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Abstract 38 

Mitigation of anthropogenic climate change involves deployments of renewable energy worldwide, 39 

including wind farms, which can pose a significant collision risk to volant animals. Most studies 40 

into the collision risk of species with wind turbines, however, have taken place in industrialised 41 

countries. Potential effects for many locations and species therefore remain unclear. To redress this 42 

gap, we conducted a systematic literature review of recorded collisions of birds and bats with wind 43 

turbines within developed countries. We related collision rate to species-level traits and turbine 44 

characteristics to quantify the potential vulnerability of 9,538 bird and 888 bat species globally. 45 

Avian collision rate was affected by migratory strategy, dispersal distance and habitat associations 46 

and bat collision rates were influenced by dispersal distance. For birds and bats, larger turbine 47 

capacity (megawatts) increased collision rates, however, deploying a smaller number of large 48 

turbines with greater energy output, reduced total collision risk per unit energy output, although bat 49 

mortality increased again with the largest turbines. Areas with high concentrations of vulnerable 50 

species were also identified, including migration corridors. Our results can therefore guide wind 51 

farm design and location to reduce the risk of large-scale animal mortality. This is the first 52 

quantitative global assessment of the relative collision vulnerability of species groups with wind 53 

turbines, providing valuable guidance for minimising potentially serious negative impacts on 54 

biodiversity.  55 

  56 



1. Introduction 57 

In response to projected impacts of climate change on the environment, human society and health 58 

[1], political consensus at the 21st Conference of Parties of the United Nations Framework 59 

Convention on Climate Change (UNFCCC) led to agreement to hold the increase in global 60 

temperatures to below 2°C, above pre-industrial levels, and pursue efforts to limit the increase to 61 

1.5°C [2]. Achieving this ambition depends on global emissions peaking around 2020, with 62 

negative emissions in the second half of this century [3], requiring large-scale and rapid deployment 63 

of renewable energy technologies. Wind farms are the most well-developed, cheapest, widely 64 

available and feasible renewable energy technologies for electricity generation [4], and are likely to 65 

form an important component of renewable electricity generation strategies.  66 

Wind farms can have negative impacts upon biodiversity [5], including direct collision 67 

mortality, displacement from feeding or nesting areas, barrier effects to movement and habitat 68 

degradation or loss [6]. For volant species such as birds and bats, the risk of collision is a serious 69 

concern [5], and large numbers of birds and bats have been shown to be killed by turbines [5,7,8], 70 

particularly aggregation sites, such as migratory bottlenecks or near breeding colonies [9]. It has 71 

been suggested anecdotally that some species groups, such as migratory bats, raptors and seabirds, 72 

may be particularly impacted [9,10], which may at least be partly linked to visual acuity [11].  73 

Collision mortality with wind turbines may reduce populations, particularly of long-lived, 74 

slow-reproducing species [12,13] and wide-ranging or migratory species [12,14]. Consequently, 75 

there is an urgent need to quantify species’ vulnerability across as wide a range of species and 76 

geography as possible. Further, a recent review highlighted most studies to date have focused on the 77 

developed world [5]. The need to identify species’ vulnerability, however, is crucial for countries in 78 

the developing world, where wind farms may be rapidly deployed to achieve climate change 79 

mitigation targets. This paper describes analyses designed to improve our understanding of the 80 

factors influencing the collision vulnerability of species to onshore wind turbines, and to inform 81 

future wind farm location and design in areas and for species for which this has been little studied. 82 

We model the extent to which ecological, morphological and life-history traits, are likely to 83 



influence encounter rates with turbines, accounting for variation in parameters that differ between 84 

studies. We also consider other factors, such as turbine size, that might affect the likelihood of 85 

collision [15,16], to examine the extent which wind farm design may reduce collision rates.  86 

 87 

2. Methods 88 

(a) Literature review and data structure 89 

We conducted meta-analyses using Web of Science, Google Scholar© and Google© to search for 90 

peer- and non-peer reviewed literature. Given the known differences in terminology for ‘wind 91 

farms’, we used the following search terms: (bird* OR avian) AND wind AND (farm* OR energy 92 

OR windfarm* OR industry* OR wind-farm* OR park* OR development* OR facilit*). References 93 

reporting collision mortality were identified. Population-level impacts such as mortality rates were 94 

rarely available; instead most studies presented the numbers of collisions per species per turbine or 95 

per megawatt (MW). The following data were extracted: study reference, wind farm name, 96 

geographical location, species’ identity, number of deaths, study duration, wind farm and turbine 97 

quantity, turbine size and study quality information (see below). In total, 133 studies for birds and 98 

101 for bats reported collision rates. Of these, 88 bird and 87 bat studies were suitable for inclusion, 99 

and contained information from 93 and 134 onshore wind farm sites (electronic supplementary 100 

material appendix A1, Fig. S1), respectively. Dominant land cover within a 5 km buffer of the 101 

centre point coordinate of wind farms was identified from GLC2000 [17]. References and further 102 

information on traits are given in electronic supplementary file S1 and data collection files S2.  103 

(b) Study quality and site-specific information 104 

The detectability of collision victims is affected by many factors, including frequency of mortality 105 

surveys, scavenger removal, observer skill and variation in encounter probability (detectability) 106 

between species [18-20], ground and habitat types and ecosystems. Studies varied in the extent to 107 

which they corrected for these factors, and did not provide sufficient information to produce a 108 

standardised collision-rate metric [21,22]. Instead, we categorised studies based on quality as 109 

follows: (1) ‘very low’: no corrections; (2) ‘low’: correction for aspects of scavenger removal and 110 



observer skill, but detectability constant across species; (3) ‘medium’: as with (2) but with multiple 111 

corrections for detectability for species’ groupings e.g. ‘small bird’ or ‘large bird’; (4) ‘high’: 112 

species-specific corrections for main sources of error (electronic supplementary material appendix 113 

A2). For bats, no distinctions were made for species groups, therefore a three-level variable was 114 

used, combining low and medium categories. Corrections for bat scavenger removal were 115 

sometimes based on proxy bird species, which might potentially introduce bias.    116 

The search area around turbines (hereafter, ‘buffer area’) may influence discovery of 117 

collision victims and so was included as a covariate (birds: mean±1SD, 2.1±1.4 ha, range 0.1-8.6 118 

ha; bats: 1.2±1.1 ha, 0.1-8.1 ha). We included ‘year’ (birds: 1.8±1.6 years, 1-10 years; bats: 1.4±0.9 119 

years, 1-5 years), and ‘number of days’ (birds, 281.7±106.4 days, bats 238.7±110.1 days, range 42-120 

365 days) as covariates to control for study duration. A binary factor separated peer- and non-peer 121 

reviewed literature. As studies varied in the number of wind farms monitored, this was added as an 122 

additional covariate. Turbine size was included as a linear predictor, given its potential impact on 123 

mortality rate [12], here assessed as turbine megawatt (MW) output [9] (birds: 1.3±0.7 MW, 0.2-124 

2.5; bats: 1.6±0.6 MW, 0.5-3.0 MW).  125 

(c) Species traits 126 

Traits for bird species were taken from the Birdlife International World Biodiversity Database [23] 127 

except wing morphology, which was measured directly from museum skins [24] (electronic 128 

supplementary material appendix A3). Flightless species were excluded. Habitat, foraging strata and 129 

diet were specified using binary factors for each factor level. Migratory status and breeding 130 

dispersal distance, body size, clutch size, generation length and Kipp’s distance (a measure of wing 131 

morphology related to manoeuvrability [25]) were also obtained.  132 

To account for species potentially present, but not recorded in collision, we used spatial 133 

distribution polygons based on entire breeding ranges for birds [23] and bats [26] to generate 134 

species lists of ‘pseudo-absences’. Although this approach may produce omission errors due to 135 

coarse data resolution [27], it allowed potential species presences to be modelled. The frequency of 136 



collision may depend on local abundance, but such information was inconsistently reported. 137 

Therefore, we included global population size as a proxy, which is likely related to gross variation 138 

in density, and is treated as a cautionary assumption.  139 

Bat trait data were extracted from the PanTHERIA database [28] but consideration of all 140 

traits simultaneously was not possible as data were available for subsets of species per trait. We 141 

therefore tested: (1) Population group size [28]; (2) forearm length; (3) body mass; (4) litter size; (5) 142 

age of sexual maturity and (6) gestation length. Body mass and forearm length were correlated (R = 143 

0.92), so forearm length was excluded. As 96% of species were insectivorous [29], diet was not 144 

included. Dispersal distance (7), use of tree roost sites (8) and hibernation behaviour (9) were 145 

obtained through field guides [e.g. 30] and data portals [26,31,32]. For bats, current knowledge gaps 146 

and terminology differences between studies prevented migration from being separated from 147 

dispersal [32]. Maximum dispersal distance was defined as ‘sedentary’ <10 km, ‘regional’ 10-100 148 

km, and ‘long-distance’ 100+ km, the latter likely equating to long-distance migration [32]. Binary 149 

variables were specified for tree roost site and hibernation. Traits 1, 5 and 6 were only available for 150 

a smaller proportion of species (n = 36), and were not significant (P > 0.05) when considered 151 

alongside the remaining traits. Therefore, we present models for traits 3, 4 and 7-10 for 67 species 152 

(see electronic supplementary material appendices A3-A5).   153 

(d) Phylogeny  154 

To account for potential phylogenetic non-independence of data, we used bootstrapped estimates of 155 

phylogenetic relationships from the BirdTree database [33]. We generated 1,000 random trees, 156 

reduced further into a single minimum consensus tree using a Python algorithm, taking a minimum 157 

of 50% support for branching events [34]. Seven different methods for generating trees were 158 

available for birds [33], providing seven alternative models. For bats, we used a phylogenetic tree 159 

within the R package ‘ape’ [35]. This tree had no bootstrapped estimates available, but species with 160 

available trait data were well represented (> 95%).  161 

(e) Statistical analysis 162 



Bayesian Markov Chain Monte Carlo (MCMC) generalized linear mixed models were used to 163 

model the variation in collision rates, using the R package MCMCglmm [36,37]. Models were 164 

specified using a zero-adjusted Poisson error structure and a response of collisions per turbine, 165 

including the logarithm of the number of turbines surveyed as an offset; an R script for birds is 166 

provided in electronic supplementary data collection files S2. Fixed effects were specified for 167 

species traits, study quality and site-specific information (electronic supplementary material Table 168 

S1). To assess the effect of inserting pseudo-absences, we repeated our analysis based on recorded 169 

collisions, which produced similar results (electronic supplementary material appendix A5). We 170 

therefore present results for models including pseudo-absences. Phylogenetic signals were included 171 

by specifying the ‘tip label’ of species names from the minimum consensus tree as a random effect 172 

[38], alongside a matrix inversely proportional to the covariance structure of ‘tip label’ [37]. 173 

Phylogenetic models were better fitting than those excluding phylogeny in all cases (dDIC < -2.0). 174 

Study ID was included as a random effect to account for repeated measurements of collisions per 175 

species and study. Uninformative priors were specified except for log(turbine) included as an 176 

informative prior to represent an offset. We specified 105,000 Monte Carlo iterations with a burn-in 177 

of 5,000 and thinning of 100, to leave 1,000 samples from the posterior distributions. The 178 

proportion of variance explained by fixed and random effects was examined [39] to generate 179 

conditional (fixed plus random effects) and marginal (fixed effects only) R2 values. Significance of 180 

fixed effects was determined by whether 95% lower and upper credible intervals (‘LCL’,‘UCL’) 181 

drawn from the posterior distribution overlapped zero. For birds, model-averaged coefficients were 182 

computed across all seven phylogenetic models with equal weighting.  183 

For birds, predicted numbers of collisions/turbine/year were generated from full models for 184 

9,568 species worldwide based on trait relationships. Predictions were generated marginal to the 185 

random effect of study ID, and were made at highest data quality level for a 365-day duration, 186 

equating to rates of collision per annum. Estimates for each species were treated as a final collision 187 

vulnerability index. For bats, full trait data were available for the 67 species modelled. To maximise 188 



the global generally of our predictions, we based predictions on phylogenetic correlation only (for 189 

888 species) from a model including only study and site fixed effects (‘no-traits’ model). All 190 

modelling was conducted in R version 3.3.1 [40]. Full predictions are given in electronic 191 

supplementary files S3 and S4. 192 

For an independent check of correspondence, predicted vulnerability values were compared 193 

to a previous expert assessment of species vulnerability to the threat of ‘renewable energy’ in the 194 

IUCN Red List (Threats Classification Scheme Version 3.2 [26]). Modelled predictions were 195 

summarised in 5% percentiles, and presented for those threatened species identified in the IUCN 196 

Red List. To assess whether species may be more at risk of collisions than other species, we used a 197 

Generalised Linear Model to test whether collision rates varied by Red List category (Least 198 

Concern, Near Threatened and ‘Threatened’, i.e. Vulnerable, Endangered or Critically Endangered) 199 

in interaction with taxon (bird vs bat), weighted by the reciprocal of collision rate error.  200 

(f) Turbine capacity effects on bird and bat mortality 201 

We generated predictions of mean collisions/turbine/year across all species for increasing turbine 202 

capacity, for the range of turbine sizes included in this review (0.1 MW to 2.5 MW). The number of 203 

turbines required to meet a hypothetical 10 MW energy demand were then multiplied by these 204 

estimates to investigate the mean number of predicted deaths/year across species for birds and bats 205 

with increasing turbine capacity.  206 

(g) Spatial variation in vulnerability to wind energy 207 

Spatial variation in the potential impact of turbines on collision rates was mapped globally, based 208 

on the predicted occurrence of species within a grid (resolution, 5x5 km), derived from overlaps 209 

with species range maps [23]. For birds and bats, the MCMC posterior predictions for each species 210 

were extracted. The predicted collision rates for each species that occurred in a 5 km cell (vi) were 211 

summed across all species (v1+v2+v3…vij), up to the total number j occuring in that cell. A mean 212 

cumulative value, with 95% credible intervals, was then generated and mapped as a ‘vulnerability’ 213 



surface for birds and bats. Spatial data processing was undertaken in SAS 9.3 (SAS Institute Inc.) 214 

and ArcMap 9.3. 215 

 216 

3. Results 217 

(a) Data summary 218 

A total of 362 bird and 31 bat species were recorded as collision victims with 407 and 41 further 219 

bird and bat species included as pseudo-absences. Data were obtained from 16 countries for birds 220 

and 12 countries for bats. The dataset was spatially-biased to North America (birds, 64.0%, bats 221 

48.6%) and Europe (birds, 31.0%, bats 50.6%), although South Africa, Japan, Australia and New 222 

Zealand were represented (electronic supplementary material appendix A1, Fig. S1). In total, 36% 223 

studies were in forests and 29% were in agricultural areas (e.g. artificial landscapes) with fewer in 224 

shrub (9%) and grassland (14%) landscapes. Agricultural land cover, was over-represented in the 225 

review in comparison to global land cover (17%), whereas shrub (21%) and grassland (26%) were 226 

under-represented and forest was sampled approximately in proportion (37%) - electronic 227 

supplementary material appendix A4. 228 

(b) Study quality and site-specific variables 229 

Studies that had not corrected for carcass detection probability (birds ‘very low’; bats ‘low’) or the 230 

size of birds (‘low’), significantly underestimated the number of collisions compared to studies that 231 

had made such corrections (P < 0.001 in all cases, Fig. 1; see also electronic supplementary material 232 

Tables S3 and S4). By contrast, ‘high’ and ‘medium’ quality levels were not significantly different 233 

from the average (Fig. 1, P > 0.05). There was no residual variation explained by peer and non-peer 234 

review studies, buffer area, number of wind farms and study duration in days or years, after 235 

accounting for overall study-level variation using random effects (P > 0.05). There was, however, a 236 

strong positive correlation between turbine capacity (MW) and collisions per turbine (Fig. 1, P < 237 

0.01 in all models).  238 

(c) Species’ traits 239 



For birds, habitat association was an important predictor of collision rates (Fig. 1a, electronic 240 

supplementary material Tables S3 and S4). Species using artificial (such as farmland and urban 241 

areas) and grassland habitats had significantly higher collision rates than species not using these 242 

habitats (P < 0.01 in all cases). Species using marine habitats had significantly lower collision rates 243 

than species not using marine environments, likely influenced by a paucity of data for offshore wind 244 

farms. Species feeding on fruit and nectar had lower collision rates compared with species with 245 

other diets. Diet and foraging strata had smaller effects than habitat, with coefficients being mostly 246 

non-significant (Fig. 1a). Migrants exhibited higher estimated collision rates than non-migrants 247 

(Fig. 1). One model gave significant support to migratory status (electronic supplementary material 248 

appendix A5), and the direction of the effect was consistent across all models, but the mean effect 249 

size across models just overlapped zero. Species with median dispersal rates of 25-49 km or 50-99 250 

km had significantly higher estimated collision rates from some models than those dispersing 251 

smallest (<25 km) or longest distances (>100 km).  252 

For bats, species dispersing furthest had significantly greater collision rates than sedentary 253 

species (Fig. 1), but roost site and hibernation were not significant predictors (Fig. 1). When fitted 254 

without dispersal, however, tree-roosting species had significantly higher collision rates than other 255 

species (electronic supplementary material appendix A5).  256 

(d) Model fit  257 

The marginal R2 explained by fixed effects was 0.46 for birds, and for bats was 0.30 for the trait-258 

based model, and 0.19 for the no-traits model (Table 1). For birds, the phylogenetic models 259 

produced similar beta-coefficients (Fig. 1, electronic supplementary material appendices A4 and 260 

A5, Tables S2 and S4). Phylogeny explained a high proportion of variance in all models (Table 1). 261 

Effective sample sizes of >200 and diagnostic plots indicated that autocorrelation within MCMC 262 

chains was appropriately accounted for. 263 

(e) Model predictions 264 

For birds, 957 species had collision rates of more than 0.046 collisions/turbine/year (90% quartile), 265 

of which 175 species were Accipitriformes (Fig. 2), 57% species in that Order. Accipitriformes had 266 



the highest predicted collision rates of any taxonomic order (0.073±0.064 SD 267 

collisions/turbine/year, mean LCI <0.001, mean UCI, 0.288). Mean predictions were also high for 268 

Bucerotiformes, Ciconiformes and Charadriiformes, whereas Galbuliformes and Coraciiformes 269 

were among the lowest, and waterbirds such as Anseriformes and Galliformes and Passeriformes 270 

songbirds also had smaller than average predictions (Fig. 2). 271 

For bats, the most vulnerable families containing >10 species/family included Molossidae 272 

and Hipposideridae, whilst Rhinolophidae were amongst the least vulnerable (Fig. 3). The largest 273 

family, Vespertilionidae, had high collision rates (0.718±0.586 SD, 294 species) and included the 274 

five bat species most vulnerable to collision (electronic supplementary material appendix A6).  275 

In total, 55 bird species (including 31 Acciptriformes) were identified as threatened by 276 

‘renewable energy’ [26], of which 43 species (78%) above the 75% percentile of our collision 277 

predictions (electronic supplementary material Table S6). Of the 31 Accipitriformes, all were above 278 

the 75% percentile and 26 (84%) were ranked above the 90% percentile. After accounting for a 279 

significantly greater collision rate for bats than birds (χ2 = 510.30, P < 0.001), there was no residual 280 

variation explained by IUCN Red List category (χ2 = 0.63 P = 0.73), or among categories 281 

comprising the broader ‘threatened’ category (Vulnerable, Endangered or Critically Endangered) 282 

(χ2 = 0.19 P = 0.91, electronic supplementary material appendix A7). 283 

(f) Relationships between turbine size and mortality 284 

For birds and bats, larger turbines were associated with increased collision rates (Fig. 1). A greater 285 

number of small turbines, however, resulted in higher predicted mortality rates (Fig. 4) than a 286 

smaller number of large turbines per wind farm unit energy output. Using 1000, 0.01 MW turbines 287 

resulted in the largest estimated number of bird and bat fatalities; thereafter the numbers decreased 288 

exponentially up to ca. 1.2 MW, where the relationship for birds contined to decline up to 2.5 MW 289 

turbines (posterior means, LCL-UCL 0.8, 0.5-1.1). By contrast, the mortality for bats increased 290 

again from 14 (8-21) bats with 1.2 MW turbines, to 24 (12-40) bats with 2.5 MW turbines (Fig. 4), 291 

although with overlapping credible intervals.  292 



(g) Spatial variation in vulnerability to wind energy 293 

For birds, the greatest numbers of vulnerable species occurred along coastal and migratory 294 

pathways in the eastern and south-western USA, the central American isthmus from Mexico to 295 

Panama, northern Andes, Rift valley of east Africa and the Himalayas. For bats, the greatest number 296 

of collisions was predicted in North America (Fig. 5).  297 

 298 

4. Discussion 299 

Previous studies into the collision risk of birds with terrestrial wind farms have documented a high 300 

risk for Accipitriformes (raptors and birds of prey) [41,42]. Further studies have suggested that 301 

raptors, migratory soaring birds and waterbirds may be particularly vulnerable [9,43-45]. Similarly, 302 

our study showed that Accipitriformes had the highest rates of collision. Among other orders, 303 

Bucerotiformes (hornbills and hoopoes), Ciconiformes (storks and herons) and some 304 

Charadriiformes (shorebirds) were also vulnerable, but notably many waterbirds (e.g. 305 

Anseriformes) were not.  306 

 Although there was less variation in predicted mortality between bat families (Fig. 3), a 307 

small number of Vespertilionidae species were associated with relatively high rates of collision, as 308 

also found in a recent review [8]. Our models predicted higher collision rates for bats than birds, as 309 

reported elsewhere [15] and adds to the literature emphasising the risk that wind farms pose to bat 310 

populations [7,8,14].   311 

For birds, vulnerability to collision was related to habitat, migratory status and dispersal 312 

distance. High collision rates for species associated with agricultural habitats may reflect the 313 

disproportionate number of wind farms from agricultural landscapes in our sample. Species 314 

associated with these human-modified habitats, however, may be less likely to avoid wind farms 315 

than those occupying natural landscapes [46], while our results suggest that grassland species may 316 

also be more vulnerable to collision. 317 



Migratory species are often suggested as being vulnerable to collision with wind farms [44], 318 

for which our results are supportive. Previous work has suggested high rates of collision with wind 319 

turbines at avian migratory bottlenecks [9,41,42], and for migratory bats in North America [8,47], 320 

suggesting, migration may outweigh the greater exposure time of residents to wind turbines [41].  321 

Wind farms may have significant meta-population level impacts [45], for example on 322 

species with large home-ranges and moderate rates of dispersal [12]. The link, however, between 323 

dispersal distance and collision rate across multiple species has not previously been identified, and 324 

demonstrates that bird species dispersing short or very long distances may have reduced 325 

vulnerability to collision than species dispersing intermediate distances. Those species dispersing 326 

furthest may exhibit unmeasured traits of flight behaviour, such as flight height rendering them less 327 

susceptible to collision, but the large uncertainty in the effect emphasises further study is needed. 328 

For bats, long-distance dispersers had the highest collision rates, but certainty of behaviour for 329 

many species tempers our ability to draw firm conclusions. Tree-roosting bat species were 330 

frequently recorded in collision, potentially through attraction mechanisms [48], although this effect 331 

was weaker than dispersal. Overall, these findings emphasise the need to consider cumulative 332 

impacts of wind farms on populations, particularly for migrants and wide-ranging species.  333 

Our vulnerability estimates may not reflect population-level impacts, to understand which 334 

requires further consideration of population demography and other impact metrics [22,45]. 335 

However, our findings may be problematic in terms of species conservation, as the species groups 336 

with the greatest rate of collision tended to be k-selected species with low fecundity and late ages of 337 

maturity, and most sensitive to impacts of additional mortality [49,50], such as Accipitriformes, 338 

Bucerotiformes Ciconiformes and Charadriiformes for birds, and a range of bat species. Avoiding 339 

placement of wind farms in areas with populations or high concentrations of such species, such as 340 

coastal areas migratory flyways (Fig. 5), would reduce potential impacts of wind farms on 341 

biodiversity. Although some passerine families (e.g. Motacillidae) and species (e.g. European 342 

Starling Sturnus vulgaris) had high predicted rates of collision, their r-selected life-histories and 343 



relatively high abundances make it less likely that large population-level effects would arise, as 344 

population growth rate is less sensitive to reductions in adult survival [49]. 345 

Although as comprehensive as possible, our study has some limitations. First, data were 346 

largely from well-studied parts of Europe and North America. While our results can be used to infer 347 

potential collision risk for species in other parts of the world, uncertainty arises when extrapolating 348 

to under-studied regions and taxa. This was particularly the case for bats, where studies were 349 

exclusively from temperate northern latitudes with low species diversity. More geographically 350 

widespread studies, from the tropics and from countries with rapidly growing wind industries (such 351 

as India and China), are required to feed into meta-analyses like ours. In the absence of such 352 

studies, our estimated collision rates should help indicate vulnerable species in these areas. Second, 353 

collision rate data were not available from offshore wind farms. Only 5% of studies recorded 354 

collisions with marine species at coastal wind farms, and further work is needed to estimate their 355 

vulnerability to offshore wind turbines [51]. Third, trait information for bats was less 356 

comprehensive than for birds, meaning it was not possible to extrapolate from a trait-based model 357 

globally in the same manner. We also note the strong geographical variation in predicted bat 358 

mortality rates between North America and Europe (Fig. 5), and suggest further work is required to 359 

test whether this effect is real. Fourth, although we corrected for data quality, inevitably some 360 

variation will not captured by our classification, for example, correction for unsearchable portions 361 

of the survey area were not always reported. Fifth, our study metric focused on a measured impact 362 

after collision with turbines, reflecting both initial sensitivity and current exposure. Our study, 363 

however, did not include future potential to habituate (adaptability), necessitating caution when 364 

translating our findings more broadly. Finally, our list of species putatively present at a wind farm 365 

were derived from broad-scale distribution polygons, and so may have included false negatives 366 

[27].   367 

Given the recent dramatic increases in wind-energy generating capacity in parts of the world 368 

where wind farms have not previously been deployed [52], and likely continued increases to meet 369 



climate change mitigation targets, wind farms pose an increasing threat to bird and bat species 370 

worldwide. Our study can be used to mitigate this risk in two ways. First, although uncertain, our 371 

species-level predictions of collision rates provide a useful starting point for scoping potential 372 

impacts of wind farms on species where collision risk has not been studied. New wind 373 

developments should preferably be in areas with low concentrations of species vulnerable to 374 

collision. Our results can help identify locations based on the distribution of vulnerable species, 375 

which alongside habitat restrictions on wind farm development, such as in forested areas, can be 376 

used to minimise the risk of negative biodiversity impact. Although country and regional maps 377 

[53,54] should be developed to help identify local hotspots, our global vulnerability maps (Fig. 5) 378 

are a useful starting point, suggesting key areas and migratory pathways where collision may occur. 379 

The agreement between our predictions and species classified by the IUCN Red List as being 380 

threatened by ‘renewable energy’ suggests an emerging consensus for key taxa. 381 

Second, there was a strong positive relationship between wind turbine capacity and collision 382 

rate per turbine. The strength of this relationship, however, was insufficient to offset the reduced 383 

number of turbines required per unit energy generation with larger turbines, at least for birds. 384 

Therefore, to minimise bird collisions, wind farm electricity generation capacity should be met 385 

through deploying fewer, large turbines, rather than many smaller ones, supporting suggestions for 386 

marine birds [16]. For bats, an optimum turbine size of ca. 1.25 MW may minimise collision risk, 387 

with the largest turbines associated with a disproportionately high collision rate, but we again 388 

caution that model certainty for bats was low for the reasons outlined. More research is required to 389 

understand the relationship between collision risk and turbine size for larger (and more efficient) 390 

turbines, and how this may vary between habitats.  391 

5. Conclusion 392 

This study is the first global quantitative assessment from the published literature of the relative 393 

vulnerability of different species groups to wind farms. Wind farms have the potential to benefit 394 

biodiversity through their contribution to climate change mitigation, but our results emphasise the 395 



global nature of the potential risks to biodiversity involved, which needs to be accounted for 396 

through appropriate wind turbine design and planning, if those risks are to be minimised.  397 
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Table 1. Summary of MCMCglmm model fits, assessed using pseudo-R2 values, for birds (model-561 

average across seven phylogenetic models, electronic supplementary material Table S2) and bats. 562 

  Marginal: fixed 
effects Conditional: Random ID + Phylo Conditional: Random ID 

Taxa Model 
type 

Mean 
Posterior 

mode (95% CI) Mean Posterior mode (95% CI) Mean 
Posterior mode 

(95% CI) 

Birds Traits 
model 0.46 0.45 (0.35-0.56) 0.85 0.85 (0.82-0.88) 0.66 0.65 (0.57-0.72) 

Bats Traits 
model 0.30 0.30 (0.11-0.50) 0.84 0.83 (0.77-0.92) 0.58 0.64 (0.37-0.75) 

Bats No-
traits 

model 0.19 0.08 (0.04-0.42) 0.88 0.87 (0.81-0.95) 0.39 0.39 (0.16-0.62) 

 563 

  564 



Figure Legends 565 

Figure 1. Coefficients from MCMCglmm models for (a) birds, and (b) bats. For birds, model 566 

averaged coefficients are presented from seven models using alternative phylogenetic 567 

reconstruction methods, presenting: (1) mean posterior predictions averaged, (2) range of mean 568 

estimates, (3) posterior standard deviations averaged, (4) mean 95% credible intervals (CIs) and (5) 569 

maximum 95% credible intervals. For bats, the posterior mean estimate, and lower and upper 95% 570 

credible intervals, are given from the single trait-based model; the significance of each term (“Sig”) 571 

is presented using the maximum level of significance attained (.P < 0.01; *P < 0.05, ** P < 0.01; 572 

*** P < 0.001).  573 

Figure 2. Predictions of mean collisions per turbine (per year) (±SD) for bird orders (9,568 species) 574 

from the posterior distributions of MCMCglmm models, ordered by mean predictions; numbers of 575 

species per Order are shown by black dots. 576 

Figure 3. Predictions of mean collisions per turbine (per year) (±SD) for bat families (888 species) 577 

from the posterior distributions of MCMCglmm models, ordered by mean predictions; numbers of 578 

species per family are shown by black dots.  579 

Figure 4. The mean total mortality rate across species for a hypothetical 10 MW wind farm, shown 580 

in relation to individual turbine capacities (which in turn require different numbers of wind turbines 581 

to meet the same capacity). Lines represent posterior means and 95% upper and lower credible 582 

intervals.  583 

Figure 5. Worldwide distribution of bird species’ vulnerability to wind farm collisions, based on 584 

summing vulnerability of each species that occurs at each point, according to species range maps 585 

for (a) mean across species, and lower and upper (b and c) credible intervals from MCMCglmm 586 

models (for details of data manipulation and calculations behind these maps, see methods). 587 
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Fig. 1 (a)  589 

 590 

(b)  591 

 592 

 593 

  594 
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Fig. 5  608 
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