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ABSTRACT

Compressive fluctuations are a minor yet significant component of astrophysical plasma turbulence. In the solar
wind, long-wavelength compressive slow-mode fluctuations lead to changes in  b pº n k T B8p p B p

2 and in
º ^R T Tp p p, where T̂ p and T p are the perpendicular and parallel temperatures of the protons, B is the magnetic

field strength, and np is the proton density. If the amplitude of the compressive fluctuations is large enough, Rp
crosses one or more instability thresholds for anisotropy-driven microinstabilities. The enhanced field fluctuations
from these microinstabilities scatter the protons so as to reduce the anisotropy of the pressure tensor. We propose
that this scattering drives the average value of Rp away from the marginal stability boundary until the fluctuating
value of Rp stops crossing the boundary. We model this “fluctuating-anisotropy effect” using linear Vlasov–
Maxwell theory to describe the large-scale compressive fluctuations. We argue that this effect can explain why, in
the nearly collisionless solar wind, the average value of Rp is close to unity.
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1. INTRODUCTION

Astrophysical plasmas are often in a turbulent state
(Alexandrova et al. 2013; Bruno & Carbone 2013). This
turbulence is characterized by a broad distribution of fluctua-
tions over a wide range of wavevectors and by an ongoing
turbulent cascade that transfers energy between different
wavevectors (Schekochihin et al. 2009; Wicks et al. 2011;
Carbone 2012). A background magnetic field B0 can lead to an
anisotropic cascade (Goldreich & Sridhar 1995), and, in fact,
most astrophysical plasmas are permeated by such a magnetic
field. Theoretical considerations, numerical simulations, and
solar-wind observations indicate that the turbulent cascade—
especially for large-scale noncompressive fluctuations—pre-
ferentially transfers energy to large k⊥, and to a lesser extent to
large kP in a magnetized plasma, where k⊥ (kP) is the
wavenumber in the direction perpendicular (parallel) to B0
(Montgomery & Turner 1981; Oughton et al. 1994, 1998; Cho
& Vishniac 2000; Sahraoui et al. 2010; Chen et al. 2011; Narita
et al. 2011; He et al. 2012; Salem et al. 2012; Verscharen
et al. 2012). We focus our treatment on the outer scales of the
turbulence at which the frequencies (linear and nonlinear) are
Wp, where W º q B m cp p 0 p is the proton gyrofrequency, qp
and mp are the charge and the mass of a proton, and c is the
speed of light.

In addition to the anisotropic cascade, properties of the
particle distribution function can be anisotropic with respect to
B0 in a plasma with low collisionality. For example, in situ
measurements of the solar wind have shown temperature
anisotropies with º ¹^R T T 1p p p , where T̂ p ( T p) is the
temperature of the protons in the direction perpendicular
(parallel) to the magnetic field (Marsch et al. 1982;
Kasper 2002; Hellinger et al. 2006; Marsch et al. 2006; Bale

et al. 2009; Maruca et al. 2012). If the temperature anisotropy
∣ ∣-R 1p of the protons exceeds a certain threshold, then the
plasma becomes unstable, and various kinds of plasma
waves and/or nonpropagating structures grow, while the
distribution function relaxes toward a stable state. If >R 1p ,
the plasma can excite parallel-propagating Alfvén/ion-cyclo-
tron (A/IC) waves or nonpropagating mirror modes (Rudakov
& Sagdeev 1961; Sagdeev & Shafranov 1961; Tajiri 1967;
Southwood & Kivelson 1993; Gary & Lee 1994; Kunz
et al. 2014; Riquelme et al. 2015; Gary et al. 2016). If

<R 1p , the plasma can excite parallel-propagating fast-
magnetosonic/whistler (FM/W) waves or nonpropagating
oblique firehose modes (Quest & Shapiro 1996; Gary
et al. 1998; Hellinger & Matsumoto 2000; Hellinger &
Trávníček 2008; Rosin et al. 2011). The anisotropy thresholds
of these instabilities decrease with increasing
 b pº n k T B8p p B p

2, where kB is the Boltzmann constant, np
is the proton density, and B is the magnetic field. According to
the double-adiabatic or Chew–Goldberger–Low (CGL; Chew
et al. 1956) model, the solar wind is expected to develop strong
temperature anisotropy with <R 1p during its transit from the
Sun to a heliocentric distance r of 1 au, so that the plasma
would approach the marginal-stability curves of the anisotropy
instabilities at <R 1p in the b p–Rp plane. Some models (e.g.,
Hellinger & Trávníček 2008; Chandran et al. 2011; Yoon &
Seough 2014) have suggested that, after the solar wind first
encounters the marginal-stability curve, it evolves along the
marginal-stability curve as it moves away from the Sun since
anisotropy instabilities prevent the plasma from moving past
the marginal-stability curve. However, numerous observations
show that the solar wind exhibits a broad distribution of Rp
values that is peaked at R 1p , even in wind streams with very
low collisionality (e.g., Marsch et al. 1982; Bale et al. 2009).
This implies that an additional physical mechanism counteracts
the double-adiabatic reduction in Rp. One potential explanation
for this puzzle is the existence of a perpendicular heating
mechanism with just the right magnitude to offset the tendency
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of adiabatic expansion to decrease Rp. We explore an
alternative ansatz by investigating the possibility that com-
pressive fluctuations lead to a reduction of the anisotropy away
from the instability thresholds.

In this paper, we propose the following basic concept as a
mechanism for the collisionless isotropization of the plasma.
The expansion of the solar wind in the inner heliosphere
( r 1 au) leads to a reduction in the average value of Rp,
which we denote R0p, and an increase in the equilibrium value
of b p, which we denote b 0p. The presence of large-scale slow-
mode fluctuations with amplitude ∣ ∣d B leads to fluctuations in
Rp around R0p, as well as fluctuations in b p around b 0p. At
some distance from the Sun, R0p sufficiently decreases that the
fluctuating value of Rp crosses the threshold for the FM/W
instability. The instability then increases R0p via pitch-angle
scattering until the fluctuating value of Rp stops crossing the
instability threshold. As the plasma expands further, this
“fluctuating-anisotropy effect” keeps R0p at a sizable “distance”
from the marginal-stability boundary, in agreement with
observations that show that R0p is close to unity even when
collisions are weak. Our work aims to introduce this novel
physical mechanism and is largely based on conceptual
arguments. In order to test rigorously whether this mechanism
is important in the solar wind, additional numerical and
observational studies will be necessary.

The goal of our present work is to develop a quantitative
description of the limits on b p and Rp that are set by the
FM/W instability and large-scale compressions with different
amplitudes ∣ ∣d B B0. We note that in other circumstances (e.g.,
accretion flows in which double-adiabatic compression acts to
increase R0p), this mechanism could place an upper limit on R0p

through the combined action of compressions and the A/IC
instability.

Previous treatments based their analysis on the notion that
microscale plasma instabilities triggered by time-dependent
fluctuations in the magnetic field strength pin the temperature
anisotropy at its marginally stable value (e.g., Schekochihin
et al. 2005; Schekochihin & Cowley 2006; Sharma et al. 2006;
Kunz et al. 2011). In contrast, we focus on the possibility that

transient encounters between the time-evolving value of Rp and
an instability threshold drive R0p toward isotropy.
In Section 2, we discuss the nature of kinetic slow modes at

different b p and illustrate the fluctuations in Rp and b p for the
relevant modes. Section 3 explains the isotropization mech-
anism and quantitatively describes the effects of compressive
modes on the equilibrium anisotropy. We conclude our
presentation in Section 4. In Appendices A–D, we present
the mathematical and numerical framework for our kinetic
analysis, illustrate the fluctuating-anisotropy effect using
double-adiabatic MHD, discuss the efficiency of pitch-angle
scattering by FM/W waves, and analyze the dependence of the
isotropization mechanism on the assumed maximum allowable
growth rate of the driven microinstabilities.

2. SLOW MODES IN KINETIC THEORY

For simplicity, we model the large-scale compressions as
linear waves in a hot, collisionless proton–electron plasma
using Vlasov–Maxwell theory. Our use of linear theory is
motivated in part by the argument that strongly turbulent
fluctuations in a plasma retain certain properties associated with
linear modes (Klein et al. 2012; Salem et al. 2012; Chen
et al. 2013; Howes et al. 2014). Observations in the solar wind
show that dnp and ∣ ∣d B are anticorrelated (Belcher &
Davis 1971; Bavassano & Bruno 1989; Tu & Marsch 1995;
Chernyshov et al. 2008; Yao et al. 2011; Howes et al. 2012;
Klein et al. 2012; Kiyani et al. 2013), and we consequently take
the large-scale compressions to be solutions to the hot-plasma
dispersion relation for which dnp and ∣ ∣d B are anticorrelated.
We refer to such solutions as “kinetic slow modes.” We use the
approximation ∣ ∣ · ˆd d d» =B B bB .
There are two types of kinetic slow modes: ion-acoustic (IA)

waves and nonpropagating (NP) modes (Howes et al. 2006;
Schekochihin et al. 2009). We first describe these modes
analytically using a set of approximations that does not apply in
its entirety to slow modes in the solar wind. However, we will
later relax these approximations and describe these waves
numerically for parameters that are relevant to the solar wind.
For an isotropic plasma with proton and electron tempera-

tures Tp and Te, the IA wave can be described analytically in the
gyrokinetic approximation given the assumptions that

rk̂ 1p , w Wr p, T Te p, and b 1p , where rp is the
proton gyroradius, wr is the real part of the frequency, and
b pº n k T B8p p B p 0

2. In these limits, the IA dispersion relation
yields (Howes et al. 2006)

( )w = k c 1r s

and

∣ ∣ ( )g p= - -
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where γ is the imaginary part of the frequency and (e.g.,
Stix 1992; Gary 1993; Narita & Marsch 2015)
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A comparison of Equations (1) and (3) with numerical
solutions to the hot-plasma dispersion relation reveals that
Equation (1) provides a reasonably accurate approximation of
the numerical solutions at b 1p even when »T Te p.

Figure 1. Damping rates of the IA mode and of the NP mode in numerical
solutions obtained with NHDS and from our analytical theory according to
Equations (2) and (4). We use the parameters  =T Tp e, q = 88 ,
 W =k v 0.001A p , and isotropic temperatures for both species. The numerical
damping rates for the IA mode and for the NP mode are equal at b » 0.3p .
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The NP mode can be described analytically in the
gyrokinetic approximation given the assumptions that

rk̂ 1p , w Wr p, and b 1p . As shown by Kunz et al.
(2015), the NP dispersion relation in these limits yields

∣ ∣
( ) ( )


g

pb
b b» - - D - D^ ^

k v

R
1 , 4

A

p
2

p
p p e e

where D º -R 1j j ,  b bº^ T̂ Tj j j j, and pºv B n m4A 0 p p

is the proton Alfvén speed.5 We note that the analytical
approximation in Equation (4) does not rely on the assump-
tion T Te p.

In Figure 1, we compare our analytical expressions for γ in
Equations (2) and (4) to numerical solutions of the hot-plasma
dispersion relation obtained with our New Hampshire Disper-
sion-relation Solver (NHDS) code (Verscharen et al. 2013b).
We denote the angle between k and B0 as θ and set q = 88
and  W =k v 0.001A p in Figure 1. We see that the analytical
results and the numerical results agree well for the NP mode at
large b p. There is a significant discrepancy between
Equation (2) and the numerical solutions since the assumption
 T Te p is not satisfied in the numerical solution. Using this

parameter set, the NP mode has a higher damping rate than the
IA mode at  b 0.3p and a lower damping rate than the IA
mode at  b 0.3p .

If the compressive fluctuations in the solar wind were simply
freely decaying slow waves, then at each b p, the dominant
component of the compressions would correspond to the least
damped kinetic slow mode—i.e., the IA mode at low b p and
the NP mode at high b p. In the solar wind, however, nonlinear
interactions among noncompressive fluctuations generate
compressions, presumably exciting both IA and NP modes, at
least to some degree, at all b p. We thus assume that a
nonnegligible fraction of the compressions in the solar wind are
in the form of IA modes. The observation of slow modes in the
solar wind indicates that Landau damping does not suppress
slow-mode turbulence completely. Highly oblique propagation
is one possible explanation for the presence of slow modes. An
“anti-phase-mixing” effect due to the turbulent background is
an alternative explanation (for details, see Schekochihin
et al. 2016). In addition, proton beams can change the
velocity-space gradient of the background distribution at the
resonant velocity so that the damping rate is smaller than in the
Maxwellian case (Bavassano et al. 2004).

Like other fluctuating quantities, Rp and b p fluctuate in a
plasma wave. If the amplitude ∣ ∣d B B0 of the compressive IA
component is large enough, even an initially isotropic plasma
can become so anisotropic that it crosses a threshold for an
anisotropy-driven instability.6 Because the microinstabilities
grow on length scales and timescales much smaller than the
length scales and timescales of the compressive fluctuations at
the outer scale of the turbulence, we treat the plasma that is
perturbed by the large-scale fluctuations as effectively uniform
and static for the purposes of analyzing the microinstabilities
(see Marsch & Verscharen 2011; Verscharen & Marsch 2011).

The IA mode and the NP mode “transport” the plasma
through the b p–Rp plane in qualitatively different ways. We

illustrate this in Figure 2, which shows hodograms for both
modes. For this figure, we calculate the fluctuating values of
both Rp and b p using the technique described in Appendix A
for one full wave period (for the IA mode we scan in time and
for the NP mode we scan in space) and follow the plasma
parcel in parameter space. In the case of the IA mode, an
increase in Rp coincides with a decrease in b p, leading to
hodograms that extend from the upper left to the lower right.
For the NP mode, this behavior is different. For example, at
b » 10p and »R 0.60p , b p barely changes as Rp fluctuates,

while for b » 100p and »R 10p (see the gray line in Figure 2),
Rp barely changes as b p fluctuates, and the hodogram is nearly
parallel to the FM/W threshold. Another difference between
the two modes is that the fluctuations in Rp and in b p are
significantly smaller in the NP mode than in the IA mode for a
given amplitude ∣ ∣d B B0 in the parameter range that we
explore. IA modes are, for these reasons, more effective than
NP modes at transporting the plasma across the FM/W
threshold. Much of our subsequent analysis will thus focus on
IA modes as the modes relevant for the isotropization
mechanism. The fluctuating-anisotropy effect associated with
NP modes may be effective at transporting the plasma across
the A/IC threshold, which can be important in other contexts
such as accretion flows.
Figure 2 also shows that the IA mode exhibits a phase shift

between b p and Rp so that the hodogram is an oval. This effect
is negligible for the NP mode. Double-adiabatic MHD provides
an intuitive understanding of the fluctuating-anisotropy effect
as we show in Appendix B. The IA mode and the slow mode in
double-adiabatic MHD exhibit similar phasing (see Figure 6 in
Appendix B).

3. LIMITS ON TEMPERATURE ANISOTROPY FROM THE
FLUCTUATING-ANISOTROPY EFFECT

As the solar wind expands out to 1 au, b 0p increases and R0p
decreases toward the FM/W instability threshold, denoted

Figure 2. Hodogram of a plasma parcel in kinetic theory. The orange curve
shows the hodogram for the IA mode with ∣ ∣d =B B 0.0250 , and the brown
curve shows the hodogram for the NP mode with the same ∣ ∣d B B0. This value
for ∣ ∣d B B0 is the amplitude for which the IA mode crosses the threshold of the
FM/W instability. We use q = 88 ,  W =k v 0.001A p , =R 0.60p ,  =T T0p 0e,
and b = 10p for both modes. The gray curve shows the hodogram for the NP
mode with =R 10p , b = 100p , and ∣ ∣d =B B 0.20 . The other lines show
isocontours of constant maximum growth rate g = W-10m

3
p for the four

different anisotropy-driven instabilities under consideration. The blue circles
mark the points ( b 0p, R0p). The maximum growth rate is defined as the largest
value of the instability growth rate at any k.

5 Interestingly, anisotropy can drive the NP mode unstable. The instability
criterion is g > 0 in Equation (4), which leads to the mirror-mode instability
criterion b bD + D >^ ^ 1p p e e (Kunz et al. 2015).
6 We concentrate on ion-anisotropy-driven microinstabilities only and neglect
electron-driven microinstabilities.
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( )bRcrit p . However, before R0p reaches Rcrit, the fluctuating
value of Rp is driven below Rcrit by large-wavelength,
compressive, IA fluctuations. Let us suppose that IA fluctua-
tions would cause Rp to oscillate approximately as

( ) ( )w= + DR R R tcosp 0p in the rest frame of some particular
plasma parcel if FM/W waves could be ignored, where
D >R 0 and - D <R R R0p crit. Then, accounting for the
FM/W instability, when Rp first drops below Rcrit, FM/W
waves grow and cause pitch-angle scattering of the protons.
This scattering maintains the condition R Rp crit in a self-
regulating manner, because the growth rate of the FM/W
waves is a rapidly increasing function of -R Rcrit p when

<R Rp crit. As the compression from the IA wave continues and
( ) ( )wDR tcos continues dropping toward its minimum value of
-DR, the ongoing scattering from FM/W waves increases R0p

so that ( ) ( )w+ DR R tcos0p remainsRcrit. Eventually, when
the compression reaches its peak and ( )w = -tcos 1, the pitch-
angle scattering causes R0p to reach a value  + DR Rcrit . As
the IA wave continues to oscillate, Rp oscillates about its new
average value. If the oscillation period is short compared to the
expansion time~r U , where r is the heliocentric distance and
U is the solar-wind speed, then Rp just barely reaches the
FM/W instability threshold when the IA wave reaches its next
maximum compression. As the plasma parcel travels farther
from the Sun, solar-wind expansion continues to drive R0p
toward smaller values, but the above “fluctuating-anisotropy
effect” repeats, maintaining R0p at a distance ( ) DR away
from Rcrit. If the amplitude of the IA mode is large enough, this
effect causes R0p to be close to1, even when the plasma is
nearly collisionless.

The main assumption that we have made in the above
discussion is that the FM/W waves that are excited when Rp
drops just below Rcrit represent only a small fraction of the
energy of the driving IA oscillation. If this were not the case,
the growth of these FM/W waves would simply damp out the
IA wave, leaving R Rp crit. Our assumption amounts to taking
the FM/W pitch-angle scattering process to be efficient, in the
sense that a small amount of FM/W energy is enough to
maintain R Rp crit in the presence of the IA compression. We
estimate the validity of this assumption in Appendix C.

Figure 3 shows the minimum value of R0p that the plasma
can reach at a given amplitude ∣ ∣d B B0 of the large-scale
IA wave such that the oscillating value of Rp just reaches the
FM/W instability threshold, which we define as the value of Rp

at each b p at which the maximum FM/W growth rate gm is
W-10 3

p. We use the methods described in Appendix A to create
this figure. As an example, for the case in which b = 10p and
∣ ∣d =B B 0.040 , the fluctuating-anisotropy effect causes R0p to
be0.9, as illustrated by the orange curve in Figure 3. Without
the compressive fluctuations, the plasma would be able to reach
values of R0p around 0.2 before it triggers the FM/W
instability. The larger the amplitude is, the more efficiently
the compressive IA fluctuations reduce the average temperature
anisotropy and counteract the generation of anisotropy due to
the expansion of the solar wind. Figure 3 shows that, for IA
fluctuations with a fixed ∣ ∣d B B0, this isotropization mechanism
becomes more efficient as b 0p increases, since the threshold
value of Rp for the FM/W instability approaches 1. We show
the same plots as Figure 3 in Appendix D for a different
assumed value of gm.

At sufficiently large ∣ ∣d B B0, the fluctuating value of Rp
crosses both the FM/W and A/IC thresholds. The pitch-angle

scattering experienced by the protons then alternates between
increasing R0p and decreasing R0p, and Rp oscillates about a
time-averaged value of order unity. This double-instability
regime arises along the colored dashed curves in Figure 3
above the filled black triangles. If the entire curve lies above its
associated black triangle (e.g., the green line in Figure 3), every
point along the curve is in the double-instability regime. We do
not extend the green curve down to =R 0.1p because the
plasma reaches b < 0p or <R 0p at some point during the IA
oscillation for ∣ ∣d =B B 0.050 and R 0.40p .

4. DISCUSSION AND CONCLUSIONS

In this paper, we explore how long-wavelength compressive
fluctuations and short-wavelength temperature-anisotropy
instabilities work together to isotropize a weakly collisional
plasma such as the solar wind. As the solar wind flows away
from the Sun in the inner heliosphere, solar-wind expansion
acts to increase the average value of b p and decrease the
average value of the protons’ perpendicular-to-parallel temp-
erature ratioRp (denoted b 0p andR0p, respectively). In
addition, fluctuations in B and np on timescales W-

p
1 lead

to fluctuations in b p andRp about their average values. If the
fluctuating value ofRp within some plasma parcel crosses the
FM/W instability thresholdRcrit, FM/W instabilities grow
rapidly and cause pitch-angle scattering of the protons. This
pitch-angle scattering prevents the instantaneous value ofRp
from dropping much belowRcrit and, we argue, simultaneously
raises the time-averaged value of Rp within that plasma parcel.
Averaged over several periods and/or wavelengths of the
large-scale compressive fluctuations, this process maintainsR0p
at a “distance” from the FM/W instability threshold in the
b p–Rp plane. This distance increases with increasing ∣ ∣d B B0.

In essence, we argue that R0p takes on that value for which the
fluctuating value of Rp just barely crosses the FM/W threshold.
To analyze this “fluctuating-anisotropy” effect quantita-

tively, we model the large-scale compressive fluctuations as
linear ion-acoustic waves, whose properties we obtain using

Figure 3. Permitted values of R0p after the reduction of the plasma anisotropy
by the combined action of microinstabilities and compressive large-wavelength
fluctuations. The colored dashed lines show the value of R0p for which the
oscillating value of Rp barely reaches the FM/W instability threshold
(g = W-10m

3
p) given the assumed value of ∣ ∣d B B0. In addition, we show

the thresholds of the four anisotropy instabilities with g = W-10m
3

p. The black
triangles show the point on each curve above which the IA mode with the given
amplitude causes the plasma to cross the thresholds for both the FM/W and A/
IC modes.
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numerical solutions to the hot-plasma dispersion relation for a
collisionless plasma, supplemented by the mathematical and
numerical framework developed in Appendix A. Figure 3
displays the central result of this work, showing the lower
limits set on R0p by the fluctuating-anisotropy effect for a
variety of assumed ∣ ∣d B B0 values. This figure shows that for
∣ ∣ d B B 0.040 and for  b 0.7p (typical values for the near-
Earth solar wind), the fluctuating-anisotropy effect increases
R0p to values between 0.6 and1, well above the FM/W
instability threshold and broadly consistent with solar-wind
observations.7 Nonlinear effects in the solar wind may alter the
phase relations between np, T̂ p, and T p, leading to some
modification of the curves in Figure 3. The quantification of
such modifications, however, is beyond the scope of this work.

Because ∣ ∣d B B0 need only be 0.04 for the IA-wave
component of the compressive fluctuations, whereas ∣ ∣d B B0 is
typically 0.1 in the solar wind, the IA waves only need to
account for a minority fraction of the compressive energy in
order for the fluctuating-anisotropy effect to explain the
observed values of R0p. The observation of pressure-balanced
structures (PBSs) in the solar wind (Burlaga & Ogilvie 1970;
Vellante & Lazarus 1987; Burlaga et al. 1990; Zank et al. 1990;
Marsch & Tu 1993; Tu & Marsch 1994; Ghosh et al. 1998;
Bavassano et al. 2004; Yao et al. 2011, 2013a, 2013b; Narita &
Marsch 2015) suggests that IA modes indeed account for only a
minority of the total compressive energy, because IA waves
perturb the total pressure, whereas NP modes are associated
with approximate total-pressure balance in the limit k 0.
Future observational studies to constrain the IA fraction in the
solar wind will be important for further testing of the
importance of the fluctuating-anisotropy effect in the
solar wind.

If the fluctuations in Rp and b p are dominated by IA
fluctuations, as we have assumed, then there will be
comparatively few data points in the lower left corner of
Figure 2, where both Rp and b p are small, because of the
anticorrelation between the fluctuations in Rp and b p. This
could explain the observed lack of measurements in this regime
in the solar wind.

We note at this point that this isotropization mechanism is
relevant for all collisionless turbulent plasmas as long as the
frequency of the turbulent fluctuations is small compared toWp,
and b p and ∣ ∣d B B0 are large enough. Astrophysical plasmas
that frequently fulfill these requirements include the solar wind
and low-luminosity accretion disks. Astrophysical shear flows,
for example, can create anisotropies with >R 10p (Kunz
et al. 2014; Riquelme et al. 2015). In the presence of
compressive fluctuations, the isotropization mechanism
described here can limit this equilibrium anisotropy to values
that are significantly below the thresholds for the A/IC and
mirror-mode instabilities. By reducing the fraction of the time
that the plasma spends at or beyond the instability threshold,
this effect could reduce the growth rate of plasma instabilities
that inhibit thermal conduction.

Kinetic plasma simulations such as hybrid, particle-in-cell,
or Vlasov-kinetic models are capable of simulating the
mechanism we describe. For example, Hellinger et al. (2015)
have carried out two-dimensional expanding-box hybrid

simulations of solar wind turbulence that track the evolving
temperature anisotropy of the plasma. Future simulations of
this type in three dimensions would incorporate both the full
turbulent dynamics and the efficient pitch-angle scattering by
the parallel FM/W instability, leading to an important test of
the fluctuating-anisotropy effect (see also Laveder et al. 2011;
Servidio et al. 2014, 2015). Numerical simulations can also test
our argument that, when large-wavelength compression causes
a plasma parcel to cross the FM/W threshold, the resulting
amplification of FM/W fluctuations leads to pitch-angle
scattering that increases R0p until the fluctuating value of Rp
stops crossing the FM/W threshold.
It is possible that there are interesting differences in the

physics of this isotropization mechanism depending on the
primary velocity-space instabilities that are excited. For
example, the mirror instability largely conserves the magnetic
moment unless the mirrors reach large amplitudes ∣ ∣d ~B B 10 ,
while the A/IC and FM/W instabilities lead to pitch-angle
scattering even at low amplitudes (e.g., Kunz et al. 2014;
Riquelme et al. 2015).
Our approach can be extended to a general “fluctuating-

moment theory” by incorporating fluctuations in other plasma
bulk parameters due to large-scale compressive fluctuations and
investigating their impact on kinetic instabilities. For example,
fluctuations in the relative drift speed between alpha particles and
protons, as well as fluctuations in their temperature anisotropy,
can lead to the excitation of beam instabilities at average drift
speeds below the classical thresholds of these instabilities (see
Verscharen & Chandran 2013; Verscharen et al. 2013a) and thus
to limits on the beam speed that are lower than predicted by linear
theory. The development of this theory is beyond the scope of
this work.
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APPENDIX A
KINETIC-THEORY TREATMENT OF THE

LARGE-SCALE COMPRESSIONS

In this appendix, we first discuss the thresholds of the four
anisotropy-driven instabilities under consideration and then
develop the mathematical and numerical framework for our
kinetic treatment. For the purpose of our analysis, we describe
the fluctuations in different bulk parameters with the help of
linear theory. In all of our calculations, we use = -v c 10A

4.

A.1. Instability Thresholds

Previous calculations have determined fits for isocontours of
constant growth rates of the A/IC, mirror, FM/W, and oblique
firehose instabilities in the –b Rp p plane. We use fits of the
form

( )
( )

b
= +

-
R

a

c
1 5

bp
p

7 Because of the fluctuations in Rp and b p induced by long-wavelength
compressive fluctuations, plasma measurements taken with a cadence that is
short compared to the periods of the compressive waves will exhibit a broad
distribution of Rp and b p values.
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with the fit parameters a, b, and c for constant maximum
growth rates g = W-10m

2
p, g = W-10m

3
p, and g = W-10m

4
p.
8

We determine these thresholds with the numerical solvers
NHDS (Verscharen et al. 2013b) and PLUME (Klein &
Howes 2015). We show the fit parameters that result from this
calculation in Table 1. Maruca et al. (2012) give fit parameters
for g = W-10m

2
p using fits of the same form as Equation (5) for

a plasma containing alpha particles. The thresholds of the
A/IC, the FM/W, and the oblique firehose instabilities in the
case with isotropic alpha particles are slightly larger in general
than in the case without alpha particles, while the mirror-mode
threshold is about equal for both cases.

A.2. Fluctuations in the Distribution Function

For all fluctuating quantities A, we introduce the notation
( ) ·= w-rA t Ae, k ri i t with the complex amplitude A. The real

part of ( )rA t, is the associated observable. Linearizing the
Vlasov equation in cylindrical coordinates (v⊥, vP, f) leads to
an expression for the first-order perturbation of the distribution
function:

( ) ( )

( )
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(Stix 1992), where
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0p 0p

and Ex, Ey, and Ez are the components of the electric-field
vector. We assume that the background distribution function is
bi-Maxwellian,
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where the thermal speeds are defined as º^ ^w k T m20p B p p

and  ºw k T m20p B p p . Using the Bessel-function identity

( ) ( )( ) ( )å z=z f t f t- +W
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- +We e J 11i
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for the Bessel function Jn of the order n allows us to simplify
the integral in Equation (6). This yields
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where

( ) wº W - +a n k v 13p p

and z º W^ ^k v p.
We evaluate the distribution function

( ) ( ) ( )d= +r rf t f f t, , 14p 0p p

using Equation (12) with ω determined from the hot-plasma
dispersion relation and with the ratios between Ex, Ey, and
Ez determined from the wave equation, ( )´ ´ +n n E
 =E 0, where wºn kc and ò is the hot-plasma dielectric
tensor (Stix 1992). We show isosurfaces of the proton
distribution function according to Equation (14) for an IA
mode with ∣ ∣d =B B 0.10 in Figure 4. We see that both the
position of the center of the distribution function along B0 and
the temperature anisotropy (i.e., Rp) change with the wave
phase. The distribution function moves up and down along the
background magnetic-field direction. It also changes its width
along the field direction and across the field direction during
one wave period. In the following sections, we will quantify
these effects. For this and the following kinetic calculations, we

Table 1
Fit Parameters for Isocontours of Constant g = W-10m

2
p, g = W-10m

3
p,

and g = W-10m
4

p for Use in Equation (5)

Instability a b c

g = W-10m
2

p

A/IC instability 0.649 0.400 0
Mirror-mode instability 1.040 0.633 −0.012
FM/W instability −0.647 0.583 0.713
Oblique firehose instability −1.447 1.000 −0.148

g = W-10m
3

p

A/IC instability 0.437 0.428 −0.003
Mirror-mode instability 0.801 0.763 −0.063
FM/W instability −0.497 0.566 0.543
Oblique firehose instability −1.390 1.005 −0.111

g = W-10m
4

p

A/IC instability 0.367 0.364 0.011
Mirror-mode instability 0.702 0.674 −0.009
FM/W instability −0.408 0.529 0.410
Oblique firehose instability −1.454 1.023 −0.178

8 The value for gm is somewhat arbitrary; however, comparisons between
observations and theory show that isocontours with gm between W-10 3

p and
W-10 2

p describe accurate limits for plasma parameters in the solar wind (e.g.,
Kasper 2002; Hellinger et al. 2006; Bale et al. 2009; Maruca et al. 2012;
Bourouaine et al. 2013). We choose g = W-10m

3
p. We provide fit parameters

for g = W-10m
4

p and g = W-10m
2

p since we show results for these maximum
growth rates in Appendix D.
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choose  W =k v 0.001A p ,  =T T0e 0p, and q = 88 in order to
avoid strong Landau damping of the IA mode.

A.3. Density Fluctuations

The numerical solver NHDS for the hot-plasma dispersion
relation (Verscharen et al. 2013b) allows us to determine the
value of the complex quantity ξ in

∣ ∣ ( )
d

x
d

=
Bn

n B
15

p

0p 0

for any kinetic mode by using the continuity equation for
electrical charge in Fourier space. The continuity equation
connects the fluctuation amplitude of the density with the
fluctuation amplitude of the electric field:

· ( )
d

w
c= -

W
k

En

n
i

c

B
, 16

p

0

p

p
2 p

0

where w pº n q m4p 0p p
2

p is the plasma frequency and cp is

the susceptibility tensor of the protons (Stix 1992). Faraday’s
law and the numerically obtained relative ratios of the electric-
field components then allow us to calculate ξ.

In Appendix B, we determine the value of ξ in the
framework of isotropic MHD. The result is given in
Equation (34). We compare the numerical results for ξ obtained
from NHDS with the results from MHD in Figure 5 for the

different types of slow modes. We plot ∣ ∣x as a function of b 0p
for three different angles θ in the MHD solution and for both
the IA mode and the NP mode in the kinetic solution for
q = 88 . We evaluate ξ at the wavenumber  = Wk v0.001 A p.
The absolute value of ξ decreases with increasing b 0p in all
cases shown in Figure 5. This means that the density
fluctuations are in general greater at smaller b 0p when the
amplitude ∣ ∣d B B0 is fixed. The different behavior for the MHD
and the kinetic solutions shows the difference in polarization
properties between MHD and kinetic theory. In general, the IA
mode has a larger ∣ ∣x than the NP mode in this range of
parameters.

A.4. Temperature-anisotropy Fluctuations

The temperature anisotropy Rp is also a bulk-parameter
polarization property that varies periodically in the presence of
a slow mode. In this section, we derive the fluctuation
amplitude of the temperature anisotropy in linear kinetic
theory.
In our normalization (ò =f d v 10p

3 ), we find for the
perpendicular (parallel) background thermal speed ŵ 0p ( w 0p)

∭ ( ) fº^ ^ ^w f v dv dv d 170p
2

0p
3

and

∭ ( )   fº ^ ^w f v v dv dv d2 . 180p
2

0p
2

We define the fluctuations in the perpendicular (parallel)
thermal speed dŵ p ( )dŵ p accordingly as

∭ ( )d d fº^ ^ ^w f v dv dv d 19p
2

p
3

and

∭ ( )  d d fº ^ ^w f v v dv dv d2 . 20p
2

p
2

We neglect fluctuating bulk motions in the parallel and
perpendicular directions since these lead to small (infinitesimal)

Figure 4. Isosurfaces of the proton distribution function in an IA wave with
q = 88 , ∣ ∣d =B B 0.10 , b = 10p ,  =T T0e 0p, and  W =k v 0.001A p at =r 0.
The figure shows the distribution function at time t=0, =t T 4, =t T 2,
and =t T3 4, where p w=T 2 r is the wave period. The direction of the
background magnetic field is along the vertical axis, and the boxes span over
v2 A in all directions. We include the effects of the large-scale compressions
only and neglect the excitation of microinstabilities by the fluctuating bulk
parameters and wave damping.

(An animation of this figure is available.)

Figure 5. Comparison of results for ∣ ∣x from MHD (Equation (34)) and from the
solver of the kinetic hot-plasma dispersion relation NHDS for = =R R 10p 0e

and  =T T0e 0p. For the MHD solutions, we use k = 5 3. Note that ( )x <Re 0
everywhere and ( ) ( )x xIm Re with ( )x =Im 0 for the MHD case. In the
kinetic case, the plot shows the results for the IA mode as the curve that
extends from small b 0p to b = 150p and the results for the NP mode as the
curve that extends from b = 0.30p to large b 0p.
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corrections to Equations (17) through (20). We can then
express the fluctuating temperature ratio as

( )
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After a long but straightforward calculation, we find
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2
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2

p
2, ( )lºI In n p denotes the modified

Bessel function of order n, and Zp is the plasma dispersion
function,9
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In linear theory, the amplitudes of Ex, Ey, and Ez can be
written as a constant factor times the amplitude ∣ ∣d B B0. In
principle, linear theory is only valid for infinitesimally small
amplitudes, but we linearly extrapolate the fluctuations in Rp

and b p from the small-amplitude regime to higher amplitudes.
We define two complex quantities â and a as
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We find the following for the fluctuating value of b p:
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The complex nature of the factors â and a represents the
potential phase shift between the fluctuations in ∣ ∣d B and the
fluctuations in dŵ p

2 and dw p
2 . This phase shift increases the

difficulty in evaluating our model because Rp and b p do not
increase linearly in ∣ ∣d B B0. It is also the reason for the phase
shift that is visible in the hodogram of the IA mode in Figure 2.

A.5. Numerical Method

We create Figure 3 in the following way: We fix
 W =k v 0.001A p , q = 88 , and =R 10e . At given values for
 b b=0p 0e and ∣ ∣d B B0, we solve the hot-plasma dispersion

relation for =R 10p , which allows us to determine ξ, â , and a
at isotropy. Then we follow the plasma parcel through b p–Rp
space by evaluating Equations (21) and (27) with
∣ ∣( ) ( )d µB r t T, cos over a full wave period (i.e., p=T 0 ... 2 )
in 500 steps. If the plasma parcel stays in the FM/W-stable
parameter regime (i.e., at maximum growth rates gm that are
< W-10 3

p for the FM/W instability), we lower R0p by a factor
̂ = 101 500, obtain a new set of ξ, â , and a , and follow the
plasma parcel through another wave period. We repeat this
procedure until the plasma reaches the isocontour for which
g = W-10m

3
p for the FM/W instability. The present value of

R0p (unless R 0.10p and unless <R 0p or b < 0p at any
point during one full cycle) then gives the minimum value of
the background anisotropy at the given b 0p and ∣ ∣d B B0.

APPENDIX B
THE FLUCTUATING-ANISOTROPY EFFECT IN

DOUBLE-ADIABATIC MHD

In this section, we introduce an illustrating qualitative
description of the fluctuating-anisotropy effect with the help of
double-adiabatic MHD. Here we assume that the plasma
response to the large-scale modes is described by the CGL
double-adiabatic equations (Chew et al. 1956):

( )=^⎛
⎝⎜

⎞
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d

dt

T

B
0 28

p

and
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⎛
⎝
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⎞
⎠
⎟⎟d

dt

B T

n
0. 29

2
p

p
2

These equations fail to account for nonzero heat flux, which is
why we describe the large-scale compressions using kinetic
theory in Sections 2 and 3.
After some algebra, we obtain the following expressions for

the differentials that describe the effect of fluctuations in B and
np on Rp and b p:

( )= -dR
R

B
dB

R

n
dn3 2 30p

p p

p
p9 Equation (24) defines Zp for Im(ω)> 0. Analytic continuation extends this

definition to Im(ω)⩽ 0 (see, e.g., Stix 1992).
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After integration, we find
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where the integration constants R0p and b 0p define the values
of Rp and b p for ∣ ∣d d= =B n 0p .9

The parameter ξ in Equation (15) is a real scalar in MHD
theory. With its value and Equations (32) and (33), we express
Rp and b p as functions of ∣ ∣d B B0 alone. For the sake of
simplicity, we take our equilibrium state to be isotropic and
approximate the wave-polarization properties using isotropic
MHD, which yields
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defines the phase speed of the fast (upper sign) and slow (lower
sign) magnetosonic mode in units of the Alfvén speed vA, and
where κ is the specific heat ratio (see also Marsch 1986; Tu &
Marsch 1995).

Figure 6 shows the hodogram of a plasma parcel in the
–b Rp p plane for slow-mode turbulence with ∣ ∣d =B B 0.070 ,
=R 0.80p , and b = 10p , which we have constructed with

Equations (32) and (33) using the thresholds from Equation (5).
In addition, we show the isocontours of constant maximum
growth rate g = W-10m

3
p for the A/IC, mirror-mode, FM/W,

and oblique firehose instabilities.

APPENDIX C
ESTIMATE FOR THE MINIMUM FM/W AMPLITUDE

FOR EFFECTIVE PITCH-ANGLE SCATTERING

For simplicity, we take all the FM/W wavevectors to be
quasi-parallel (  +k k kx y

2 2 2). The general expression for the
resonant pitch-angle scattering by plasma waves with right-
handed polarization (i.e., FM/W modes) is then given by

(Kennel & Engelmann 1966; Stix 1992; Marsch et al. 2006)
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F p

˜ ( )B kF is the Fourier transform of the magnetic-field fluctua-
tions of the FM/W modes, wF is the real part of the FM/W
wave frequency, and V is an arbitrarily large integration
volume.
We assume that when the FM/W instability is excited, linear

growth and nonlinear interactions between FM/W waves
generate a distribution of FM/W waves over a range of kP and
wF of order W vp A and Wp, respectively, with a mean-square
magnetic fluctuation given by

( )
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. 39F
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We define the one-dimensional power spectrum of the FM/W
waves through the equation
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2
, 40

x y
F 3 F
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in terms of which Equation (39) becomes ( ) òd =B dk P kF
2

F .
Since the FM/W power is, by assumption, spread out over an
interval of kP values of width ~W vp A, we obtain the estimate

( ) ( )
d

~
W

P k
B v

. 41F
F
2

A

p

The interval of kP values in which FM/W waves are excited
corresponds to an interval of resonant parallel proton velocities.

Figure 6. Hodogram of a plasma parcel in slow-mode turbulence. The orange
line shows the path of a plasma parcel in the b p–Rp plane during a full wave
period for ∣ ∣d =B B 0.070 , q = 88 , =R 0.80p , k = 5 3, and b = 10p . The
other lines show isocontours of constant maximum growth rate g = W-10m

3
p

for four different anisotropy-driven instabilities. The blue circle marks the point
( b 0p, R0p). In this plot, the large-scale compressions are treated using double-
adiabatic MHD.

9 In addition to the following analysis of fluctuation-induced variations in Rp
and b p, these expressions also allow us to illustrate the radial evolution of Rp
and b p as a consequence of the solar-wind expansion. For this demonstration,
we neglect fluctuations in B and np and treat B0 and n0 as the values of B and n
at the distance r at which =R Rp 0p and  b b=p 0p. The radial decrease in B
and np in the solar wind suggests that Rp decreases with radial distance r from
the Sun, while b p increases with r under the first-order assumption of a radial
split-monopole magnetic field and a radial flow with r-independent bulk speed,
i.e., B ∝ r−2 and µ -n rp

2 (Matteini et al. 2007, 2012; Hellinger &
Trávníček 2015; Hellinger et al. 2015). The split-monopole approximation
breaks down at larger r due to the increasing average angle between the
magnetic-field direction and the radial direction.
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These velocities are moderately super-Alfvénic (see, e.g., Quest
& Shapiro 1996; Verscharen et al. 2013a). For parallel
velocities within this velocity interval, we can use Equation (41)
to approximate Equation (36) as

( )
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n
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¶

¶
~

¶
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¶
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^

⎛
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, 42

p p

where

( )n
d

~ W
B

B
43p
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2

0
2

is the effective wave pitch-angle scattering rate,
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v

v v v
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, 44ph

and ( )v vph is the parallel phase velocity ( w kF ) of the FM/W
waves that are resonant with protons whose parallel velo-
city isvP.

On the other hand, the typical timescale on which the large-
scale IA mode increases the temperature anisotropy is of order
w1 r, where wr is the real-part of the IA-mode frequency.

Therefore, the pitch-angle diffusion is sufficient to hold the
plasma at the instability threshold provided that

( )d w
~

W
B

B
. 45F

2

0
2

r

p

Observations in the solar wind at 1 au show that the typical
transit time for outer-scale fluctuations in the spacecraft frame
is of order t ~ ´3 10 s3 (Alexandrova et al. 2013; Bruno &
Carbone 2013). The typical proton cyclotron frequency is
W ~ ´ - -3 10 sp

1 1. According to Taylor’s hypothesis (Tay-
lor 1938; Fredricks & Coroniti 1976), the spatial scale of the
fluctuations λ satisfies l t~ U , where U is the solar-wind
speed. We set ~U c 10s and  l~k 1 . Therefore, we can
estimate that

( )w
l tW

~
W

~
W

~
W

~ -k c c c

U

1
10 46r

p

s

p

s

p

s

p

4

for the IA waves at the outer scales of the compressive
turbulence that we consider. Upon inserting Equation (46) into
Equation (45), we find that the energy of the FM/W waves is
much smaller than the energy of the IA waves, as we assumed
in Section 3.

APPENDIX D
LIMITS ON R0p FOR g = W-10m

2
p AND g = W-10m

4
p

We demonstrate the gm dependence of the isotropization
mechanism in Figure 7, which is the same as Figure 3 except
that we use g = W-10m

2
p. In Figure 8, we show the same figure

except that we use g = W-10m
4

p. For g = W-10m
4

p, the values
for R0p are greater than the values in the case with
g = W-10m

3
p at the same amplitude ∣ ∣d B B0. It is the opposite

for g = W-10m
2

p. For example, plasma with b = 10p and
∣ ∣d =B B 0.020 is restricted to R 0.70p if g = W-10m

4
p,

whereas it would be limited to R 0.50p when g = W-10m
3

p

(see Figure 3). In the case with g = W-10m
2

p and b = 10p , it

could reach values of R0p as low as ∼0.1 before the fluctuating-
anisotropy effect begins to isotropize the plasma.
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