

Content-validation
of Messages and
Policy assurances
for a Security-Proxy
supporting Grid
Services

Thijs Metsch
DLR Simulations- und
Softwaretechnik, BA
Mannheim

D
ip
lo
m
ar
be

it
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institute of Transport Research:Publications

https://core.ac.uk/display/11103891?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Content-validation of Messages and Policy assurances

for a Security-Proxy supporting Grid Services

Implementation and design of an Application Level Gateway

Diplomarbeit

für die Prüfung zum
Diplom-Ingenieur (Berufsakademie)

der Fachrichtung Informationstechnik
an der Berufsakademie Mannheim

von

Thijs Metsch

September 2005

Bearbeitungszeitraum 3 Monate

Kurs TIT02BNS

Ausbildungsfirma Deutsches Zentrum für Luft- und Raumfahrt - DLR e.V.

Simulations- und Softwaretechnik

Linder Höhe, 51147 Köln

Gutachter der Ausbildungsfirma Dipl.-Math Andreas Schreiber

Gutachter der Studienakademie Prof. Dr. Rainer Colgen

Abstract

Title Content-validation of Messages and Policy assurances
for a Security-Proxy supporting Grid Services

Name Thijs Metsch

Matr.-nr. 197534

Firm Deutsches Zentrum für Luft- und Raumfahrt

Division for Simulation- and Softwaretechnology

Today Grid computing is an important technology that allows scientists and engi-
neers to solve large and complex problems, to work in complex and heterogeneous
environments, and to cooperate in various new ways. In Grid environments in-
tegrate distributed computing resources, networks, scientific instruments, data
archives and databases, and visualization environments. The virtualization of
these resources results in resource environments allowing the dynamic genera-
tion of Virtual Organizations (VO) to increase the productivity and quality of
scientific work.
This work describes a security concept for securing Grid Services in a firewalled
environment. The main aspect of this concept is a security gateway which per-
forms content based checks on incoming Grid requests. This is an application
level gateway and it checks SOAP messages of Grid Service requests and de-
cides on the application level (OSI level 7) whether the message should pass the
gateway or be blocked.
In combination with packet filtering, provided by usual firewall solutions, and en-
crypted data transfer methods, this allows a shared secured use of Grid resources,
separated by security gateways. This can be accomplished without changing the
respective Grid middleware and without increasing security risks to an unaccept-
able level (e. g., by opening network ports).
The work on this topic led to the conclusion that with an appropriate concept,
modern services based distributed environments can be secured. This concept
includes the use of firewalls and security proxies.

Kurzfassung

Titel Content-validation of Messages and Policy assurances
for a Security-Proxy supporting Grid Services

Name Thijs Metsch

Matr.-nr. 197534

Firma Deutsches Zentrum für Luft- und Raumfahrt

Division for Simulation- and Softwaretechnology

Ingenieure und Wissenschafter können mittels Grid computing komplexe Prob-
leme lösen. Ein Grid stellt dafür eine heterogene, aber mit vielen Funktionen aus-
gestattete Umgebung zur Verfügung. Verschiedenste Ressourcen werden in einem
Grid integriert. Dies können Rechen-Ressourcen, Datenbanken oder Ressourcen
anderer Art sein. Die Virtualisierung dieser Ressourcen führt zu der Bildung von
Virtuellen Organisationen (VOs).
Diese Arbeit beschreibt ein Sicherheitskonzept für Grid Services in Virtuellen
Organisationen. Firewalls trennen die reellen Organisationen und verhindern die
reibungslose Zusammenarbeit innerhalb der VOs. Das Hauptaugenmerk dieser
Arbeit liegt auf der Entwicklung eines Application Level Gateways. Dieses Gate-
way verifiziert den Inhalt von Transaktionen zwischen einem Client und einem
Server. Dies geschieht auf Applikations-Schicht (OSI Level7). Das Gateway
entscheidet ob eine Anfrage durchgelassen wird oder abgelehnt wird.
In Kombination mit Packet Filtern (Firewall) und verschlüsselten Verbindungen
bildet das Gateway eine Methode um Grid Services abzusichern. So können
die verteilten Resourcen innerhalb einer VO auf einem sicheren Weg genutzt
werden. Vorhandene Grid middleware Lösungen müssen bei diesem Konzept
nicht modifiziert werden.
Das Ergebnis dieser Arbeit zeigt, dass es mit einem passenden Sicherheitskonzept
möglich ist verteilte Anwendungen innerhalb eines Grid sicher laufen zu lassen.
Dieses Konzept umschliet sowohl Packet Filter als auch den Gateway.

Disclaimer

I hereby declare that I have written the bachelor thesis on
my own, and used no other than the stated sources and
aids.

Cologne, September 2005

iv

Contents

1. Introduction 1
1.1. Security issues for Grid based applications 2
1.2. Problem specification . 4
1.3. Possible solutions . 4

1.3.1. SSH Tunnel . 4
1.3.2. Demilitarized Zone (DMZ) 4
1.3.3. Application Level Gateways 5

1.4. Existing Solution - Xtradyne Web Service Domain Boundary Con-
troller . 5

2. Requirements for an Application Level Gateway 6
2.1. Setup . 6
2.2. Security threats in Networking Environments 7
2.3. Service Orientated Architecture 8

2.3.1. Open Grid Services Architecture 8
2.3.2. Open Grid Services Infrastructure 8
2.3.3. Web Service Resource Framework 9
2.3.4. Services . 9
2.3.5. SOAP Based Communication 10
2.3.6. Handling Non SOAP Based Communication 11

2.4. General requisitions to the Application Level Gateway 11
2.4.1. Scope of Application . 12
2.4.2. Requirements . 12
2.4.3. Demands on quality . 13
2.4.4. User Profile . 13

2.5. Operative Requirements . 13
2.5.1. Use case description of the ALG system 14
2.5.2. Use case description of an extension 15

3. Implementation of an Application Level Gateway for Grid Services 17
3.1. System architecture . 17
3.2. Terminology . 18
3.3. System design . 18
3.4. System implementation . 19

3.4.1. The boot loader . 20
3.4.2. The internal message . 20
3.4.3. The core . 20
3.4.4. A basic module . 22
3.4.5. The consumer module . 23
3.4.6. Certificates . 24
3.4.7. The mapping module . 24
3.4.8. Plug-ins for the mapping module 26
3.4.9. Plug-in for job submissions 26

v

3.4.10. The supplier module . 28
3.5. Countermeasures for Security Threats 28

4. Quality management 30
4.1. Source code version control . 30
4.2. Bug tracking . 30
4.3. Coding style checks . 31
4.4. Unit tests . 31
4.5. Code coverage . 31
4.6. Teamsite . 32

5. Conclusion 32

A. Used software 33
A.1. Eclipse platform . 33
A.2. Object Domain . 33
A.3. Log4j . 33
A.4. ANT . 34
A.5. Axis . 34
A.6. Java Plug-in Framework . 34
A.7. Globus Toolkit . 34
A.8. CoGKit . 34

B. List of abbreviations 36

vi

1 Introduction 1

1. Introduction

Today Grid computing [1] is an important technology that allows scientists and
engineers to solve large and complex problems, to work in complex and heteroge-
neous environments, and to cooperate in various new ways. Grid environments
integrate distributed computing resources, networks, scientific instruments, data
archives and databases, and visualization environments. The virtualization of
these resources results in resource environments allowing the dynamic generation
of Virtual Organizations (VOs) [2] to increase the productivity and quality of
scientific work.
In commerce Grid computing becomes even more important. Large computer
vendors bring the idea of “business of demand” to the market. This includes the
flexible use of distributed resources to cut IT costs and react to changes of the
market.
Current Grid infrastructure solutions are based on Web Services. The Open
Grid Service Architecture (OGSA) [3] and the Web Service Resource Framework
(WSRF) [4] try to standardize this approach. These standards are still under
development, but nevertheless Grid Computing is already being used in various
projects and applications.
When creating VOs, not only access has to be granted to each other’s resources,
but means of communication have got to be established between them. In modern
Grids this will mostly be communication for the invocation of services. But non-
blocking I/O traffic is also part of this scenario. File transfers would be an
example for this.
In these Grid-based resource environments security is an important topic, because
all integrated resources belong to different owners and administrative domains,
with different usage and security rules. On the other hand, users from the indus-
try have high security requirements. Security mechanisms are already included
in various levels and components of existing Grid infrastructures, which provide
authentication and authorization of users, secure transfer of data, and informa-
tion.
Most companies (and so their sites) use modern firewall technologies to protect
their data and so their intellectual property. In most cases this includes sev-
eral firewalls and security zones. These zones match different levels of security.
Communication, which is needed by means of Grid computing becomes nearly
impossible.
This bachelor thesis describes a security concept to realize these communications
in a secure manner. Part of this concept will be a security proxy (or Application
Level Gateway (ALG)) to validate traffic. The design and implementation of this
proxy are part of this work.

1.1 Security issues for Grid based applications 2

1.1. Security issues for Grid based applications

Following use case shows that current security activities are not sufficient to
create VOs. Several firewall issues arise during the setup of the system described
below.
The workflow management system TENT (see figure 1 for a screenshot) has
been developed at the German Aerospace Center over the last years. It allows
engineers to easily setup and maintain workflows. Workflows are components
coupled together to form a process chain. Components can be numerical or
functional units within a work flow, e. g. computational fluid dynamic (CFD)
codes, graphical editors for visualization, or pre-/post-processors.

Figure 1: TENT user interface.

This process chain can be used to perform fluid dynamics, structural mechanics,
and thermodynamic computations. Components are the smallest elements in a
workflow and can be localized on distributed resources. Coupling of resources can
be achieved by means of Grid computing. Computational resources can be placed
on different remote hosts. By creating Virtual Organizations (VOs) it is possible
to use all these resources as one. The following functionalities are necessary to
use TENT within Grids:

• Access to all resources of a Grid. Authentication and authorization mech-
anisms need to be provided.

• Data transfers between the resources of a Grid must be possible. Data
transfers can either be Reliable File Transfers (RFT) or status messages
(MPI based messaging) passed along.

1.1 Security issues for Grid based applications 3

• Execution of CFD codes on Grid resources. Job Managers and their queues
should be accessible to the TENT system.

• For all these communications TENT uses service based communication.

The creation of VOs becomes obligatory when applications (and its matching
licenses) and resources are located on either sides of a firewall. The creation
of VOs can extend beyond the borders of companies. The location of the Grid
resources therefore is no longer bound to geographical positions. Figure 2 gives a
closer picture of the borders of a company. Firewalls form the borders of the local
site. But applications of resources like high performance cluster are not located
within the local (and easily accessible) network.

Figure 2: Possible firewall borders.

Due to the fact that most companies and organizations use firewalls following
problems arise:

• Several firewalls have to be passed (internally and externally). The admin-
istrators of these firewalls are not always directly available.

• Firewalls should be opened for several TCP and UDP ports so Grid mid-
dleware solutions can communicate. Some port ranges are unknown during
set-up. They will be initialized by the Grid middleware itself. So port
ranges have to de defined.

• Data transfers have to be allowed beyond the borders of a local site. This
includes the transmission of data packets and status information.

• VPNs have to be initialized at the borders of a site. To increase security
the traffic connections should be secured against wire tapping.

Security policies disallow the opening of firewalls in almost every case. Strict
control of the incoming and outgoing traffic becomes a major issue. A lot of
politics have to be dealt with when establishing connections beyond company’s
borders.

1.2 Problem specification 4

1.2. Problem specification

As result of this use case following requirements and considerations can be de-
fined:

• The resources in a Grid are in local networks protected by firewalls. The se-
curity policy of the location does not allow to establish connections through
the firewall.

• The connections through a firewall, protecting the Grid resources, must
be tunneled. But connections and request need to be filtered and checked
before.

• The security policy of the location needs a strict separation of the Internet
and the location’s local network.

• No extra steps are necessary from the user’s side. The solution must be
transparent for the user.

1.3. Possible solutions

Several approaches to the problem described above are layed out in the following.
A short overview of the advantages and disadvantages of these approaches are
summarized.

1.3.1. SSH Tunnel

One of the easiest possible solutions to tunnel firewalls is the setup of SSH tunnels.
The basic idea is to open encrypted connections to a remote host. These tunnel
connections originate from a local host and reach to a remote destination. Direct
connections then can be established on certain ports from the designated remote
to the local host.
This solution has several disadvantages. All ports must be known prior to open
enough tunneled connections. This constellation is difficult for an automated
setup. A possible security risk is the direct access to the remote host through the
tunnel. An attacker has the possibility to use an open connection and the data
transferred on it is not verified. A large number of tunnels is needed for anything
more than a very simple setup.

1.3.2. Demilitarized Zone (DMZ)

A common solution for the problem described here is the localization of the
Grid resources in a demilitarized zone (DMZ), which is protected by a firewall.
The DMZ separates the Internet from the local network with firewalls, but hosts
placed within it can be accessed from both sides.
However this solution forces companies to expose their resources to possible mis-
use from the Internet. It would be more secure to place the Grid resources inside

1.4 Existing Solution - Xtradyne Web Service Domain Boundary Controller 5

the fully protected local network and to define mechanisms to access these re-
sources securely. Sometimes it is impossible to place certain resources in a DMZ.

1.3.3. Application Level Gateways

Basically the ALG can be described as a system representing a service to the
outside and functions as a client to the Inside. The figure 3 describes the setup.

Figure 3: General setup of an ALG based security concept.

Being placed between two firewalls the ALG can be accessed from both sides
- either the untrusted (Internet) or the local trusted intranet. Some ports in
the firewalls have to be opened. The security holes which are now open must
be closed with the help of the ALG. The ALG will take care of all traffic and
disallows any direct connections between the Internet and the intranet.
An ALG is placed in the DMZ and reacts to requests from the Internet as if it was
the requested resource. Therefore it acts as a client for the requested resource
and forwards the requests to that resource. After the ALG received an response
it will forward the response to the original client.
The ALG must be able to understand the protocols which are used to determine
which resource has been requested and must be configured to allow or disallow
certain requests. Due to the high number of communication protocols, an ALG
must be highly extendable and flexible.
The Firewall which separates the DMZ from local network may be configured in
a way that it allows incoming traffic only from the ALG. This would increase
security for the Grid resources significantly. However some administrators will
not even allow incoming traffic from a known system. If this is the case, traffic
has to be fetched from inside.

1.4. Existing Solution - Xtradyne Web Service Domain
Boundary Controller

The Xtradyne Web Service Boundary Controller (WS-DBC) [5] is an ALG-based
approach to secure Web services. Web services form the basis of Grid services
therefore this approach is an outrider to the ALG described here.

2 Requirements for an Application Level Gateway 6

WS-DBC acts as a transparent security proxy for Web services. Simple Object
Access Protocol (SOAP) messages are accepted from the WS-DBC which then
identifies and authenticates the Client and inspects the content of the SOAP
message.
Based on that content inspection and the client authorization WS-DBC allows
or denies access to a requested Web service. It therefore adds Security Assertion
Markup Language (SAML) assertions to the SOAP message header and forwards
that header to the requested Web service. WS-DBC thereby provides end-to-end
security for Web services on the application Level.
WS-DBC and the ALG described here both share the same approach to secure
Web/Grid services. WS-DBC already features a lot of authentication methods
like X.509 or SAML, but its scope is limited to Web services, while the solution
described here addresses Grid services.
The main difference is: Grid services often use protocols that are not SOAP
based, i.e. GridFTP or GASS. Those protocols can transfer any type of data
between two nodes and will use SOAP messages only to initialize a data transfer.
WS-DBC is not able to handle such data transfers. Additionally WS-DBC only
validates SOAP messages against given schema files. A stricter validation of the
content of Messages is needed. Extensions for very specific Services can not be
deployed within WS-DBC. WS-DBC does not provide the functionality to change
message contents (i.e. for mapping of users). The ALG described here adds this
support. Together with existing software like WS-Security it provides a more
flexible and stricter approach.

2. Requirements for an Application Level Gateway

The solution used here will be able to act as a complete Grid to any requests
from the Internet. It will forward these requests to the real resources. Doing this
it will collect the answers as well and deliver them to the original clients.

2.1. Setup

The two major parts of the proposed security infrastructure are the packet filter
and the ALG.
The main task of the packet filter is to block connections based on the information
provided in the header of TCP/IP packets. Requests having an unknown source
are dropped immediately. If more than one ALG is available, the packet filters
may perform load balancing. More important is the protection against attacks.
Combined with an intrusion detection system (IDS), the packet filter can avoid
denial of service (DoS) attacks.
In addition the ALG inspects the traffic on the application level (OSI Level 7).
For this it intercepts the traffic between the source and the destination. Several
ALGs can be chained if needed. The following tasks have to be accomplished by
the ALG:

2.2 Security threats in Networking Environments 7

• Relay all connections in two directions (two-way proxy).

• User level control of access to the Grid.

• Verification of incoming request. Modifications of the requests should also
be possible.

• Logging and accounting of all actions.

2.2. Security threats in Networking Environments

When planning security concepts for service based environments, it is helpful
to be aware of possible security threats. When designing a concept suitable
countermeasures can be included. The following list describes security threats
and risks.

Spoofing This security threat refers to a situation where a user acts as if he is
somebody else. Man-in-the-middle attacks are typical spoofing actions.

Data manipulation Operations executed on data that is not to be changed form
a potential risk. This does not only include the manipulation of files, but
also the data transferred in a connection.

Uncontrolled use of resources For economic and security reasons, the use of
resources should be limited to those authorized to access them. The uncon-
trolled, and therefore unaccounted, use of resources would also mean that
operations could be performed which ar not premitted.

Denial of service attacks This attacks is caused by flooding a network with
request. Due to the limited throughput services may be “flooded” and can
no longer be accessed by users.

Wiretapping of data By monitoring data connections it is possible to gather
information on the system and its users. This information can be used for
an attack. Password sniffing is a popular method to gain access to a system.

Unauthorized enhancement of privileges Users in most cases have limited ac-
cess to resources. When users gain administrator privileges they could
manipulate data or extend the access to resources.

These security threats can arise on different locations of the setup. Figure 4
demonstrates this. For more information on security threats and their counter-
measures refer to [6].

2.3 Service Orientated Architecture 8

Fi
re

w
al

l

ALG

Fi
re

w
al

l

Service
container

DoS attacks

Uncontrolled
use of
resources

Wiretapping

Data manipulation
Spoofing
Enhacement of rights

Figure 4: Some security threats and their occurrences.

2.3. Service Orientated Architecture

The Service Orientated Architecture (SOA) became more important over the last
years. Currently developed Grid middleware solutions are based upon services.
Already existing Grid middleware solutions are extended to support this archi-
tecture. This happens due to the fact that new standards emerge out of the Grid
community.
Several standards have been defined for Grid based middleware solutions. The
following three are of importance when using a service based approach.

2.3.1. Open Grid Services Architecture

The Open Grid Services Architecture (OGSA) [7] has been developed by the
Global Grid Forum [8]. It defines a common and open architecture for grid based
applications. This is, among other things, done by the a set of service interfaces
definitions.
A list of services was specified which should be present in all kinds of Grids. This
services include index services, job management service, and VO management
services. All these services interact constantly with each other.
Many techniques could be used to realize this requirements. For example when
looking at the OGSA definitions a Grid could be realized with CORBA, RMI,
or even RPC. But Web services where chosen because of their close relation to
the Internet. But to realize a Grid with a services orientated architecture web
services are not sufficient.
OGSA requires stateful services. This means that information can be hold across
several running instances. Web services do not keep their state information. But
for most Grid services this is needed. Therefore Web services should be extended
in their functionality.

2.3.2. Open Grid Services Infrastructure

The OGSA only describes what Grid services should have in comparison to Web
services. The Open Grid Service Infrastructure (OGSI) gives a more detailed
definition of Grid services.
OGSI was also initialized by the Global Grid Forum. It describes a more detailed

2.3 Service Orientated Architecture 9

and technical view on the services needed for Grids.

2.3.3. Web Service Resource Framework

Due to the fact that the OGSI was not accepted by the Web service community
a new standard was developed. The Web Service Resource Framework (WSRF).
This standard, just like the OGSI, specifies how Grid Services should be designed.
The following figure 5 demonstrates this in more detail.

WSRF OGSA

Web services

Grid services

requiresspecifies

Figure 5: OGSA and WSRF interaction.

While the OGSA requires Grid Services the WSRF specifies them. The WSRF
specifications where developed by the Globus Allicance and IBM. Therefore this
standard will hopefully be more excepted within the Web service community.
WSRF described how stateful services can be modeled by the help of resources.
These resources are deployed with the services and hold the state information.
Currently the WSRF standard is being submitted to the OASIS [9] standardiza-
tion consortium.

2.3.4. Services

Web services (and so Grid services) can be used to realize interactions over an
network. Interfaces, being defined by open standards, allow interoperability be-
tween platforms and programming languages. The SOA is very similar to the
inter process communication.
The interface of a service is described in Web Service Description Language
(WSDL). This description of a service gives an overview of the methods a ser-
vice provides. With the help of this WSDL description stubs are generated which
handle the communication between a client and a service or between two services.
The interface can be deployed within a Service Broker. So clients can request
information about this service.
These stubs realize the communication with SOAP messages. These SOAP mes-
sages are send to the stub on the other side. This can be done by the help of
several protocols. Mostly this would be HTTP.

2.3 Service Orientated Architecture 10

Figure 6: Client and service with their stubs

The service can be implemented in several programming languages. After imple-
mentation a service is deployed in the service provider. In most cases this is a
service container. Figure 6 demonstrates the use of stubs.
The following steps are necessary when invoking a service.

1. Request the service interface from a service broker. This will return the
location of a service and which methods can be called.

2. The client request the service provider to start an instance of the requested
service. This is done with the help of SOAP messages.

3. The client invokes a method of the started service. This is done by SOAP
messages as well.

4. Further SOAP or Non-SOAP based communication can follow.

5. The client is done. The service provider will destroy the instance of the
service.

Figure 7 shows this process chain.

Service Broker

Client Service Provider

1

2

3,4,5

Figure 7: Invoking web services.

2.3.5. SOAP Based Communication

In current Grid infrastructures (e. g. based on the Globus Toolkit), most of the
communication is service invocation. That means, the communication is usually
based on the Simple Object Access Protocol (SOAP) [10].

2.4 General requisitions to the Application Level Gateway 11

SOAP has been specified by the WWW Consortium (W3C) in 1999. It is a
definition of the XML based information exchange between peers in a decentral-
ized environment. SOAP messages can be transferred using various protocols, as
HTTP or SMTP.
Based on one-way communication, SOAP messages can hold almost any type of
data. More complex communication can be accomplished by request and response
messages. Messages are sent from a SOAP sender to a SOAP receiver. The sender
and the receiver are SOAP nodes.
The data, encapsulated in XML documents, is sent to the SOAP receiver in a so
called SOAP envelope. A SOAP message can be passed along several senders and
receivers. The path the message follows is called the SOAP path. This chaining
of SOAP nodes to a SOAP path allows the use of an ALG.
The SOAP envelope contains a header and a body. The header includes infor-
mation on the transaction itself. This can be information about the sender and
the receiver. Information not depending on the application can also be located
here. For Grid Services these may be certificates for authentication.
The SOAP body contains application specific information. This entry is manda-
tory for a SOAP envelope. The main end-to-end information is contained in
it.
Due to the fact that SOAP encapsulates data in XML documents it is easy to
validate and modify the data. XML schemas and available parsers deal with
these tasks.
SOAP messages can be easily tunneled through firewalls. In most time firewalls
ruleset don not have to be changed. But SOAP mechanisms do not provide
methods for auditing SOAP messages.

2.3.6. Handling Non SOAP Based Communication

In addition to SOAP based communication further non blocking I/O transfer is
needed. Usually this is needed and used for high performance file transfers.
The advantage is that this traffic is still initialized by service based requests. If
this type of request is intercepted by the ALG special steps have to be taken.
For most file transfers initialized by service requests a server and a client are
started. Between these two participants the files are being transfered. While no
direct communication between a client and a resource are allowed, the ALG has
to start a server and client as well. The communication path would look like:
Resource (Server) – (Client) ALG (Server) – (Client) Requestor.
This way no direct connection need to be established. Nevertheless the files can
be transfered.

2.4. General requisitions to the Application Level Gateway

Several requirements emerge from the environment where the ALG is going to
be deployed. These needs should be part of the use case analyses. User profile
descriptions and demands on quality are described in this section.

2.4 General requisitions to the Application Level Gateway 12

2.4.1. Scope of Application

This ALG will probably be used in Grids of any size. Most likely it will be used
as an interface for combining Grids from different organizations to a VO. This
ALG should provide the only way to access Grid resources from another network.
It therefore should be able to handle a large amount of requests.
This solution will be used to secure Grid resources therefore it should be secure
itself. Administrators must have a secure way to configure the ALG. The ALG
itself should be able to use protocols like HTTPS for transport of Grid service
requests. However it does not need to deal with security on TCP/IP level, i.e.
resistance against Denial of Service (DoS) attacks.
This can be done far more effective by the package filters which divide the DMZ
from the Internet. The ALG must provide security on the Application Level.
It therefore must understand all protocols that are used for the communication
inside a Grid. It must be able to validate requests, identify the types, and au-
thenticate clients and Grid resources. Grid communication often includes file
transfers. This ALG must be able to identify file transfers as such and it must
be able to scan transferred files for viruses and Trojan horses.

2.4.2. Requirements

Many kinds of Grid and Web services can be deployed in appropriate contain-
ers. This can include job managers, authentication services, index services and
resource specific services. This wide range of working fields disallows the general
inspection of data traffics. Specialized verifications must be possible. This leads
to a plug-in based architecture for the ALG. The integration for special services
can be realized within plug- ins.
The burden to extend the ALG with new features must be low. This is next to
the fast growing number of services types a reason for the plug-in architecture.
The need for strict coding conventions and good documentations are obligatory.
Because of the platform independence the ALG should be implemented with the
Java programming language. Sun Microsystems provides several different runtime
environments for different platforms. Another major reason for Java is the high
amount of available libraries which support Web services. These libraries support
the easy development of plug-ins in the ALG.
The solution described here must be completely transparent. This means that
already existing services and their corresponding clients should not be changed.
Even third party services, where no source-code is available, should be supported.
The user of a client and its services should not realize the ALG is placed in his
communication path. Extra authentication and other steps are prohibited.
This ALG can only be part of a security concept. The host on which the system
runs should be equipped with a state of the art operating system. Possible
security holes should be closed (e.g. unused ports). The ALG can only provide
maximum security when other arrangements are made. This includes the use of
packet filters (firewalls), virus scanners, VPNs, and intrusion detection systems
(IDS).

2.5 Operative Requirements 13

2.4.3. Demands on quality

Following demands on the quality where specified to match the above prerequi-
sites:

• The ALG system must run on state of the art computers (Pentium IV,
1024MB of Memory and java runtime environment). Due to the wide range
of operating systems which are currently in use it should be portable to
different systems.

• An actual Java runtime environment should be used to run the ALG system.
The actual version of the runtime version is 1.5.

• Load sharing should be possible in later distributions of the ALG. This is
to allow load balancing and a faster handling of messages. For example
data transfers should be initialized on a special host.

• Configuration and deployment of new plug-ins must be fool-proof.

• Security is one of the main features of the ALG. It is very important to
realize this requirement.

• Downtimes of the ALG should be reduced to an absolute minimum. This
requires stable and tested software. Availability is of a high priority. The
ALG represents the Grid to the user and therefore downtimes can have
massive economic consequences.

2.4.4. User Profile

Typical users of the ALG will be experienced system administrators. His skills
cover knowledge of security, web services, and firewalls. The company’s local site
security policy should be known. Direct access to the network infrastructure is
obligatory to deploy the ALG in the DMZ.
General task for this user is the setup and maintenance of the system. Admin-
istration should only be possible by one user to avoid configuration problems.
Access to the configuration files therefore is only permitted to the administra-
tor. This user should also be able to deploy security updates and newly designed
plug-ins to the ALG. Developers implement new plug-ins for the ALG system.
These plug-ins should then be deployed by the administrator. Security updates
include new revisions of the ALG base system.

2.5. Operative Requirements

In order to solve the task of protecting Grid services on the application level a rich
functionality is required. The various tasks of the software have been modeled
with the Unified Modeling Language (UML). Several Use Case diagrams model
different parts of the ALG system. These use cases show what functionality
is needed in which part of the Software. This section describes those use case
diagrams.

2.5 Operative Requirements 14

2.5.1. Use case description of the ALG system

The following figure 8 shows the general use case diagram for the ALG system.
The use cases described here form the absolute minimum for a security proxy
supporting Grid services.

Figure 8: Use case diagram for the ALG system.

Following actors are present within an ALG. Their main tasks are described in
the next table.

Nr Name Description

1 Administrator The administrator of the ALG system. Sets
up the ALG and maintains it.

2 Developer Developer writing extensions for the ALG

3 Client Can either be a service client or another ser-
vice invoking a service.

4 Service con-
tainer

Destination of all requests. The actual ser-
vices are deployed here.

Each use case can be described in more detail. Every use case includes several
steps which are necessary to complete the task. In the following table all use
cases in this diagram are described.

Nr Name Necessary steps Description

1 Configure the
ALG system.

1. Read configuration

2. Validate configuration

3. Get configuration proper-
ties

The administrator has
to provide the config-
uration files.

2.5 Operative Requirements 15

Nr Name Necessary steps Description

2 Deploy exten-
sions.

1. Read configuration

2. Start extension

3. Register extensions within
the system

3 Invoke service 1. Read request from socket

2. Validate the request

3. Reject or accept request

4. Send request to destination

5. Send response from destina-
tion to client

Includes the transmis-
sion of the request to
the destination. It is
build upon the verifi-
cation of the request.

4 Verify data 1. Evaluate the message

2. Validate message

3. Special validation by exten-
sions

Specialized validation
is realized within sep-
arate extensions.

5 Use different ex-
tensions for veri-
fication of data

1. Do a specialized verification

2. Accept or reject data

All deployed exten-
sions are called to
verify the current re-
quest.

6 Implement ex-
tensions for
specialized
services

1. Extend existing extensions

2. Write special verification

7 Send service re-
quest

1. Invoke container

2. Send request

3. Retrieve response

2.5.2. Use case description of an extension

As already described a very flexible design is needed for this proxy. So extension
have to be provided for each service the ALG should support. Figure 9 shows
the use case for these extension.
Following actors are part of this use case diagram.

2.5 Operative Requirements 16

Figure 9: Use case diagram of an extension.

Nr Name Description

1 ALG System The ALG system where this extension is reg-
istered.

2 Administrator The person who maintains the ALG system.

Every necessary step for a use case is described in the following table.

Nr Name Necessary steps Description

1 Register exten-
sion at ALG sys-
tem

1. Discover ALG system

2. Register self

3. Send key

The key is an identi-
fier. When a message
matches this key it is
send to this extension.

2 Retrieve SOAP
message for val-
idation

1. Get SOAP message

2. Validate message

Registered extensions
will automatically be
used if a message fits
their k̈eÿ.

3 Validate mes-
sage

1. Validate the message

2. Accept or reject the mes-
sage

4 Send validated
message to ALG
system

1. Set status of the message
(accepted/rejected)

2. Send message to ALG sys-
tem

3 Implementation of an Application Level Gateway for Grid Services 17

Nr Name Necessary steps Description

5 Configure exten-
sion

1. Deploy configuration files
for the extension

2. Validate configuration

3. Read properties

Administrator pro-
vides a configuration
file for this extension
if needed.

3. Implementation of an Application Level Gateway
for Grid Services

The service based architecture of future Grids allow the easy auditing of traffic.
Without standards (see section 2.3) it would be nearly impossible to design a
proxy for Grid services. The next sections describe the design and implementation
of an ALG, based upon the requirements of the previous section.

3.1. System architecture

To match the requirements describe in the previous section a system design with
plug- ins is chosen for the basic system architecture of the ALG. The plug-in
framework used here is a rewrite of the Eclipse plug-in framework. This frame-
work was written to allow the development of plug-ins without the use of the
complete Eclipse framework. The design and definition of plug-ins is almost
identical.
The extensions and extension points of a plug-in define the interconnections be-
tween plug-ins. Plug-ins can dock to an extension point to interact with another
plug-in. So an extension describes the use of other extension-points (“to extend
a plug-in”) while an extension-point itself defines a new port where a plug-in
can dock into. Figure 10 shows the basic approach with extension-points and
extensions.

Plug-in
Your
Plug-in

System
Plug-in

Plug-in

Extend to extension point

Figure 10: Overview of a plug-in based application.

The plug-in manifest file is a XML file which describes the extensions and
extension- points of a plug-in. This file is distributed along with the imple-

3.2 Terminology 18

mentation of the plug-in. This whole system of plug-ins has to be “booted” by
another Boot class. It only initializes the whole system and sets the properties.

3.2. Terminology

To explain the system architecture in detail some terms and definitions have to
be defined. Basically all parts of the software described here are plug-ins. To
prevent confusion when discussing the plug-in framework some extra terms are
defined for the ALG.

Core This plug-in provides extension points for all other modules. It provides
basic functionalities which are needed by all modules.

Module A module is basically a major plug-in. It provides functionalities (and
so extension-points) for other plug-ins to use. This abstraction allows a
cleaner and more efficient system design. With the help of modules similar
plug-ins can be grouped together (Within the Eclipse framework a module
would more or less meet a feature.).

Plug-in Plug-ins are extensions for modules. They are developed to enhance the
support for certain services.

Supplier The supplier module is used to send messages. It is the direct counter-
part of the consumer unit.

Consumer The consumer unit accepts incoming connections. It is the first mod-
ule to pass for an incoming message.

3.3. System design

Figure 11 shows the overall system design of the ALG. Based upon a core system
several modules are deployed. The two special modules consumer and supplier
form the outer bounds of the system. They handle the incoming and outgoing

Figure 11: System design of the ALG.

3.4 System implementation 19

messages. The core system receives and sends all messages from one module to
the next one. No direct communication between the modules is allowed. This
allows the coupling of several cores (e.g. for load sharing) in later distributions
of the ALG.
Basically all messages have to pass the ALG from left to right as seen on the
picture. The answers to the request are passed along in the other direction.
Messages are delivered to a module by calling the handleMessage() from the
core. The modules deliver their messages back to the core by calling their method
finalizeMessage(). This method then calls the handleMessage() method which is
implemented in the core.

Core

Module

handleMessage

finalizeMessage

handleMessage

Figure 12: Call hierarchy.

Figure 12 shows this call hierarchy. The first step taken by the ALG is the
user authentication. This module is only implemented rudimental during this
work. First defined goal for this system is a prototype implementation. User
authentication can be realized by the services container as well. For later distri-
butions the authentication should be the first step. Rejections based upon fault
authentication can than be handle much earlier.
Next the mapping module parses the incoming messages and validates them.
This module has an extension point where plug-ins can dock onto. Within this
plug-ins more specific validation of the message content can be implemented.
Beside validation this module also modifies the messages. Several tags within the
message content have to be mapped. Mapping means that external information
is replaced by local (and therefore more secure information). After the messages
are successfully validated the supplier passes the request to the destination.
The responses to the request do not have to pass all the steps a request has
made. After the supplier receives the response it is passed to the mapping unit
and sends to the consumer.

3.4. System implementation

All plug-ins described in the previous section are implemented during this work.
Special attention was given to the quality of the code during implementation.
This is ensured by the methods described in section 4.
First of all the core and a matching boot loader had to be written. The boot

3.4 System implementation 20

loader reads the command line arguments and starts up the core. The core itself
starts all the modules which are deployed.

3.4.1. The boot loader

Main task of the boot loader is the initialization and setup of the plug-in frame-
work. Therefore it reads the configuration file to get a list of directories in which
the modules and plug-ins are deployed. Now it scans within these directories for
plug-ins which can be registered to the plug-in framework. They are stored in a
Map data structure (moduleLocations).

PluginManager pluginManager =

PluginManager.createStandardManager(moduleLocations);

pluginManager.getRegistry()

.checkIntegrity(pluginManager.getPathResolver());

The pluginManager now holds all available plug-ins. Next step is the activation
of the core plug-in.

Plugin corePlugin = pluginManager.getPlugin(coreID);

corePlugin.getClass().getMethod("startUp", new Class[]

{}).invoke(corePlugin);

By calling getPlugin() the plug-in is activated. Next step is to call the startUp()
method in the core. The last line of code in the code sample above accomplishes
this.

3.4.2. The internal message

Within the ALG system messages have to be passed along the available mod-
ules. The internal message (InternalMessage.java) stores more information than
SOAP message itself. The SOAP message is encapsulated within an InternalMes-
sage. Within this data structure the SOAP message and additional information
is stored.
For example the Type of the message is stored. This can either be a request or an
response message. It also keeps a complete history of which module handled this
message. This information is useful to look where the validation of the message
failed. If the message fails for validation a flag is set so the core knows what to
do next with the message.

3.4.3. The core

The plug-in manifest file describing the Core keeps all information needed by the
plug- in framework. First of all a unique identifier has to be defined.

<plugin id="de.dlr.fireblade.core" version="0.0.1"

class="de.dlr.fireblade.core.CoreImpl">

3.4 System implementation 21

Within this tag information about the implementation is provided. The concrete
class where the source code is implemented is defined. Next extension-points have
to be defined so modules can dock onto the core. The definition of the extension
point is quite simple:

<extension-point id="module">

<parameter-def id="class"/>

<parameter-def id="name"/>

<parameter-def id="description" multiplicity="any"/>

</extension-point>

With this definition it is possible to let several modules attach to the core. The
multiplicity lets the developer say how many times this extension-point can be
used. While this is a very general description of an extension-point, it is possible
to use a more strict way where only one specified plug-in is allowed to extend
this extension point. The implementation of the core is realized in a class called
CoreImpl.java which extends net.java.plugin.Plugin and implements the core in-
terface. Figure 13 shows the matching UML diagram.

Figure 13: UML class diagram for the core.

By extending from Plugin it becomes clear that CoreImpl is a plug-in itself.
Therefore a special constructor and methods for starting and stopping the plug-
in have to be implemented. The core Interface ensures that basic methods needed
by the modules are implemented.
After the boot loader started the core it calls the method startUp() which is
defined by the core Interface as well. Within this method the properties of the
core are loaded from a XML configuration file. This is done by a utility class
written to support XML configuration files (Instead of java’s default properties
file). A list with available modules is defined in the configuration. The core starts
this modules and calls their startUp() methods as well.

3.4 System implementation 22

All available modules are already registered to the plug-in framework by the boot
loader. The core only activates the plug-ins. So for every available module it runs
the following lines of code.

Plugin module = getManager().getPlugin(currentModule);

Module thisModule = (Module) module;

thisModule.startUp(this)

The currentModule variable holds the id of the current module. After the initl-
izaion of the module the method startUp is called.
After start-up of all modules the ALG is ready to handle incoming requests. As
described the Core realizes the communication between the modules. Therefore
the method handleMessage() is most important for all the modules attached to
the core. This method is called whenever a module finished validating a message.
The core now decides which modules should handle the message next.
Several possibilities are available:

• The message was rejected by the module. As consequence an error message
has to be generated.

• The message was verified by a module. Next unit has to be determined.

Depending on the direction of the message the next unit has to be determined.
The direction of the message is either a request coming from the consumer or an
response coming from the supplier.
The error messages are generated within the core. Directly after the generation of
the error message the transport direction is changed. A request message becomes
an answer message and vis versa. The error message is a standard AxisFault
message.

errorEnvelope = new SOAPEnvelope();

errorEnvelope.getBody().addFault();

errorEnvelope.getBody().getFault()

.setFaultString("Gateway rejected request!");

This errorEnvelope replaces the message in the InternalMessage. So the client
retrieves a standard error message.

3.4.4. A basic module

To allow easy development of modules for the ALG an abstract class
m̃phModule.java is implemented. It defines several methods which have to be
implemented by the developer. But it provides methods for general purpose as
well.
The class Module.java extends from net.java.plugin.Plugin so all methods needed
for the plug-in framework are already implemented.

3.4 System implementation 23

The most important method for a module is the handleMessage() method. It is
called whenever the core wants to forward a message to a module. When the
module is finished with a message it is then send back to the core by calling the
finalizeMessage() method. This method is provided within this abstract class.
By overwriting the startUp() method the developer can add more calls which
should be made during the start of a module.

3.4.5. The consumer module

First step again is the definition of a manifest file. Within this file the unique
identifier and the class which represents this plug-in is defined.

<plugin id="de.dlr.fireblade.consumer" version="0.0.1"

class="de.dlr.fireblade.module.consumer.Consumer">

While the core has an extension point, the consumer extends this. The definition
of this extension is done by the following entry in the manifest file:

<extension plugin-id="de.dlr.fireblade.core" point-id="module"

id="ConsumerModule">

<parameter id="class"

value="de.dlr.fireblade.module.consumer.Consumer"/>

<parameter

id="name" value="ConsumerModule"/>

<parameter id="description"

value="Handles incoming requests."/>

</extension>

So the consumer module can dock onto the core. Now the core can call the han-
dleMessage() method in Consumer.java. And the consumer module can call the
handleMessage() method of the core by calling finalizeMessage() in Module.java.
The consumer is the first step in the process chain of the ALG. So it has to accept
incoming data traffic.
Grid services, like web services, use HTTP POST to send their request. The
consumer has to listen to a socket so clients can connect. After processing the
incoming data, an InternalMessage has to be created which is then passed along
to the core. When the response arrives it has to be send back to the client.
Figure 14 shows a UML class diagram of the consumer and all its corresponding
classes. The Consumer itself reads his configuration from the XML configuration
file. After reading the configuration it starts a dispatcher which keeps control of
all started threads.
Within this dispatcher a ServerSocket is started so clients can connect. On every
incoming request from a client a new thread is started. When starting a new
thread it is put in the ThreadPool. This is to associate an InternalMessage with
a thread. So responses can be handled by the corresponding thread.
The ServiceThread extends from Thread and is the class which finally deals with
the InputStream and the OutputStream of the socket. It reads the data from

3.4 System implementation 24

Figure 14: UML class diagram for the consumer module.

the InputStream and parses the HTTP headers. Only if a HTTP POST request
is done the thread handles the message. After this verification a SOAP Message
is generated by the help of the Axis engine. This SOAP message is placed in
an InternalMessage and delivered to the core for further validation by the other
modules.

3.4.6. Certificates

To support SSL encryption of the data the SecureServiceThread extends from
ServiceThread. Within the constructor of this Thread the socket is initialized to
support SSL encryption. All other methods are used from the ServiceThread.
To setup an encrypted socket connection credentials are needed. The consumer
module has its own credentials. These credentials are used to verify if incoming
request are allowed. The CoGkit installation provides the basic security infras-
tructure. This means all certificates are managed by the CoGkit.
So when the consumer module runs in secure mode a CoGkit has to be installed
on the system.

3.4.7. The mapping module

This module realizes the main part of the verification process. The mapping
module can be extended by several plug-ins itself. Therefore it needs to have
an own extension-point to which plug-ins can extend. The module itself extends

3.4 System implementation 25

from the core extension-point.

<extension-point id="de.dlr.fireblade.plugin">

<parameter-def id="class"/>

<parameter-def id="name"/>

<parameter-def id="description" multiplicity="any"/>

</extension-point>

<extension plugin-id="de.dlr.fireblade.core"

point-id="de.dlr.fireblade.module" id="MappingModule">

<parameter id="class"

value="de.dlr.fireblade.module.mapping.Mapping"/>

<parameter id="name" value="MappingModule"/>

<parameter id="description"

value="Verifies and Modifies SOAP messages."/>

</extension>

Several plug-ins can dock onto the extension point of the mapping module. The
basic idea of the mapping module is that for every available service a special
plug-in is deployed. These plug-ins allow a very strict verification of the traffic
passing through the ALG. A request of a type which is not supported by any
plug-in is rejected.
Identification of the message type is done with XML schemas. These schemas
are defined within the plug-ins. The mapping module fetches these schemas and
tries to validate them against the SOAP message. If the SOAP message matches
the schema it is being delivered to the appropriate plug-in for further validation.
So the following steps are taken to verify an incoming message:

1. Identify and start all available plug-ins. This is done with the help of the
plug-in framework.

2. Fetch all paths to the XML schema files from the available plug-ins. These
are needed to identify the type of the message.

3. If a SOAP message matches a schema file send it to the plug-in which
provided the schema.

4. Retrieve the SOAP message from the plug-in. Verify that no exceptions
are thrown. If an exception is thrown the message should be marked as
rejected.

Figure 15 shows the steps above in a sequence diagram.
If no schema matches the SOAP message the complete message is rejected. Due
to the fact that for every service, which should be supported by the ALG, a plug-
in has to be written it is important that the development of plug-ins should be
simple. Therefore an abstract class FirebladePlugin is implemented. A developer
of a plug-in can easily extend from this class to realize his implementation. The
next section gives a closer look on the development of plug-ins for the mapping
module.

3.4 System implementation 26

Figure 15: UML sequence diagram demonstrating message handling.

3.4.8. Plug-ins for the mapping module

The development of plug-ins for the mapping module is rather easy. A ANT
build file is already provided. The developer only has to create a class which
extends from FirebladePlugin. With the help of ANT a compress file is created
which only has to be uncompress in the plug-in directory of the ALG system.
All plug-ins for the mapping module must extend from FirebladePlugin. These
plug-ins can dock onto the mapping module by extending from the extension
point de.dlr.fireblade.plugin. The developer only has to implement two methods.
The method returnPathToSchema must return an absolut path to a XML schema
file. This file is used to validate incoming SOAP requests. If they match this
XML schema the method handle will be called. This is the second method the
developer has to implement. Here he can realize further checks or mappings. For
example executables for a Job submission can be verified here.

3.4.9. Plug-in for job submissions

The UML diagram in figure 16 shows a sample plug-in for the mapping module.
The returnPathToSchema returns a path to the following XML schema definition.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" ...

elementFormDefault="qualified">

[...]

<xs:element name="Envelope">

<xs:complexType>

<xs:sequence>

<xs:element ref="soapenv:Header"/>

<xs:element ref="soapenv:Body"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="Header">

<xs:complexType>

<xs:sequence>

3.4 System implementation 27

Figure 16: UML class diagram for a sample plug-in.

<xs:element ref="wsa:MessageID"/>

<xs:element ref="wsa:To"/>

<xs:element ref="wsa:Action"/>

<xs:element ref="wsa:From"/>

<xs:element ref="ns1:ResourceID"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="Body">

[...]

</xs:element>

</xs:schema>

If the SOAP message validates against this schema it is delivered to the handle
method. The handle method itself does only return the SOAP message back to
the mapping module. This is for demonstration purposes only.
While the XML schema validation only looks for syntax and sematics (And a
loose verification of the contents of the message) of the SOAP message a stricter
verification can be realized in the handle method. Within this method it is
possible to replace certain tags in the SOAP message. Or even more important
to verify certain parts of the SOAP message which can not be evaluateted with

3.5 Countermeasures for Security Threats 28

the help of XML schemas. For example executables during job submission could
be send to a virus scanner.
The interesting part of this plug-in is the definition of the XML schema file.
Within this schema file it is possible to realize a strict verification. For exam-
ple it is possible to define list of possible values for the element with the name
wsa:To. When doing this the SOAP messages would only validate against this
XML schema when a certain service is requested. A list of services could look
like:

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:enumeration value="https://saga.sistec.kp.dlr.de:7575

/wsrf/services/ManagedJobFactoryService"/>

<xs:enumeration value="https://elli.sistec.kp.dlr.de:7575

/wsrf/services/ManagedJobFactoryService"/>

</xs:restriction>

</xs:simpleType>

With this definition only job request to the host elli.sistec.kp.dlr.de and
saga.sistec.kp.dlr.de are allowed.

3.4.10. The supplier module

As last module on the path of a message to its destination the supplier module
sends the verified messages. Again this plug-in is threaded to support multiple
connections at the same time. The UML class diagram in figure 17 shows the
implemented classes.
This plug-in extends to the module extension-point of the core. The same way
the consumer unit does. After the method handleMessage() is called, a thread
is started which opens a socket connection to the destination host. The message
is now send and the response is read from the socket and handled back to the
core. To support SSL encryption within this plug-in an extra class to support
this special type of socket was written. It retrieves user credentials from the local
CoGkit installation and opens a socket. The user credentials are then used to
authenticate the ALG against the Globus container.

3.5. Countermeasures for Security Threats

In section 2.2, a number of security threats for systems accessible through net-
works have been listed. Each of these threats must be treated with an adequate
countermeasure. The presented application level gateway provides a solution for
some of these threats, namely spoofing, data manipulation, and uncontrolled use
of resources. Denial of service attacks are usually treated by a firewall. The
following table lists all security threats with their respective countermeasure.

3.5 Countermeasures for Security Threats 29

Figure 17: UML class diagram for the supplier module

Threat Countermeasure

User acts as if he is
somebody else (Spoof-
ing)

The ALG system or security proxy authen-
ticates and authorizes the user who tries to
access the ALG system.

Data manipulation All data is located in the secure local net-
work. The external user requesting the ser-
vices can be replaced by an internal user.
Full access, and therefore control over the
data, is guaranteed.

Uncontrolled use of re-
sources

The ALG inspects incoming and outgoing
data traffic. Requests which should not be
allowed are rejected.

Denial of Service at-
tacks

The use of packet filters together with the
ALG secures the ALG system for these at-
tacks.

Wiretapping of data Connections are encrypted. Secure data
transfer mechanisms (like SSL) are used.

4 Quality management 30

Threat Countermeasure

Unauthorized en-
hancement of privi-
leges

The proxy validates incoming data connec-
tions. Dubious connections are rejected.

4. Quality management

Several actions where taken to ensure code quality. Quality management is used
to avoid failures in software [11]. As showed in section 2.4 reliable code has to be
developed. The next sections describe all actions taken during the development
of this ALG.

4.1. Source code version control

A version control system allows the centralized storage of the source code. During
development new versions of files can be committed to the server. Other users
then can updated their locale copy.
All actions taken in a version control repository are logged. So users can keep
track of all versions of a file. With a version control system users can merge two
versions of a file. Older revisions of a file can be retrieved as well.
A repository can be compared to a tree. Next to the main branch several other
branches can exist. In those branches variations in the source code can be stored.
Branches can be merged together.
During the development a current release of the Subversion [12] system was used
as repository.

4.2. Bug tracking

A web based bug tracking system is used to keep track of feature request and
bugs during development. Mantis [13] is such a bug tracking system. It is written
in PHP and uses a MySQL backend.
Within this system it is possible to

• report and modify bugs and feature requests. Users can report bugs and
add notes to them. Bugs can be assigned to developers so they are solved.

• keep track of users and their assigned bugs. Statistics about bugs and the
progress made to solve them can be reviewed.

• manage several projects. With the help of search and filter functions it is
possible to keep track of the bugs of several projects.

4.3 Coding style checks 31

4.3. Coding style checks

Code style is an important aspect in modern software development. A good
coding style avoids faults in source code and allows the easy creation of API
specifications.
To ensure that all coding style guidelines are followed up two quality measures
are taken. First the Checkstyle [14] tool verifies the written source code. It looks
for naming conventions, code style, and documentation offenses. This tool is
integrated within the build process of the ALG.
Second method to provide a high coding standard is the use of code reviews.
During this audit source code is verified to ensure that correct algorithms are
used. During this reviews all guidelines are verified which can not be covered by
Checkstyle.

4.4. Unit tests

Unit tests are written by the developer to test a specific area of the source code.
By means of extreme programming a unit test is designed before the source code
is written. So the developer first has to design what all methods of a class would
do before he implements them. [15]
Unit tests ensure a clean design and reduce the amount of time spend in debug-
ging. While unit tests are written at the beginning of a software development
cycle it ensures that source code (even in later revisions) always act the same.
During the development of this ALG for every class file their exists a unit test.
In this unit tests the methods of a class are tested like described in the following
listing.

Test for success Methods are tested if they can be called with correct parame-
ters. All parameter ranges should be included here.

Test for failure The methods are tested if they throw exceptions as expected.
This can occur when variables are not set or parameters are out of the
expected range.

Test for sanity Tests if methods return the right value when called with known
parameters. The return value should be as expected. Mutators are tested
if setted variables can be retrieved correctly.

The JUnit [16] framework was used to test the software.

4.5. Code coverage

The existence of unit tests alone is in most cases not enough. It does not warrant
that the tests cover all methods and all statements. To test how good the tests
cover the code base a tool like clover can be used.
Clover runs the unit tests and simultaneously keeps track of which statements
are called. Conditional branch coverage is also verfied during a junit testrun with

4.6 Teamsite 32

enanlbed clover. Later on, in a report, clover states how many statements where
called and how the conditional statements resolved. Clover [17] gives an actual
percentage of how many lines of code where covered by the unit tests.

4.6. Teamsite

To store documents (Documentation, Conference submission) written during the
development of the ALG a teamsite was arranged. Within this teamsite links
related to this project where stored.
Information of corresponding projects was stored here. It also keeps track of
upcoming events and mile stones. This teamsite can easily be integrated within
the desktop environment of the developer.

5. Conclusion

This paper presents concepts for securing Grid Services and the rough design of
an application level gateway. The work on this topic led to the conclusion that
with an appropriate concept, modern services based distributed environments
can be secured. This concept includes the use of firewalls and security proxies.
This implementation of the ALG demonstrated that it is possible to realize a
security proxy. With the design concept, using plug-ins, it can be easily extended
to match all kinds of requests. For further development the ALG will be extended
to support Load balancing.
The main bottleneck in the system design is the support for performance critical
applications. Inspecting requests on the application level is time consuming.
Data transfers can be either handled with or without caching. If files are cached,
they can be validated as well. But that would lead to file transfers not being
performed in real-time. If files are not cached, they cannot be inspected, which
in turn would lead to a potential security risk. But only this way file transfers
can be performed with a minimum delay.
Parts of this work are being contributed to the Firewall Issue Research Group
(FI-RG) [18] of the Global Grid Forum (GGF) [8].

A Used software 33

A. Used software

This section describes the software used during the development of the ALG.

A.1. Eclipse platform

“The Eclipse platform is designed for anything, but nothing in particular” [19].
The main goal of the development of the Eclipse Platform is to provide an In-
tegrated Development Environments (IDEs). These IDEs can be used for the
creation of various applications like Java or C++ programs, but also to create
extensions (plug-ins) to the Eclipse platform itself.
The Eclipse platform together with several tools plugged into it specifies an IDE.
Eclipse’ base packaging contains all tools needed for Java software development.
Some of its key features are tools for management of all Java project files, an
editor component, a refactoring tool, a debugger, Java compiler integration, etc.
The platform’s runtime environment is responsible for the management of all
plug-ins. Plug-ins are attached to it and may provide extension points to other
plug-ins.
Further information and downloads for the open source IDE Eclipse and the
Eclipse Platform can be found on the Eclipse home page [20].

A.2. Object Domain

Object Domain [21] is a UML modeling tool. It supports all kinds of UML
diagrams. The main advantage of this UML tool is the support for code synchro-
nization and roundtrip engineering. This means that during the development the
UML diagrams can be easily updated.
Object Domain supports Java and Python to generate source code. Reverse
engineering and the generation of reports about the project are included as well.

A.3. Log4j

Log4j [22] is a logging toolkit for the Java programming language. It allows the
logging of all actions within an application. The messages send to the logger can
be of different levels. This messages can include information, debug, and warning
messages.
These messages let the user keep track of what happens within the application.
With the help of so called appenders it is possible to use different log levels for
different parts of the codes. This means e.g. that only errors messages from the
supplier should be logged and that all messages (including debug messages) from
the core should be distributed.
Protocols are generated with the help of log4j. These protocols let the admin-
istrator of a site know which services were requested. Rejected requested are
logged as well.

A.4 ANT 34

A.4. ANT

Apache Ant [23] is a Java based build tool. It integrates all the advantages of
GNU make without the confusing makefiles. The tasks Ant has to realize are
defined in a XML file. Serval kinds of tasks can be defined. E.g. for the creation
of distributions or just the compiling of files.
Tools like junit, checkstyle, and clover have their own Ant tasks. So during
development it is possible to execute these tasks and verify their output. With
this concept it is also possible to realize Junit test during nightly-builds.

A.5. Axis

Apache Axis [24] is an implementation of SOAP. It hides the communication of
SOAP messages from the developer. With Axis it is possible to write Services and
Clients without the exact knowledge of communication protocols. Axis supports
developers while developing services and their corresponding clients.

A.6. Java Plug-in Framework

The java plug-in framework [25] used here is an Open Source project. This
framework implements a runtime engine which discovers the plug-ins and registers
them to a registry. The framework maintains this registry of available plug-ins.
Extensions and extension points can be used to let plug-ins communicate with
each other. Plug-ins can be added to the running application on the fly. This
framework is very similar to the plug-in framework used in the Eclipse platform.

A.7. Globus Toolkit

The Globus toolkit is an open source software product to create grids. In the
newly distributed version 4.0 it uses a Service orientated approach. It is based
upon standards like the OGSA and WSRF.
“The toolkit includes software for security, information infrastructure, resource
management, data management, communication, fault detection, and portability.
It is packaged as a set of components that can be used either independently or to-
gether to develop applications. Every organization has unique modes of operation,
and collaboration between multiple organizations is hindered by incompatibility of
resources such as data archives, computers, and networks. The Globus Toolkit
was conceived to remove obstacles that prevent seamless collaboration. Its core
services, interfaces and protocols allow users to access remote resources as if they
were located within their own machine room while simultaneously preserving local
control over who can use resources and when.” [26]

A.8. CoGKit

“Commodity Grid (CoG) Kits allow Grid users, Grid application developers, and
Grid administrators to use, program, and administer Grids from a higher-level

A.8 CoGKit 35

framework. The Java and Python CoG Kits are good examples. These kits allow
for easier and more rapid application development. They encourage collaborative
code reuse and avoid the duplication of effort among problem solving environ-
ments, science portals, Grid middleware, and collaboratory pilots.”[27]

B List of abbreviations 36

B. List of abbreviations

ALG Application Level Gateway

CFD Computational Fluid Dynamics

CORBA Common Object Request Broker Architecture

DMZ Demilitarized Zone

DoS Denial of Service

GASS Grid Access to Secondary Storage

HTTP Hyper Text Transfer Protocol

HTTPS Secure Hyper Text Transfer Protocol

IDS Intrusion Detection System

OGSA Open Grid Services Architecture

OGSI Open Grid Services Infrastructure

RMI Remote Method invocation

RPC Remote Procedure Calls

RTF Reliable File Transfer

SAML Security Assertion Markup Language

SMTP Simple Mail Transfer Protocol

SOA Service Orientated Architecture

SOAP Simple Object Access Protocol

SSH Secure Shell

TCP Transfer Control Protocol

UDP User Datagram Protocol

VO Virtual Organization

VPN Virtual Private Network

W3C WWW Consortium

WS-DBC Web Service Domain Boundary Controller

WSDL Web Service Description Language

WSRF Web Services Resource Framework

XML eXtensible Markup Language

List of Figures 37

List of Figures

1. TENT user interface. 2
2. Possible firewall borders. 3
3. General setup of an ALG based security concept. 5
4. Some security threats and their occurrences. 8
5. OGSA and WSRF interaction. 9
6. Client and service with their stubs 10
7. Invoking web services. 10
8. Use case diagram for the ALG system. 14
9. Use case diagram of an extension. 16
10. Overview of a plug-in based application. 17
11. System design of the ALG. 18
12. Call hierarchy. 19
13. UML class diagram for the core. 21
14. UML class diagram for the consumer module. 24
15. UML sequence diagram demonstrating message handling. 26
16. UML class diagram for a sample plug-in. 27
17. UML class diagram for the supplier module 29

References 38

References

[1] Foster, I., Kesselmann, C. The Grid - Blueprint for a New Computing In-
frastructure, Morgan Kaufmann, 1998

[2] Foster, I., Kesselman, C., Tuecke, S. The Anatomy of the Grid: Enabling
Scalable Virtual Organizations. International J. Supercomputer Applica-
tions, 15 (3), 2001.

[3] Foster, I., Kesselman, C., Nick, J. and Tuecke, S. The Physiology of the Grid:
An Open Grid Services Architecture for Distributed Systems Integration.
Globus Project, 2002, www.globus.org/research/papers/ogsa.pdf.

[4] Czajkowski, K., Ferguson, D., Foster, I., Frey, J., Graham, S., Sedukhin, I.,
Snelling, D., Tuecke, S., Vambenepe, W. 2004. The WS Resource Framework.
http://www-106.ibm.com/developerworks/library/ws-resource/ws-wsrf.pdf

[5] XML/SOAP Firewall, Xtradyne WS-DBC - the XML/SOAP Firewall for
Enterprises. http://www.xtradyne.com/products/ws-dbc/ws-dbc.htm

[6] Meier, J. D., Mackman, A., Vasireddy, S., Dunner, M., Escamilla, R., Mu-
rukan, A. Improving Web Application Security: Threats and Countermea-
sures. Microsoft Corporation, 2003.

[7] Foster, I., Kishimoto, H., Savva, A., and others The Open Grid Service
Architecture, Version 1.0. http://www.gridforum.org/documents/GWD-I-
E/GFD-I.030.pdf

[8] Global Grid Forum. http://www.ggf.org

[9] Organization for the Advancement of Structured Information Standards.
http://www.oasis-open.org/home/index.php

[10] SOAP Specifications. http://www.w3.org/TR/soap/

[11] Hunt, A., Thomas, D. The pragmatic Programmer - From Journeyman to
Master, Addison Wesley Longman, Inc. 2000

[12] Subversion website. http://subversion.tigris.org/

[13] Mantis website. http://www.mantisbt.org/

[14] Checkstyle website. http://www.checkstyle.sourceforge.net/

[15] Hunt, A., Thomas, D. Pragmatic Unit Testing, The Pragmatic Bookshelf,
2004

[16] Junit website. http://www.junit.org/

[17] Clover website. http://www.cenqua.com/clover/

References 39

[18] Firewall Issues Research Group. http://forge.gridforum.org/projects/fi-rg

[19] Eclipse Platform Technical Overview, Object Technology International, Inc.,
February 2003.

[20] Eclipse home page. http://www.eclipse.org

[21] Object domain website. http://www.objectdomain.com/

[22] Log4j website. http://logging.apache.org/log4j/

[23] Apache Ant website. http://ant.apache.org/

[24] Apache Axis website. http://ws.apache.org/axis/

[25] Java plug-in framework. http://jpf.sourceforge.net/

[26] Globus website. http://www.globus.org/

[27] von Laszewski G., Foster I., Gawor J., Lane, P. A Java Commodity Grid
Kit, Concurrency and Computation: Practice and Experience, vol. 13, no.
8-9, pp. 643-662, 2001.

