
ARTICLE IN PRESS

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institute of Transport Research:Publications
Journal of Quantitative Spectroscopy &

Radiative Transfer 94 (2005) 405–424
0022-4073/$ -

doi:10.1016/j.

�Correspon
Germany. Tel

E-mail add
www.elsevier.com/locate/jqsrt
The influence of neighbouring clouds on the clear sky
reflectance studied with the 3-D transport code RADUGA

O.V. Nikolaevaa, L.P. Bassa, T.A. Germogenovaa, A.A. Kokhanovskyb,c,�,
V.S. Kuznetsovd, B. Mayere

aKeldysh Institute of Applied Mathematics, Russian Academy of Sciences, Miusskaya Sq. 4, 125047 Moscow, Russia
bInstitute of Remote Sensing, Bremen University, Otto Hahn Allee 1, 28334 Bremen, Germany

cInstitute of Physics, National Academy of Sciences of Belarus, F. Skarina Avenue 70, 220072 Minsk, Belarus
dResearch Scientific Center ‘‘Kurchatov Institute’’, Kurchatov Sq. 1, 123182 Moscow, Russia

eInstitute of Atmospheric Physics, DLR, 82234 Oberpfaffenhofen, Germany

Received 7 May 2004; accepted 2 September 2004
Abstract

Operational remote sensing of terrestrial atmosphere is heavily based on the 1-D radiative transfer
equation. However, cloudy scenes are influenced by 3-D effects (e.g., illumination from cloud sides, etc.).
This leads to biases in aerosol/cloud/land/ocean retrieval schemes for scenes with clouds. These biases can
be understood and quantified only with the use of the 3-D radiative transfer theory, which allows to
account for arbitrary spatial variation of atmospheric parameters. The task of this paper is twofold. First of
all we introduce a novel technique for the solution of the 3-D radiative transfer equation based on the grid
approximations and the straightforward iteration procedure realised on supercomputers with parallel
architecture. We study the performance of our technique comparing with the solutions obtained by the
Monte-Carlo code. A close correspondence is found. Secondly, we quantify the influence of neighbouring
clouds on the clear sky reflection function at the nadir observation depending on the solar illumination
conditions. We find that the influence of cloud on the clear sky reflectance function is not negligible (even
see front matter r 2004 Elsevier Ltd. All rights reserved.
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outside the cloud geometrical shadow). Thus, the peculiar inner boundary layer arises in the sky reflectance
function with shadowing and brightening effects.
r 2004 Elsevier Ltd. All rights reserved.

Keywords: Radiative transfer; Clouds; Atmospheric aerosol
1. Introduction

Radiative transfer in a cloudy atmosphere is usually studied in the framework of the plane-
parallel approximation. Then the diffused light field changes only along the vertical direction for a
wide solar beam illumination conditions. There is no change in the radiation field in the horizontal
direction. Although this approximation, which is often called 1-D case, is very important for the
radiative transfer studies of extended cloudiness (e.g., extended fields of Stratocumulus clouds), it
cannot be applied for majority of cloudy scenes. Indeed cloudiness has a horizontal structure (e.g.,
holes between clouds).
These effects can be accounted for in the framework of the 3-D radiative transfer

equation, where the spatial variation of local optical properties is fully accounted for. Various
approaches to deal with 3-D clouds are known [1]. Most popular techniques are Monte-Carlo
method [2], the diffusion approximation [3,4], and the spherical harmonics discrete ordinate
method [5–8].
In the last technique the phase function in the scattering integral is represented by the spherical

harmonics and the integral is replaced by a quadrature sum. Spatial grids are introduced and
obtained partial differential equations are approximated by the system of linear algebraic
equations. To solve it, the successive-orders-of-scattering (SOS) approach is applied. The SOS
approach has already been successfully applied in a number of cloud research topics, including the
study of the transmission of thermal infrared radiation for a target–detector system [4] and the
investigation of the effects of cloud geometry on the transmission of sunlight [9].
Each partial differential equation is integrated along its characteristic throughout whole

calculation region in the framework of the well-known Evans’s algorithm [7]. Similar methods
were developed for radiation transfer calculations in nuclear reactors shielding [10,11] and for the
medical physics problems [12]. These methods have some advantages and some deficiencies. In
particular, some of them may be not conservative, e.g. they do not conserve the number of
particles (e.g., photons, electrons, neutrons) in the transport problem at hand. This defect can lead
to significant errors in the solution obtained.
Other spherical harmonics discrete ordinate methods use the local approximation for partial

differential equations. Such methods were widely used in various neutron and photon transport
problems in the last 50 years [3,13]. They are conservative and economic since these methods use
very simple formulas and do not apply complicated logic (all spatial meshes are calculated
successively). Namely, these methods have been incorporated in the RADUGA 3-D solver used in
this paper [13,14]. They can be applied to a number of atmospheric radiative problems owing to
two important features. Firstly, a special scheme for the partial differential equations solution,
which obeys maximum principle, is used. Thereby, a grid solution conserves the exact solution
positivity and all extrema dispositions are not corrupted by non-physical oscillations. Secondly,
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this code can deal with multiprocessor computers and, therefore, can be used to calculate photon
transport in large spatial regions.
The RADUGA code can be applied to a number of atmospheric radiative problems, including

studies of cloud and bright surface adjacency effects [15], cloud top topography/horizontal
inhomogeneity effects [16,17], and biases in the cloud optical thickness t retrieval from space-
borne platforms [18,19], to mention a few.
In this paper the influence of a neighbouring cloud on the aerosol reflection function at the

nadir observation geometry by means of the RADUGA code is studied. This is of importance for
aerosol remote sensing (e.g., for a cloud screening procedures in satellite aerosol remote sensing
algorithms [20]).
The paper is structured as follows. In the next section of the paper we pose a physical problem.

The third section is devoted to the introduction of the 3-D radiative transport equation. A brief
discussion of the numerical procedure is also given there. A detailed description of the newly
developed RADUGA code used in calculations is given in separate publications [13,21]. The
numerical results obtained for the simple typical aerosol–cloud model are discussed in Sections
4–6 of this work.
2. The geometry of the problem

The geometry of the problem is presented in Fig. 1, where a rectangular coordinate system xyz
is introduced. Solar light is approximated by the monodirectional source having intensity F0dðm�

MÞdðj� FÞ: Here M ¼ cos Y; m ¼ cos y and the pair ðY;FÞ gives the direction of solar light
propagation in the spherical coordinate system defined by the axis z and angles ðy;jÞ: The
azimuth F is counted with respect to the positive direction of the axis x: In this paper only results
for F ¼ 0 and p will be reported. It means that solar light enters atmosphere from the direction of
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Fig. 1. The general geometry of the problem.
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the positive values of x (then F ¼ p) or from the direction of the negative values of x (then F ¼ 0).
The intensity of multiply scattered light is calculated along the axis x in the zenith direction as
shown in Fig. 1 (see the line of visualisation in Fig. 1).
We divide the terrestrial atmosphere in two equal semi-spaces separated by a local vertical

plane. One part is filled by a cloudy medium and another one by the atmospheric aerosol. The
processes of molecular scattering and absorption are neglected. Scattering media are assumed to
be homogeneous and infinite in planes z ¼ constant: We assume that there are no light scattering
particles at z44 km. All downward propagated photons, which reach the plane z ¼ 4; are
assumed to be absorbed. Therefore, the contribution of the ground albedo is neglected.
Droplets in a cloud are characterised by the Cloud C.1 particle size distribution [22] with the

effective radius equal to 6mm (see Appendix). The single scattering diagram for an elementary
volume of a cloudy medium is calculated at the wavelength 412 nm using the Mie theory [23]. The
phase function in the aerosol medium is represented by the Henyey–Greenstein formula [24] (see
Appendix A). The asymmetry parameter of the cloud phase function g is equal to 0.85. The value
of g for the aerosol phase function is equal to 0.7. The optical thickness of cloudy and aerosol
portions of the scene are varied as specified below (see Section 4). Also we have studied the
variation of the reflected light as observed from a satellite for a nadir observation geometry as the
function of the solar angle Y:
3. Theory

The radiative transfer equation is used to solve the problem. This equation has the following
form for the case studied [13]:

x
qIðx; y; z; y;jÞ

qx
þ Z

qIðx; y; z; y;jÞ
qy

þ b
qIðx; y; z; y;jÞ

qz
þ sextðx; y; zÞIðx; y; z; y;jÞ

¼
1

4p
sscaðx; y; zÞ

Z p

0

sin y0 dy0
Z 2p

0

Iðx; y; z; y0;j0Þpðx; y; z; wðy;j; y0;j0ÞÞdj0

þ
1

4p
sscaðx; y; zÞF0pðx; y; z; wðy;j;Y;FÞÞ expð�tÞ; ð1Þ

where ssca and sext are scattering and extinction coefficients, which are assumed to be identical in
this study (possible light absorption both by droplets and aerosol particles is neglected).
The function Iðx; y; z; y;jÞ is the diffused light intensity at the point ðx; y; zÞ propagated
in the direction ðy;jÞ; see Fig. 1. Also we have: x ¼ sin y cos j; Z ¼ sin y sin j; b ¼ cos y: The
phase function pðx; y; z; wÞ is defined in Appendix A. Scalar product w is defined by the following
relation:

wðy;j; y0;j0Þ ¼ cos y cos y0 þ sin y sin y0 cosðj� j0Þ: (2)

The value of t in Eq. (1) is the optical path between two points defined by radius-vectors ~r0 and
~r : t ¼

R d

0 sextð~r0 þ z~rÞdz; where d ¼ j~r �~r0j: The vector ~r0 defines the cross point of the light
beam with the boundary of scattering medium under study.



ARTICLE IN PRESS

O.V. Nikolaeva et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 94 (2005) 405–424 409
We assume that there is no diffused light entering the medium. Therefore, boundary conditions
have the following form:

Ið~r; ~OÞ ¼ 0 at ~O~nð~rÞo0 for all ~rðx; y; zÞ 2 Gfinite;

Ið~r; ~OÞ ¼ Ið~r	; ~OÞ at ~O~nð~rÞo0 for all ~rðx; y; zÞ 2 Ginfinite:

Here Gfinite is the finite part of the medium boundary (on z), Ginfinite is the infinite one (on x and y),
~r	 is an inner point for the periodic boundary conditions.
We will assume that the line LM (see Fig. 1) coincides with the visualisation line. It means that

the solution becomes invariant in respect to the coordinate y: Then we can drop the dependence
on y in Eq. (1) and arrive to the following simplified 2-D transport equation (see Fig. 2):

x
qIðx; z; y;jÞ

qx
þ b

qIðx; z; y;jÞ
qz

þ sextðx; zÞIðx; z; y;jÞ ¼ F̂I ; (3)

where

F̂I 

1

4p
sscaðx; zÞ

Z p

0

sin y0 dy0
Z 2p

0

Iðx; z; y0;j0Þpðx; z; wðy;j; y0;j0ÞÞdj0

þ
1

4p
sscaðx; zÞF0pðx; z; wðy;j;Y;FÞÞ expð�tÞ: ð4Þ

Although note that the RADUGA can be applied to arbitrary-shaped scattering media.
Eq. (3) is solved using the method of successive orders of scattering. Namely, at first we neglect

the integral term in Eq. (4) and calculate the diffused intensity Iðx; z; y;jÞ from the solution of the
partial differential equation. Then the obtained diffused intensity is substituted in the scattering
integral in Eq. (4) and the next approximation for Iðx; z; y;jÞ is found from the solution of the
partial differential equation (3). The algorithm is stopped when the convergence is reached.
Therefore, the problem at hand is reduced to the solution of the following transport equation:

x
qIðx; z; y;jÞ

qx
þ b

qIðx; z; y;jÞ
qz

þ sextðxÞIðx; z; y;jÞ ¼ Iðx; z; y;jÞ; (5)

where Iðx; z; y;jÞ is the diffused light intensity at the point ~rðx; zÞ propagated in the direction
ðy;jÞ; Iðx; z; y;jÞ ¼ F̂ ~Iðx; z; y;jÞ; and ~Iðx; z; y;jÞ is the function obtained from the previous
iteration as described above.
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Fig. 2. The geometry of the 2-D problem.
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We introduce an angular quadrature and replace functions Iðx; z; y;jÞ; ~Iðx; z; y;jÞ and
Iðx; z; y;jÞ by their values in quadrature nodes. The integral Iðx; z; y;jÞ is calculated using
following standard steps:
�
 the expansion of the function ~Iðx; z; y;jÞ in terms of spherical harmonics,

�
 the representation of the integral Iðx; z; y;jÞ by spherical harmonics,

�
 the calculation of Iðx; z; y;jÞ values in quadrature nodes.
The details will be given elsewhere [13] and will be not considered here. Variables y and j are
omitted for simplicity.
A standard grid method to approximate the partial differential equation of the first

order (5) is used. In particular, grids with the respect to spatial variables x and z are
introduced:

x1=2o � � �oxkþ1=2o � � �oxKþ1=2; z1=2o � � �ozlþ1=2o � � �ozLþ1=2:

A single two-dimensional cell ðk; lÞ has following dimensions: ½xk�1=2;xkþ1=2� � ½zl�1=2; zlþ1=2�:
Correspondingly, its size is ½Dxk� � ½Dzl�; where Dxk ¼ xkþ1=2 � xk�1=2 and Dzb ¼ zbþ1=2 � zb�1=2:
Also the integral operator

L̂k;l ¼
1

DxkDyl

Z xkþ1=2

xk�1=2

dx

Z zlþ1=2

zl�1=2

dz

is applied to both parts of Eq. (5). Then it follows:

xðIkþ1=2;l � Ik�1=2;lÞ=Dxk þ bðIk;lþ1=2 � Ik;l�1=2Þ=Dzl þ sk;l
extIk;l ¼ Ik;l ; (6)

where

Ik;l ¼
1

DxkDzl

Z xkþ1=2

xk�1=2

dx

Z zlþ1=2

zl�1=2

dz Iðx; zÞ; Ik;l ¼
1

DxkDzl

Z xkþ1=2

xk�1=2

dx

Z zlþ1=2

zl�1=2

dz Iðx; zÞ

are the average values of the intensity and the source function, respectively, over a given cell and

Ik�1=2;l ¼
1

Dzl

Z zlþ1=2

zl�1=2

dz Iðxk�1=2; zÞ; Ik;l�1=2 ¼
1

Dxk

Z xkþ1=2

xk�1=2

dx Iðx; zl�1=2Þ

are correspondent average values of the intensity on boundaries of the cell (k; l). Fulfilment
of Eq. (6) guarantees that the presented scheme is a conservative one.
Intensities Ik�1=2;l and Ik;l�1=2 are known either from boundary conditions or from the result of

the calculation for the previous cell. So we need to determine only values of Ikþ1=2;l ; Ik;lþ1=2 and
Ik;l : It is not possible to evaluate three parameters from a single equation (6). So we need to
introduce two approximate relations among these three unknown parameters. They are given as
follows:

Ik;l ¼ ð1� vx;k;lÞIkþsðxÞ2;l þ vx;k;lIk�sðxÞ=2;l ;

Ik;l ¼ ð1� vz;k;lÞIk;lþsðbÞ=2 þ vz;k;lIk;l�sðbÞ=2;
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where sðxÞ ¼ signðxÞ; sðbÞ ¼ signðbÞ; vx;k;l 2 ½0; 1Þ and vz;k;l 2 ½0; 1Þ are weight parameters. We use
values of weight parameters as introduced in [25,26]:

vx;k;l ¼ 1=ð2þ hx;k;lÞ; vz;k;l ¼
ðhx;k;l=hz;k;lÞð1þ hx;k;lÞ

2þ 2hx;k;l þ h2x;k;l
at hx;k;lphz;k;l ;

vx;k;l ¼
ðhz;k;l=hx;k;lÞð1þ hz;k;lÞ

2þ 2hz;k;l þ h2z;k;l
; vz;k;l ¼ 1=ð2þ hz;k;lÞ at hx;k;lXhz;k;l :

Optical steps hx;k;l and hz;k;l are defined as

hx;k;l ¼ sk;l
ext Dxk=jxj; hz;k;l ¼ sk;l

extDzk=jbj:

This scheme defines outside fluxes IkþsðxÞ=2;l ; Ik;lþsðbÞ=2 via entering fluxes Ik�sðxÞ=2;l ; Ik;l�sðbÞ=2 in a
physically correct manner in any cell of any grid [25,26]. It permits to obtain discontinuous
solutions and ones with great gradients with a high accuracy. This completes a brief description of
our technique. Further details are given by Bass et al. [13,14,25,26].
4. The validation of the RADUGA code

4.1. The comparison with the 1-D transport code

Under conditions specified above, the considered problem is reduced to the 2-D problem
presented in Fig. 2. Both aerosol and cloud are homogeneous along z-direction on the height
interval (0 km, 4 km). They are contained in rectangular boxes. The line OD (see Fig. 2) separates
aerosol medium from a cloud. Boxes are of an infinite length in the direction perpendicular to the
plane of the figure of theand along axis x:
We will study the upwelling light field in the zenith direction at line AC. Clearly, the intensity of

reflected field must depend on the coordinate x: This corresponds to the case of an orbiting
satellite or aircraft observing aerosol–cloud system from above.
The reflection function R is defined as the ratio of the light intensity I reflected from a given

medium to that reflected from an absolutely white Lambertian surface IL:

R ¼ I=IL: (7)

It is easy to show that IL ¼ cos YF0=p; where F0 is the density of incident flux on the unit area
perpendicular to the beam and Y is the incident angle [24].
The largest gradients of the function RðxÞ are expected in the area closest to the cloud boundary

OD. Because both an aerosol medium and a cloud are extended to infinity along axis x; this
function far from boundaries must be equal to the value, which can be obtained from the 1-D
radiative transfer equation.
To validate our results we calculate the dependence RðxÞ at large distances from the boundary

OD using the RADUGA code and compare results obtained with values derived using an
independent 1-D code based on the discrete ordinates method as described in [27]. These results
are affirmed by the asymptotic theory for optically thick slabs [28,29] in the case of a cloud. The
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Table 1

The comparison of the 3-D RADUGA code with 1-D code [27] results at large distances from the aerosol-cloud

boundary

Aerosol ðx ! �1Þ Cloud ðx ! 1Þ

Y 1-D 3-D 1-D 3-D

50 0.1201 0.1201 0.6921 0.6925

60 0.1494 0.1494 0.6493 0.6493

70 0.1822 0.1823 0.5666 0.5638

80 0.1977 0.1976 0.4476 0.4474

O.V. Nikolaeva et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 94 (2005) 405–424412
comparison is shown in Table 1 assuming that the aerosol optical thickness ta is equal to 1.2 and
the cloud optical thickness tc is equal to 30. The solar angle is varied in the range 50–80�:
It follows from the analysis of Table 1 that the difference of results obtained from different

codes is below 0.5% in the aerosol medium. It is smaller than 1% in the cloud. Therefore, we
conclude that RADUGA is capable to reproduce 1-D code results with a high accuracy.

4.2. The comparison of results obtained from the RADUGA code with the Monte-Carlo calculations

We also performed extensive comparisons with the Monte-Carlo calculations based on the
MYSTIC (the Monte Carlo code for the physically correct tracing of photons in cloudy
atmospheres, see [30,31]). The MYSTIC is a forward Monte Carlo code which traces photons on
their individual paths through the atmosphere, similar to what is described in [32]. Radiances are
calculated using a local estimate technique (e.g., [2,33]). In this configuration, the MYSTIC has
been successfully validated in the intercomparison of 3D radiation codes (see http://
climate.gsfc.nasa.gov/I3RC). The MYSTIC is operated within the libRadtran package (see
http://www.libradtran.org), which prepares the optical properties of the atmosphere, to be used in
the model. For the application in this paper, the atmosphere was consisted of one layer, with
aerosol and cloud properties as specified in this paper. A model domain of 80 km in x was used. A
large domain size is important since the MYSTIC uses periodic boundary conditions. The model
resolution was set to 0.1 km; the MYSTIC results are, therefore, averages over 0.1 km bins.
Some results of comparisons are given in Figs. 3a and b (at Y ¼ 60� and azimuths F ¼ 0

and p). We find that differences are below 1%. Therefore, the RADUGA provides very
accurate results as far as calculations of the light reflected by an aerosol–cloudy medium are of
concern.
5. Main properties of computed reflection functions

Some physical dependencies are clearly seen in Figs. 3a and b. For instance, it follows from
Fig. 3b that there is a shadow near the cloud border for the illumination from the cloud side
ðF ¼ pÞ: Also we have a brightening effect in Fig. 3a due to the cloud side illumination effects
ðF ¼ 0Þ: These two effects (shadowing and brightening) are primarily due to the direct light

http://climate.gsfc.nasa.gov/I3RC
http://climate.gsfc.nasa.gov/I3RC
http://www.libradtran.org
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Fig. 3. The dependence RðxÞ calculated using the Monte-Carlo code MYSTIC and the RADUGA code for the case

shown in Fig. 2 at the illumination from the cloud side (a) and the aerosol side (b) for the solar angle 60�: The aerosol
optical thickness ta is equal to 1.2 and the cloud optical thickness tc is equal to 30. The phase functions are specified in
the Appendix. The absorption of light and the contribution from the surface reflection is neglected. The cloud boundary

is placed at x ¼ 40 km.

O.V. Nikolaeva et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 94 (2005) 405–424 413
interaction with a scattering medium. They lead to roughening effects in 2-D–3-D transfer
problems. We also observe (see Fig. 3b) the decrease of the reflection near the border of the cloud
(inside the cloud) as compared to 1-D case. This is due to photon leaking in the area with smaller
extinction coefficient in the direction of the part of the scene. The increase in the aerosol reflection
function in Fig. 3b close to the cloud is due to channelling of photons from a cloud to the aerosol
side. These two effects (photons channelling and leaking) lead to the smoothening of the radiative
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field. Four effects considered here exist not only for a simple case studied in this paper but also for
broken cloud systems [34,35].
The dependence R(x) can be easily parameterised taking into consideration these four

fundamental phenomena. The parameterisation of 3-D effects is of a great importance for satellite
remote sensing because calculations presented here are computationally expensive and cannot be
included in the operational aerosol/cloud retrieval algorithms [29]. Also these effects cannot be
neglected. In particular, if an orbiting optical instrument observes an area correspondent to
brightening/shadowing effects, then large biases in retrieved cloud/aerosol parameters are
expected. This also points to the necessity of the development of the simultaneous aerosol–cloud
(and surface) retrieval algorithm. The complex system should be considered in the retrieval as a
whole [36].
6. The dependence of the aerosol reflection function on the solar angle

6.1. The illumination from the cloud side

1. The function RðxÞ for the aerosol–cloudy medium specified above is shown in Fig. 4 for the
case ta ¼ 0:25; tc ¼ 30 . This dependence was obtained using the RADUGA code for solar angles
Y in the range 10–80�; F ¼ p; and the nadir observation. The characteristic feature of functions
given in Fig. 4 is the presence of the brightness minimum in the aerosol area close to the cloud
boundary. Because the aerosol is optically thin, the aerosol reflection function chiefly depends on
the singly scattered component R1ðxÞ:
Fig. 4. The same as in Fig. 3 but for the aerosol optical thickness 0.25 and various solar angles (10–80�) at the

illumination from the cloud side.
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The equation for the function R1 can be derived from the relations (2)–(4), (7) at y ¼ p; any j;
and Iðx; z; y0;j0Þ 
 0: Namely, it follows w ¼ � cos Y and

�
qR1

qz
þ sextðx; zÞR1ðx; zÞ ¼

sextðx; zÞ
4 cos Y

pðx; z;� cos YÞe�tðx;zÞ; �1oxo1; 0ozol: (8a)

Here l ¼ 4 km is the cloud top height. The optical path tðx; zÞ is determined by the following
formula:

tðx; zÞ ¼

saextz= cos Y as zp� x ctgY; xo0;

scextz= cos Y� ½saext � scext�x= sin Y as zX� x ctgY; xo0;

scextz= cos Y as xX0;

8><
>:

where saext and scext are the extinction coefficients for the aerosol and the cloud, respectively. The
boundary condition corresponds to the absence of the light propagated upwards at the border
z ¼ l:

R1ðx; lÞ ¼ 0: (8b)

The problem (8) has a unique solution. Namely, it follows:

R1ðx; zÞ ¼
pðx; z;� cos YÞ

4 cos Y
sextðx; zÞ

Z l

z

expðsextðx; zÞðz � zÞÞ expð�tðx; zÞÞdz:

Substituting z ¼ 0; it follows:

R1ðxÞ ¼ uaðYÞ½1� e�lda
ðYÞ= cos Y� as xpxs; (9)

R1ðxÞ ¼ uaðYÞf1þ qv�1ðYÞeda
ðYÞsðx;YÞ � da

ðYÞv�1ðYÞe�lvðYÞ= cos Yeqsðx;YÞg as xspxo0;

R1ðxÞ ¼ ucðYÞ½1� e�ldc
ðYÞ= cos Y� as x40:

Here

xs ¼ �l tgY; (10)

sðx;YÞ ¼ x= sin Y; umðYÞ ¼ pmð� cos YÞ=½4ð1þ cos YÞ�; q ¼ saext � scext; (11a)

vðYÞ ¼ saext cos Yþ scext; dm
ðYÞ ¼ sm

extð1þ cos YÞ; (11b)

where m 
 a; c and pa and pc are the aerosol and cloud phase functions, correspondingly.
The function R1ðxÞ is constant as x40 and as xoxs: In interval ½xs; 0Þ it is smooth and its

derivative is given by following equation:

ðd=dxÞR1ðxÞ ¼ quaðYÞv�1ðYÞda
ðcos YÞeda

ðYÞsðx;YÞ½1� e�vðYÞðsðx;YÞþl= cos YÞ�= sin Y:

Since for the considered problem the value q is negative, then the component R1ðxÞ monotonically
decreases in this interval. The component R1ðxÞ and the corresponding full solution RðxÞ at the
angle Y ¼ 60� are plotted in Fig. 5.
At the media boundary (point x ¼ 0) the function R1ðxÞ has a discontinuity and the value R1ð0Þ

is assumed to be indefinite [37]. This discontinuity of the singly scattered component R1ðxÞ is due
to the discontinuous optical properties of the aerosol-cloud medium under study. It is diminished
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Fig. 5. Reflection function RðxÞ and its singly scattered component for solar angle 60� at the illumination from the

cloud side.
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by scattering acts and forms minimum of the full solution RðxÞ; look in Fig. 5. This minimum is
the manifestation of the cloud shadowing effect.
2. An important point in the aerosol remote sensing from space is the estimation of the distance

from the cloud, where the aerosol optical thickness can be retrieved using the 1-D transport
theory. To answer on this question we present data given in Fig. 4 in yet another form.
Figs. 6a and b show the dependence of the relative difference d (in percent) between the

reflection function RðxÞ obtained from the 3-D code as compared with 1-D calculations Ra for the
aerosol layer far from the cloud boundary. Namely, we define

dðxÞ ¼ 1� RðxÞ=Ra:

Clearly, it follows as x ! �1: dðxÞ ! 0: Circles in Fig. 6b show points, where x is equal to xs:
The value of xs gives the exact coordinate of the cloud shadow boundary for singly scattered
component R1ðxÞ; see Eq. (10) and Fig. 5. Owing to scattering processes for the full function RðxÞ
the value xs is the estimate from below for the cloud shadow boundary coordinate.
We see that the functional dependence dðxÞ changes its slope at xoxs: If we tolerate the 15%

error in the value of R; then we can state that 1-D theory can be applied at xoxs for the case
studied here. Note that for the quantitative aerosol remote sensing values of R should be correct
at least within 5%.
It means in particular, that the influence of cloud is of importance at distances 4.8, 6.9, 11.0,

22.7 km for angles equal to 50�; 60�; 70�; 80�; respectively, for the case studied here. Clearly, no
aerosol optical thickness retrievals are possible at the asymptotic case Y ¼ 90� ðxs ! �1Þ: It is
interesting to see that the value of d is positive for large solar angles. This means that 2-D–3-D
effects decrease the reflection function as compared to a simple 1-D theory in the case under
study. Surprisingly, for sun close to the zenith the light enhancement reflectance in the clear sky
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Fig. 6. The dependence dðxÞ in the clear-sky part of the scene for solar angles 10–40� (a) and 50–80� (b) degrees

correspondent to the case shown in Fig. 4.
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region is possible (see Fig. 6a). For solar angles smaller than 30� and for a 10% threshold the
influence of cloud is of importance up to the distance 10 km. This threshold is somewhat smaller
(approximately, 5 km) for solar angles 40–50� but substantially increases for large solar angles (see
Fig. 6b).
We also can plot the function dðxÞ for a cloudy part of the scene. The dependence of the relative

difference d close to the cloud boundary is monotonous in this case (see, e.g., Fig. 7). This is
primarily due to the absence of a shadowing effect for a cloud. Also we note that dðxÞ is only
weakly dependent on the solar angle. In particular, data presented in Fig. 7 can be approximated
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Fig. 7. The same as in Fig. 6 but for the cloudy part of the scene.
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by the following curve:

dðxÞ ¼ A expð�x=x0Þ; (12)

where we introduced the correlation length x0: It gives the distance, where the difference
attenuates in e times. We find from data given in Fig. 7 that A ¼ 54:4 and x0 ¼ 1:4km: The value
of x0 should correlate with the transport length ltr ¼ l=ð1� gÞ; where l ¼ l=t is the photon free
path length in the cloud. It follows for the case we consider: l � 0:133km�1; g � 0:85; and,
therefore, ltr � 0:889 km: So we have: x0 � 1:6ltr: The distance, where the difference d is below
10% is approximately equal to 3ltr in the case studied.
3. Yet another effect is seen in the reflection function RðxÞ: Its constant value in the aerosol area

far from the media boundary is more for the low sun (close to the horizon) as compared to the
case of a high sun. Similar assertion is true for the singly scattered component. This follows from
the expression for the derivative of the function R1ðx;YÞ with respect to the parameter Y

ðd=dYÞR1ðx;YÞ ¼
sin Y

pað� cos YÞ
fpað� cos YÞ½uaðYÞ � R1ðxÞ�lsaext=cos

2Y

þ R1ðxÞ½ðq=q cosYÞðpað� cos YÞÞ þ 4uaðYÞ�g as xpxs;

the positivity of Henyey–Greenstein phase function derivative and an inequity uaðYÞ � R1ðxÞX0;
see Eq. (9).
The opposite effect is observed for the reflection function in the cloud: its value is smaller for a

high sun position as compared to the case of a low sun. This effect cannot be explained by singly
scattered component analysis because the cloud is optically thick and the function RðxÞ is formed
by many scattering acts. To clarify this feature, we note that if a photon entered an optically thick
non-absorbing cloud through a point of its top border placed far from the other borders, then this
photon will leave the cloud through the top boundary after many collision events. The more
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collisions the photon undergoes the more its outcoming direction differs from the incident one. As
a consequence, it follows that the more an incident direction differs from the axis z the smaller
upward reflection function value in the direction perpendicular to the cloud border.

6.2. The illumination from the aerosol side

The results of calculations for the illumination from the aerosol side ðF ¼ 0Þ are given in Fig. 8.
The sequence of curves in the aerosol/cloud side outside the transition region is similar to that
given in Fig. 4 and has the same explanation. A new effect is seen however. Namely, it follows that
the cloud reflection function increases close to the cloud boundary. This is due to the illumination
of a cloud from a side. Therefore, the interaction of direct light with a cloud may lead not only to
a familiar shadowing as in Fig. 4 at x � 0 but also to the brightening effect depending on the
cloud position with respect to the incident light direction.
Such effect may be explained by the singly scattered component consideration. This function

for this case is defined by relations

R1ðxÞ ¼ ucðYÞf1� e�ldc
ðYÞ= cos Yg as xXxs;

R1ðxÞ ¼ uaðYÞf1� e�lda
ðYÞ= cos Yg as xo0;

R1ðxÞ ¼ ucðYÞf1� qv�1ðYÞe�dc
ðYÞsðx;YÞ

� dc
ðYÞv�1ðYÞe�lvðYÞ= cos Yeqsðx;YÞg as 0oxpxs:

Here xs ¼ l tgY and other parameters are determined by the formulas (11).
In the case of illumination of cloud from the aerosol side, the dependency of the aerosol

reflectance function on x is a monotonous one (see Figs. 9a and b). Generally, the aerosol
Fig. 8. The same as in Fig. 4 but the illumination from the aerosol side.
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Fig. 9. The same as in Fig. 5 but for the illumination from the aerosol side.
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brightness increases in the vicinity of the cloud. This increased brightness of the aerosol may lead
to the positive bias in the retrieved aerosol optical thickness as derived from data obtained by
space born radiometers and spectrometers. Therefore, aerosol retrievals should be performed at
least at the distance 10–15 km from the cloud boundary (see Figs. 9a and b) depending on the
illumination conditions.
Unlike the case of the illumination from the aerosol side, the cloud reflection function has a

maximum, which is due to the brightening effect. The brightening effect complicates the cloud
optical thickness retrieval from space. In particular, to avoid this effect only pixels positioned at
xX2–8 km (depending on the solar angle, see Fig. 10) should be used in the retrieval procedure.
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Fig. 10. The same as in Fig. 6 but for the illumination from the aerosol side.
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Therefore, we see that 2-D–3-D effects influence considerably not only the aerosol reflectance
but also the same is true for a cloudy part of the scene under study.
7. Conclusions

The developed 3-D radiative transport code RADUGA has been tested and applied to studies
of the influence of cloud boundaries on the clear sky reflectance function. In the considered
boundary problem for the transport equation we have investigated the phenomenon of the inner
boundary layer with transient radiation regimes. The reflectance properties of this boundary layer
are studied in details. We found that the aerosol reflectance is sensitive to neighbouring clouds for
distances up to 25 km for realistic observation scenarios, depending on the solar angle. In this
paper the cloud top height was fixed. Clearly, higher clouds can influence the aerosol zenith
reflectance even at larger distances. Therefore, special caution should be taken in clear sky aerosol
optical thickness retrieval from space even if it seems that clouds are far away from a scene
studied. The same applies to the cloud optical thickness retrieval near cloud boundaries (e.g., see
Fig. 10).
We conclude that 3-D effects substantially reduce the number of pixels, which can be used in

the retrievals based on the 1-D radiative transfer theory. To eliminate this difficulty, retrievals
should be based on the 3-D radiative transfer theory. However, this is difficult to achieve on the
operational basis due to the limitations imposed by modern computers. Therefore, there is an
urgent need for the parameterisation of 3-D effects in cloudy atmospheres. Such parameterisa-
tions can be easily performed for regions where radiative smoothing takes place. Corresponding
dependencies dðxÞ can be approximated by rather simple exponential functions (see, e.g., Eq. (12)).
Parameterizations become a little bit more complex for shadowing/brightening areas due to a
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non-monotonous behaviour of studied functions there. Also the dependence on the solar angle is
much more pronounced then (compare, e.g., Figs. 6 and 9).
We note that other radiative characteristics (e.g., the cloud transmittance and fluxes) can be

also studied in the framework of the code developed.
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Appendix A. Phase functions

The phase function pðwÞ gives the conditional probability of light scattering by an elementary
volume of a scattering medium in dependence of the cosine w of the scattering angle (the value
w ¼ 1 corresponds to the forward scattering). In the transport calculations this function is
represented usually by the expansion in terms of Legendre polynomials PnðwÞ

pðwÞ ¼
XN

n¼0

ð2n þ 1Þ gnPnðwÞ; gn ¼
1

2

Z 1

�1

pðwÞPnðwÞdw; (A.1)

where, in particular, P0ðwÞ ¼ 1; P1ðwÞ ¼ w; P2ðwÞ ¼ ð3w2 � 1Þ=2: The constant g 
 g1 is called the
asymmetry parameter.
The phase function of light scattering by spherical water droplets in clouds can be calculated

using the Mie theory. The dependence of the phase function on the cosine of the scattering angle w
for the Cloud C1 model [20] at the wavelength 412 nm is shown in Fig. 11 (left panel). Its
asymmetry parameter is close to 0.85. We use this phase function to represent light scattering by
an elementary volume of a cloudy medium in this paper.
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Fig. 11. The aerosol and cloud phase functions.
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Equality (A.1) for the cloud phase function has a high accuracy at NX350: The number of
terms N influences the speed of calculations considerably. Therefore, we applied the delta-M
method [38] with the aim of the reduction of number of terms in the correspondent expansions.
Basically, in this method the phase function is presented as a sum of a singular part (represented
by a delta function) and a regular part, which can be represented by the combination of much
smaller number M of Legendre functions ðM5NÞ: In this paper we have used M ¼ 28 (see Fig.
11). It follows that the resulted phase function (dashed line) closely corresponds to the initial Mie
phase function (solid line). Note that the radiative transport in thick clouds (due to strong
multiple scattering) is determined by a few first moments of the phase function (e.g., the
asymmetry parameter g; see above). It is insured that 27 moments of the exact and approximated
phase functions coincide in our case. We believe that such an approach does not influence the
reflection function calculations in practical terms, which is also confirmed by comparison with
other codes.
The phase function of atmospheric aerosol cannot be calculated using the Mie theory in the

general case. This is due to the non-spherical shape of a great portion of aerosol particles (e.g., dust).
So it is assumed that the aerosol phase function can be presented by Henyey–Greenstein formula:

pðwÞ ¼ ð1� g2Þ=ð1þ g2 � 2gwÞ3=2;

here gn ¼ gn:We choose g ¼ 0:7 (such value is a typical case for atmospheric aerosol) and assume in
practical calculations that N ¼ 23: The accuracy of this approximation is shown in Fig. 11 (right
panel). The error of approximation is negligible in practical terms.
Although this simplified aerosol phase function may be unrealistic as far as real atmospheric

aerosol is of concern, it does not influence the main result of this work, namely the cloud adjacency
effects studies. Also other researches can easily incorporate this phase function in their codes,
which can facilitate the comparison of our results with those of others. We also neglect the vertical
variability of the phase function as not an essential issue for the problem studied in this paper.
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