge rate in scenario 𝑠 at time 𝑡 (𝑘𝑊𝑒) 

𝑆𝑠,𝑡
𝐸𝐷 electric power storage discharge rate in scenario 𝑠 at time 𝑡 (𝑘𝑊𝑒) 

𝑆𝑠,𝑡
𝑇  heat in storage in scenario 𝑠 at time 𝑡 (𝑘𝑊ℎ𝑡ℎ) 

𝑆𝑠,𝑡
𝑇𝐶 thermal power storage charge rate in scenario 𝑠 at time 𝑡 (𝑘𝑊𝑡ℎ) 

𝑆𝑠,𝑡
𝑇𝐷 thermal power storage discharge rate in scenario 𝑠 at time 𝑡 (𝑘𝑊𝑡ℎ) 
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𝑇𝑠𝑘,𝑖 starting time of task 𝑖 at home 𝑘 (ℎ) 
𝑇𝑡 time corresponding to time interval 
𝑈𝐻𝑠,𝑡 unsatisfied heat demand in scenario 𝑠 at time 𝑡 (𝑘𝑊𝑡ℎ) 
𝛾𝑠,𝑡 extra electricity load from the grid over the threshold 𝛽 in scenario 𝑠 at time 𝑡 (𝑘𝑊𝑒) 
𝜏𝑘,𝑖 maximum processing time of task 𝑖 at home 𝑘 that can be performed outside the 

current prediction horizon 
𝜑𝑘,𝑖 processing time of task 𝑖 at home 𝑘 to be performed outside the current prediction 

horizon 
 daily cost of the microgrid to be minimised (£) 
  
Binary variables 
𝑊𝑘,𝑖,𝜃,𝑡 1 if task 𝑖 at home 𝑘 is active in operation period 𝜃 at time 𝑡 starting within the time 

window, 0 otherwise 
𝑍𝑘,𝑖,𝜃,𝑡 1 if task 𝑖 at home 𝑘 is active in operation period 𝜃 at time 𝑡 starting outside the time 

window, 0 otherwise 

�̂�𝑘,𝑖,𝑡 1 if the potential task 𝑖 at home 𝑘 is active at time 𝑡 starting within the time window, 
0 otherwise 

�̂�𝑘,𝑖,𝑡 1 if the potential task 𝑖 at home 𝑘 is active at time 𝑡 starting outside the time 
window, 0 otherwise 

𝑖𝑘,𝑖,𝑡
𝑊  1 if task 𝑖 at home 𝑘 starting within the time window interrupted at time 𝑡, 0 

otherwise 
𝑠𝑘,𝑖,𝑡

𝑊  1 if task 𝑖 at home 𝑘 starting within the time window remains interrupted at time 𝑡, 
0 otherwise 

𝑖𝑘,𝑖,𝑡
𝑍  1 if task 𝑖 at home 𝑘 starting outside the time window is interrupted at time 𝑡, 0 

otherwise 
𝑠𝑘,𝑖,𝑡

𝑍  1 if task 𝑖 at home 𝑘 starting outside the time window remains interrupted at time 𝑡, 
0 otherwise 
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Appendix A. Mathematical model 

Equations (27), (28) and (29) are applied to determine any eventual in a task. The 

formulation of these equations is based on a general disjunctive programming (GDP) formulation. 

In particular: 

(i) If the potential status of a task is inactive, the variable �̂�𝑘,𝑖,𝑡 takes value 0. This means that 

at time 𝑡, the task has not started or has finished. Consequently, if �̂�𝑘,𝑖,𝑡 = 0, there is 

neither interruption (𝑖𝑘,𝑖,𝑡
𝑊 = 0) nor remaining interruptions (𝑠𝑘,𝑖,𝑡

𝑊 = 0), because the 

task is not active.  

¬�̂�𝑘,𝑖,𝑡 ¬𝑖𝑘,𝑖,𝑡
𝑊 ¬𝑠𝑘,𝑖,𝑡

𝑊  

(ii) If the potential status of a task is active, the variable �̂�𝑘,𝑖,𝑡 takes value 1. This means that at 

time 𝑡, the task has started but has not finished. So, if �̂�𝑘,𝑖,𝑡 = 1, the status of the task is 

active at time 𝑡 (𝑊𝑘,𝑖,𝜃,𝑡 = 1, �̅�𝑘,𝑖,𝜃,𝑡 = 1) and is not active at time 𝑡 + 1 (𝑊𝑘,𝑖,𝜃,𝑡+1 = 0), an 

interruption is produced (𝑖𝑘,𝑖,𝑡+1
𝑊 = 1). 

�̂�𝑘,𝑖,𝑡𝑊𝑘,𝑖,𝜃,𝑡¬𝑊𝑘,𝑖,𝜃,𝑡+1 𝑖𝑘,𝑖,𝑡
𝑊  

(iii) Furthermore, if �̂�𝑘,𝑖,𝑡 = 1, and the status of the task is not active neither at time 𝑡 nor at 

time 𝑡 + 1 (𝑊𝑘,𝑖,𝜃,𝑡 = �̅�𝑘,𝑖,𝜃,𝑡 = 𝑊𝑘,𝑖,𝜃,𝑡+1 = 0), this involves that the task remains 

interrupted (𝑠𝑘,𝑖,𝑡+1
𝑊 = 1). 
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�̂�𝑘,𝑖,𝑡¬𝑊𝑘,𝑖,𝜃,𝑡¬𝑊𝑘,𝑖,𝜃,𝑡+1 𝑠𝑘,𝑖,𝑡+1
𝑊  

 

Appendix B. Input data 

 

Figure B1. Nominal heat demand per house. 
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Figure B2. Nominal wind forecast speed. 
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Figure B3. Electricity buying price from the power grid. 

 
Table B1. Penalty costs. 

Task 𝑖 

Penalty cost for interruption a task 𝑖 Penalty cost 

from deviation 

to the target, 

𝜇𝑘,𝑖 (£/ℎ) 

Within the time window Outside the time window 

Interruption,  

𝜇𝑖𝑖
𝑊 (£) 

Remain interrupted, 

𝜇𝑠𝑖
𝑊 (£)  

Interruption,  

𝜇𝑖𝑖
𝑍 (£) 

Remain interrupted, 

𝜇𝑠𝑖
𝑍 (£)  

𝑖1 0.0500 0.0050 0.5000 0.0500 0.0500 

𝑖2 0.0100 0.0020 0.1000 0.0200 0.0100 

𝑖3 0.0300 0.0010 0.3000 0.0100 0.0200 

𝑖4 0.0800 0.0900 0.8000 0.9000 0.0080 

𝑖5 0.0100 0.0010 0.1000 0.0100 0.0100 

𝑖6 0.0100 0.0010 0.1000 0.0100 0.0200 

𝑖7 0.0100 0.0010 0.1000 0.0100 0.0060 

𝑖8 0.0200 0.0070 0.2000 0.0700 0.0040 

𝑖9 0.0100 0.0010 0.1000 0.0100 0.0090 

𝑖10 0.0100 0.0010 0.1000 0.0100 0.1000 

𝑖11 0.1000 0.1000 0.1000 1.0000 0.1000 
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𝑖12 0.0200 0.0100 0.2000 0.1000 0.0200 

𝑖13 0.0500 0.0010 0.5000 0.0100 0.0080 

𝑖14 0.0100 0.0020 0.1000 0.0200 0.0100 

𝑖15 0.0001 0.0001 0.0010 0.0010 0.0300 

𝑖16 0.0010 0.0001 0.0100 0.0010 0.0100 

 

Table B2. Information associated with the different scenarios. 

Scenario 𝑠 Probability, 𝑃𝑟𝑠 Wind forecast level Processing time level Heat demand level 

𝑠1 0.001 Low Low Low 

𝑠2 0.050 Low Low Medium 

𝑠3 0.002 Low Low High 

𝑠4 0.010 Low Medium Low 

𝑠5 0.100 Low Medium Medium 

𝑠6 0.010 Low Medium High 

𝑠7 0.020 Low High Low 

𝑠8 0.050 Low High Medium 

𝑠9 0.020 Low High High 

𝑠10 0.010 Medium Low Low 

𝑠11 0.050 Medium Low Medium 

𝑠12 0.010 Medium Low High 

𝑠13 0.050 Medium Medium Low 

𝑠14 0.250 Medium Medium Medium 

𝑠15 0.050 Medium Medium High 

𝑠16 0.010 Medium High Low 

𝑠17 0.050 Medium High Medium 

𝑠18 0.010 Medium High High 

𝑠19 0.020 High Low Low 

𝑠20 0.050 High Low Medium 

𝑠21 0.004 High Low High 

𝑠22 0.010 High Medium Low 

𝑠23 0.100 High Medium Medium 

𝑠24 0.010 High Medium High 

𝑠25 0.001 High High Low 

𝑠26 0.050 High High Medium 

𝑠27 0.002 High High High 

 


