View metadata, citation and similar papers at core.ac.uk

1709.01008v1 [cs.CR] 4 Sep 2017

arxXiv

<
brought to you by .{ CORE

provided by UCL Discovery

Mix-ORAM: Using delegated shuffles.

Raphael R. Toledo George Danezis Isao Echizen
University College London University College London National Institute of Informatics
United Kingdom United Kingdom Japan
ABSTRACT portable.

Oblivious RAM (ORAM) is a key technology for providing private
storage and querying on untrusted machines but is commonly seen
as impractical due to the high overhead of the re-randomization,
called the eviction, the client incurs. We propose in this work to
securely delegate the eviction to semi-trusted third parties to en-
able any client to accede the ORAM technology and present four
different designs inspired by mix-net technologies with reasonable
periodic costs.

1 INTRODUCTION

Thanks to cloud technologies, people have been able to seamlessly
store impressive amounts of data on remote servers. Besides acces-
sibility, availability and integrity, the storage providers also have to
ensure to their clients the data’s and the meta data’s confidentiality
and secure them from not only external adversaries but also from
the cloud itself. They thus employ cryptographic mechanisms to
protect the communication channels, such as user authentication,
data encryption and integrity checking. These, however, do not
prevent the leakage of all meta data: the servers can monitor user
activities and watch which records are accessed.

Oblivious RAM (ORAM) [15], or Oblivious Storage [7], precisely
prevents an adversary from observing the record access. In these
schemes, the records are first locally encrypted and permuted in
a new order before being uploaded to the untrusted cloud storage.
When the user seeks a given record, the local client computes the
corresponding remote index, fetches the encrypted data block and
decrypts it. After a number of accesses, the database is random-
ized locally by the client to bring to naught any leaked information
from the accesses: this is the "eviction process".

This eviction is the main bottleneck of ORAM. Indeed, the evic-
tion consists in randomizing the whole database by permuting the
records and refreshing their encryption so that an adversary loses
any insight on the correspondence between the remote and local,
or virtual and real, record indices. However, as we assume the num-
ber of records stored remotely to be orders of magnitude higher
than what the client can store, the client has to download and ran-
domize the database during the eviction in chunks, and do so sev-
eral times so that all record ordering is equally likely. Thus as the
database size grows, the eviction cost rises super linearly.

This is why we propose in this work to delegate the eviction
process to dedicated semi-trusted parties. Doing so, light-weight
clients could accede the ORAM technology and thanks to the use
of mix networks [8] inspired designs, ORAM would become more

This work is supported by H2020 PANORAMIX Grant (ref. 653497) and EPSRC Grant
EP/M013286/1; and Toledo by Microsoft Research.

Conference’17, July 2017, Washington, DC, USA

2017. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. .. $15.00
https://doi.org/10.1145/nmnnnnn. nnnnnnn

In this work, we present several privacy friendly distributed sys-
tems inspired by mix-nets to safely delegate ORAM’s randomiza-
tion process to semi-trusted third parties. Their advantages include
the reduction of the client computation, the possibility to delay the
eviction to quieter times, the guaranteed database availability dur-
ing the eviction process regardless of the ORAM design and the
independence from centralized parties. However careful design is
required to make them scalable. Our contributions are as follows:

e We introduce and motivate the use of mix-net to construct
delegated ORAM eviction schemes, letting very thin clients
use most ORAM designs.

e We present a number of eviction schemes relying on mix-
net, improve them with load balancing via parallel mixing.

e We finally evaluate the performance of our delegated evic-
tion designs, compare them between each other and with
regular eviction schemes.

We first present the related work in Section 2. We then intro-
duce the ORAM model and how our model differ, its associated
threat model and explain the different costs in Section 3. We then
present two simple designs over a cascade mix-net and optimize
them using random transposition shuffles over a stratified mix-net
in Section 4. We then hand out our security arguments in Section 5,
evaluate and discuss our designs in Section 6 and Section 7 before
concluding.

2 RELATED WORK

ORAM. ORAM was first presented by Goldreich and Ostrovsky
in 1990 [29] to prevent reverse engineering and protect software
running on tamper resistant CPUs. The model was also formally
extended in 2011 [7] to data protection on untrusted remote clouds
and in 2015 some designs were evaluated on Amazon Simple Stor-
age Service (S3) [?]. Since its introduction, ORAM enhancements
have been proposed including data structures diversification [16,
32-34], the use of more and more sophisticated security definitions
with statistical security [1, 10] and differential privacy [35], and
the revision of item lookups with cuckoo hashing [31] and bloom
filters [37]. Most ORAM constructions are based on a single client-
server model, but multi-user designs were gradually introduced
[4, 14, 20].

Shuffling and Sorting. Shuffle and sorting algorithms are a thor-
oughly researched subject central to ORAM for the randomization
process. However most of the existing methods are not useful for
ORAM as they are not oblivious in that the permutations done de-
pends on the data itself. Examples of oblivious sorting algorithms
include sorting networks such as Batcher’s [5] and the ones based

https://core.ac.uk/display/111036758?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/1709.01008v1
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Mix-ORAM: Using delegated shuffles

on AKS [2], which unfortunately were proven to be impractical be-
cause of the high number of I/Os, but also more recent and efficient
ones [30]. Newer designs include the randomized Shellsort [17], an
elegant simple data-oblivious version of the Shellsort algorithm,
the Zig Zag sort [18] presented in 2014, the Melbourne shuffle [28]
and work of particular interest written by Goodrich in 2012 [19]
assess the information leakage due the use of a partially compro-
mised parallel mix-net.

Mix-nets. Mix-nets were first presented for anonymous e-mailing
by David Chaum in 1981 [8]. As they became popular many im-
provements were made over the years [11-13, 27]. Mix-nets’ main
goal is to give users anonymity by hiding the correspondence be-
tween the incoming users’ packets and the mix-nets output. To do
so, the users’ messages go through several mixes which permute
them and refresh their encryption. Either re-encryption [36] and
onion encryption can be used, proofs of shuffle [6, 21, 22] and Ran-
domized Partial Checking [23] can help verify the shuffle correct-
ness.

This work is inspired by the mix-net technology for its encryp-
tion and permutation functionalities, however, only the packet un-
linkability property is of interest for ORAM. From now on, we re-
fer traditional ORAM solutions as ORAM and our designs as Mix-
ORAM.

3 PRELIMINARIES

3.1 ORAM introduction

The Oblivious RAM system is a distributed system composed of
two parties, the ORAM server and the client. The server handles
two data arrays, a first one we call the database which comprises
the user’s encrypted records and a temporary one that we call the
cache which is of lesser size and used to hide the number of times
arecord was accessed. Only read and write operations are allowed
on these arrays. The client comprises a small memory in which the
cache and some additional records can fit and provides two main
methods, the ORAM records access and eviction.

As stated in Bindschaedler’s work [?], most ORAM algorithms
can be classified in four distinct families, the layered ORAM, the
partition-based ORAM, the large-message ORAM and the tree-based
ORAM, depending on the database structure and the eviction method
employed. In this work we consider all algorithms that rely on peri-
odic data-oblivious shuffle of the database. This excludes from the
scope of our study solutions relying on the tree-based architecture
or using higher client memory and the use of recursive algorithms
such as [33?] or as Path ORAM [34] which uses O (logn) private
memory and O ((logn)?) access overhead. We can now thus de-
scribe the client methods as follows.

The access method: In order to perform a read or a write opera-
tion, the client first downloads if needs be the cache and checks lo-
cally whether the desired record is present. If so, a dummy record is
fetched from the database, else the client fetches the desired record.
The cache is then updated with a newly encrypted version of the
fetched element before finally being uploaded back to the remote

ORAM server.

The eviction method: When the cache is full, the client starts
the eviction process to prevent too important information leakage.
The eviction consists of two parts where the client first rebuilds the
database before starting the oblivious shuffle.

During the rebuild phase, the client obliviously uploads back the
records from the cache back to the ORAM database. After doing
so, the client can finally starts the oblivious shuffle during which
chunks of the database are permuted and encrypted obliviously
before being sent back to the database.

Current ORAM solutions have so far relied on the client locally
encrypting and shuffling the records in an oblivious manner. Batcher’s
sorting network [5] for instance requires O (n(log n)z) I/Os, AKS [2]
or Zig-zag sorting networks [18] which use O (nlogn) I/Os but
with large constant factors or finally the Melbourne Shuffle [28]
which is not not based on a data-oblivious sorting algorithm, using
only O (v/n) 1/Os but with a large and fixed message size of O (Vn).
We propose in this paper a new oblivious shuffle performed by
semi-trusted third parties, the difficulty of which being that the
records must be shuffled in a scalable way without leaking infor-
mation about the correspondence between indices to any party.

In this paper, we will reuse the previously defined system with
the addition of the mix-net, a group of independent servers capa-
ble of encryption and permutation, and the following modification
of the oblivious shuffle. When starting the delegated eviction, the
client first selects a set of mixes which will randomize the database.
It then generates and sends to them randomization instructions.
The mixes use these to compute the encryption keys and permuta-
tion seeds and fetch their allocated records from the database. They
then randomize the records by encrypting and shuffling them with
the keys and seeds, and forward them to the next mix(es) in what
we call a round. This randomization process is then done a num-
ber of times as specified in the instructions before the records are
uploaded back to the database ready to be accessed.

3.2 Security definitions and Threat model

We presume here the existence of a motivated adversary trying to

subvert a target user’s privacy by learning the correspondence be-
tween the remote and the local record indices. We furthermore as-
sume that the user protects its data with an ORAM system compli-
ant with the Privacy Definition 1 introduced by Stefanov et al. [33]

(see below) and additionally that all communications between the

client, ORAM server and mixes are secured but may be intercepted

as in the global passive adversary assumption. Finally, we suppose

the adversary has corrupted the ORAM server and all but one mixes,
and that the compromised machines behave in a honest but curi-
ous way in that all operation are correctly performed but passively
recorded and all secrets shared with the adversary.

PrivacY DEFINITION 1. Let’s denote a sequence of k queries by
seqy = {(op;, ady, datay), ..., (opy, ady, datay)}, where op denotes
a read or write operation, ad the address where to process the oper-
ation and data the block to write if needs be else L. We denote by
ORAM(seqy) the resulting randomized data access from the ORAM

Mix-ORAM: Using delegated shuffles

process with input seqy. The ORAM guarantees that ORAM(seqy.)
and ORAM(seq,) are computationally indistinguishable ifk = k’.

This work focuses on the ORAM eviction process and more pre-
cisely on the oblivious shuffle problem where sequences of data-
blocks are shuffled and encrypted in order to hide the correspon-
dance between records indices after a number of accesses has been
performed. This problem refers to the eviction of the shelter in the
database in the Square Root solution [29] and to the eviction of
upper partitions in a lower ones in the Hierarchical case [16]. We
consider the threat of a probabilistic polynomial-time (PPT) adver-
sary and evaluate the security of our designs by looking at the
information leakage of the oblivious shuffle and at the correctness
of the cryptography methods used by the designs.

3.3 Cryptographic Primitives

PRG & Seeds. ORAM systems use pseudo random generators (PRG)
and seeds to link remote and real indices. A distribution D over

strings of length [is said pseudo random if D is indistinguishable

from the uniform distribution over strings of length [[24]. That

means it is infeasible for any probabilistic polynomial-time adver-
sary to tell whether the string was sampled accordingly to D or

was chosen uniformly at random. A PRG is a deterministic algo-
rithm that receives as an input a short random key and stretches

it into a long pseudo random stream.

Encryption. ORAM designs heavily rely on encryption to obfus-
cate the records during the eviction and the access. In this work
we will use symmetric encryption for its rapidity and also public
encryption for the key and seeds derivation. The Advanced En-
cryption Standard (AES) [9] has high speed and low RAM require-
ments: it has throughput over 700 MB/s per thread on recent CPUs
such as the Intel Core i3 [26] which makes it the ideal choice for
ORAM. We also make use of elements of a elliptic curve group of
prime order satisfying the decisional Diffie-Hellman assumption
to compress the instructions sent to the mixes.

3.4 Model

System. We consider in this work an ORAM remote server con-
sisting of a database with memory of n b-bit long data blocks and
a cache with memory of s, s < n, b-bit long data blocks. We fur-
thermore consider a mix-net composed of m mixes, and a client
with memory of s data blocks. The ORAM server, the mixes and
the client additionally have a small memory of capacity O(m) to
store extra information about the permutation and encryption. We
consider facing the threat of a PPT adversary and call k our secu-
rity parameter representing the length of our encryption keys and
permutation seeds that we denote by k and o respectively.

Costs. We are interested on one side in the costs incurred by the
client for recovering a record index, for decrypting a record and the
extra space needed, on the other side in the total costs incurred by
the mixes encrypting the records, permuting them and the trans-
ferring them. Some operations can be preprocessed by the mixes

while the records are being transferred, as the key and seeds gen-
eration and the record allocation, and as thus will not be the main
focus.

4 MIX-ORAM

This work aims at obviously sorting the database from an old state
I15(DB) to a new one I1,/(DB) with the aid of a mix-net. As the
seed space is not structured, it is a NP-hard problem to find for
any o7 another seed o such that 15, o Il = I, the overall mix-
net is limited to perform a permutation Il5~ such that II;/(DB) =
II5» o I15(DB). We present two ways to do the oblivious shuffle.
We call the first way the Layered method which consists in having
the mixes permute the records with independent random seeds,
i.e. the permutation layers are simply stacked, and the client stor-
ing the indices. We call the second way the Rebuild method where
the mixes obliviously undo the permutations done at the previous
done, I, before shuffling the records with new random seeds.

In this section, we first introduce the two methods to randomize
the records during the eviction over a simple cascade mix-net. We
then optimize the Mix-ORAM schemes by considering a stratified
mix-net together with distributed shuffle algorithms.

4.1 A simple Mix-ORAM

We introduce here the two randomization methods over a semi-
trusted cascade mix-net, a topology in which the mixes receive and
process a batch of packets sequentially has shown in Figure 1. For
each method, we show how the mix-net encrypts and permutes
the records and how the client recovers a record plain text.

4.1.1 Cascade Layered scheme. In this scheme, we use the the
layered encryption method over the cascade mix-net for the evic-
tion of the database. The underlying principle of the layered method
is to have the whole database go through the mix-net once, with
each mix independently encrypting and permuting the records. This
method corresponds to the sole Wrapping phase (3) of Figure 1.

We assume in the Layered method that the records were prepro-
cessed before being uploaded to the ORAM server as follows. Each
record is first appended with its current index used as label and an
initialization (IV) token as shown in Figure 1. The resulting data
structure is then encrypted in two stages with AES in CBC mode.
The label and record are first encrypted together using the IV to-
ken as initialization vector then the IV token is encrypted with the
first bits of the label-record cipher. All the data structures are then
permuted and finally uploaded to the ORAM server, while their
indices are locally stored on the client.

IV token label || record
8 - [log(n)/8] bit | 8- [log(n)/87 +b bit
Table 1: Layered method data structure.

In the following, we present the Mix instructions sent to the mix-
net, used for retrieving the records from the ORAM database and
compute the permutation seeds and encryption keys and the Mix

Mix-ORAM: Using delegated shuffles

(1) Unwrapping
D/II"! phase
N

Status
ko, (o, k1)

(2) Simple E/D phase

(3) Wrapping
E/II phase
AN

Status
k('), (o’, k)

= o o/, Oiy
) ki m ki

ki,

Figure 1: Cascade Mix-ORAM.

kl,m k(’),la kO,m

0,m’ kO,m

Rebuild method (all phases) and Layered method (only the Wrapping phase)

operations. The client decryption and access methods are then de-
tailed in the Client operations.

Mix instructions. To start the eviction, the client sends to each mix
M; the ordered list of mixes list = (ports, ips) involved in the
oblivious shuffle, the database access information db, the security
parameter k, and a;, an element of a cyclic group of prime order
satisfying the decisional Diffie-Hellman Assumption.

C —> M; : db, «aj, k, list

Let g be a generator of the prime-order cyclic group G satisfy-
ing the Diffie-Hellman Assumption and g the prime order of G.
We assume that each mix M; has a public key y; = g* € G* with
Xi €r Z, being its private key. We also assume that the list of
(mix;j, y;) is distributed in a authenticated way thanks to a Public
Key Infrastructure (PKI). To generate the as, the client pick at ran-
dom in Z4 for each mix M; the element z;. The group elements and
mixes’ private keys are used to generate the shared secrets ss from
which the encryption keys and permutation seeds are derived with
the aid of the HKDF derivation function [25] as follows:

a; =g ; ssi= yl.zi = a;{i ; ki, o; = hkdf(ss;,)

Mix operations. The mix M; first decrypts the Mix instructions, gen-
erates the encryption key k; and the permutation seed o;. The mix
then receives the records from the mix M;_; or fetch them if it is
the first mix in the list. It then encrypts all the data structures with
the new encryption key k! as said previously and permutes them
with the new seed 0'1.’ before sending it to M;+1 or the database if
M; is the last mix in the list.

Client Operations. The client can find the record index locally as it
was stored previously. To decrypt a record, the client uses a trial
and error recursive algorithm : the client first decrypts the data-
block successively with all the shared secrets set by the latest Mix
instructions and decrypts it another time with its private key. If
the label is the record index, the process stops and the record is
returned. If not, the data-block is re-encrypted with the client’s
private key and the algorithm restarts with the newly encrypted
record and the shared secrets used in older Mix instructions.

We moreover modify the Access method to prevent timing at-
tacks as follows. When accessing a record, the client now directly
encrypts the data-block with its own private key and updates it in
the local cache. The client then uploads the cache to the remote
server. After doing so, the client can perform the read/write oper-
ation: it either overwrites the record with its new version ; either
decrypts the record with its private key and then starts the trial and

error algorithm. Once the plain text is retrieved, the client finally
encrypts the record a last time with its private key and stores it lo-
cally and at the next eviction overwrites the cached version with it.

Costs. As the whole database is sent through the mix-net, the mix
communication cost is (m + 1) - n - b, the mix permutation cost
is mnCry(n) with Cry(n) the cost of permuting n elements and the
encryption cost mnC,p. with C.p . the cost of encrypting one data
block. The client Lookup cost is of the order O(1) thanks to the n
indices stored locally for a total of nlog(n) bits. We will discuss of
the decryption cost in the Evaluation Section 6 as it depends on the
average number of encryption layers, however 2km bits are used
to store locally the group elements given that we always blind the
same m elements.

4.1.2 Cascade Rebuild scheme. The rebuild method aims at re-
placing all the mix encryption and permutation layers with new
ones ; the key challenge here is that the intermediaries should
never see the underlying client records. In order to achieve this,
the records are encrypted and decrypted in two phases : a sim-
ple encryption-decryption ((2) E/D phase) and then an encryption-
permutation ((1) the Unwrapping phase and (3) the Wrapping phase)
as shown in Figure 1. We use in the Rebuild method the AES en-
cryption method in Counter mode and take as counter the record
current index.

Before uploading the records to the untrusted storage for the
first time, the client prepares the data as follows. The records are
first encrypted with the client own private keys. The first encryp-
tion keys and permutation seeds are then generated and used to en-
crypt the records once with fixed counters and another time while
permuting the records at the same time (with varying counters), i.e.
locally doing the Simple Encryption phase (2) and the Wrapping
phase (3) of Figure 1.

Mix instructions. The client sends to each mix the same information
as in the Cascade Layered design but with two group elements :
a; being used to undo the old permutations and decrypt the old
encryption layers (in the Unwrapping and E/D phase), and o] used
for the new encryption and permutations (in the E/D phase and the
Wrapping phase). The client thus send to each mix M;:

C—M; : db, ai, af, x, list

Mix-ORAM: Using delegated shuffles

The mix M; thus computes the permutation seeds and encryp-
tion keys as follows.

a; =g, ssi = yfi, ki,oi = hkdf(ssi, k)
ol = g7, ss] = yfi, k!, o = hkdf(ss], k)

Mix operations. In this scheme, the mix M; receives a list of en-
crypted records from the mix M; or fetch the database if it is the
first mix. During the Unwrapping phase, the mixes remove first the
old encryption and then the permutations thanks to the old keys
k; and seeds o; and send the records to M;1, the last mix M,, in-
stead sends them to itself. The mixes then in the simple E/D phase
encrypt the records with both the new and old keys thanks to AES
in Counter mode commutativity and send to the previous mix in
the list, with the first mix My sending it to the last mix M,,. Finally,
in the Wrapping phase, the records are permuted with ¢, and then
encrypted with k] and sent to M;_; or the database for the first mix.

Client operations. To find a record index, the client uses the last m
seeds to simulate the mix permutations during the previous evic-
tion or the preprocess.

When retrieving a record, the client first computes the record’s
remote index using the permutation seeds. The client saves all in-
termediary and final indices and use them as counters to decrypt
the record sequentially r times. The client then decrypts the record
with all the shared secrets and its own encryption key together
with the original index as counter to reveal the plain-text. The
client then updates the encryption of the record to read or write
in the local cache, and uploads the cache back to the ORAM server.

Costs. As the whole database is sent through the mix-net three
times, the mix communication cost is (3m) - n - b, the mix permuta-
tion cost is 2mnCry(n) with Cry(n) the cost of permuting n elements
and the encryption cost 4mnCe;, with C¢tr the cost of encrypting
one data block. The client Lookup cost is of the order mCry(n). The
client decryption cost is 2mC;r, and the group elements stored on
the client requires 2xm bits of storage.

Both of the Cascade Layered and Cascade Rebuild designs are
not efficient as they do no fully utilize the mixes’ capacity: for a
single user only one mix works at a time. However, the designs
can be used in pipeline when dealing with several users.

To increase the mix-net efficiency, we next study in the follow-
ing section parallelization to distribute the workload among mixes
while keeping the shuffle oblivious. To do so, we change the mix-
net configuration to a stratified one and introduce random trans-
position shuffles.

4.2 Parallelizing the Eviction process.

From here on, we replace the cascade configuration of the mix-net
with a stratified one and have the mixes simulate random transpo-
sition shuffles (RTS) thanks to the use of private and public permu-
tations. We also calculate the number of rounds needed to reach
good security by presenting firstly the mixing time of k-RTS be-
fore introducing ORAM assumptions to reduce the expected time
to achieve randomness.

-

»ow

4.2.1 k-Random Transposition Shuffle. Random Transposition
Shuffles (RTS) are widely used models in the study of card shuffling.
It consists in a player picking randomly a couple of cards from a
same deck, permuting them according to a coin toss and putting
them back at the same location. These steps, usually called a round,
are then repeated until the deck of cards has been properly shuffled,
i.e. until every card sequence is equally possible.

RTS are natural candidates for amortized ORAMs : the rounds
are independent and can be run by different entities over time. Di-
aconis et al. in 1986 [3] have proved that the RTS mixing time of a
deck of n cards is of the order O (nlogn), we first look at oblivious
k-RTS, an RTS where the client picks and transposes locally k dis-
tinct cards to make the scheme more efficient. We stress the differ-
ence between doing successively k/2 transpositions and what we
call k-RTS: in the first case, an element can be transposed several
times in a row of k/2 transpositions while in k-RTS it is transposed
at most once. The result we present affirms that k-RTS converges
to the uniform distribution more rapidly than repeating normal
RTS.

SECURITY THEOREM 1. Mixing time of k-RTS. A k-random per-
mutation shuffle of a n card game reaches the uniform distribution
in T rounds, such that

2
E(r) < ?” log(n)
PRrROOF. See Appendix 10.1. O

Remark. This theorem gives an upper bound of the number of
rounds for k/2 disjoint transpositions. However, we use in prac-
tice PRG keys which do not guarantee that k/2 transpositions are
done. The permutation done with the PRG can be decomposed
as a sequence of transpositions which may not be disjoint or of
size k/2. We nevertheless consider that in practice an oblivious k-
RTS implies computation and communication cost of the order of

(0] (% . log(n)).

To simulate the k-RTS over the stratified mix-net we will al-
locate to each mix a range of indices, for instance the mix M;
fetches from the database the records whose indices are comprised
in[i-n/m: (i + 1)n/m — 1]. Each mix then fetches its allocated
records and permutes them locally. Finally, all mixes perform the
same public permutation on all the indices to allocate the records
in the next shuffling round and forward the records to the mixes
accordingly. This last permutation is required to simulate the ran-
dom card choice of the classic RTS shuffle.

ALGORITHM 4.1: Public Record Allocation for mix M; 4, at round rnd
Input: Public seeds 0pyp, rnd;

Number of records n;

Number of mixes m;
records « ngub’md([[l : n]);

alloc « [];
forall i € [1, m] do
alloc « allocUrecordsli-n/m:(i+1)-n/mj;
alloc[i] « [alloc[i][j] forj € [1: n/m] if
alloc[i][j] € [idx - n/m : (idx + 1) - n/m]];
Output: alloc

Mix-ORAM: Using delegated shuffles

When m mixes perform in parallel the k-RTS, we can improve
in theory by another factor m the eviction computation time. How-
ever to guarantee that no information is leaked to the adversary,
we need each honest mix to perform r = 2mlogn rounds, hence
we ask each mix to perform the k-RTS for r rounds.

4.2.2 Oblivious Merge. Before the eviction algorithm is run, the
database can be divided in two sets of records depending on whether
or not they were retrieved by the user. As such, the database can be
represented as a simple binary array of n bits out of which s are 1s,
the accessed ones, and n—s are 0s, the others. We argue that in this
representation, elements of the same sets are indistinguishable to
the adversary thanks to prior encryptions and permutations and
thus, fewer rounds are necessary to obliviously shuffle the data-
base from this state since we only need to hide from which set the
records are from. Indeed, this assumption significantly reduces the
number of possible orders in the adversarial view, there are (%) or-
ders instead of n! (using the Stars and Bars theorem [?]).

We now consider the RTS process in that scenario and assume
the records (the bits) are re-encrypted before being permuted such
that the merge of the two sets is oblivious to the adversary.

SECURITY THEOREM 2. An oblivious merge (OM) of 2 indistin-
guishable sets of respective size n and s elements requires t rounds of
2-RTS such that any arranging is possible, with

7(e) < g ~log(§)

ProOF. See Appendix 10.2. O

The k-RTS decreased the mixing time by at least a factor k, and
does so independently of the items to shuffle, we make the follow-
ing conjecture.

SECURITY CONJECTURE 1. A k-oblivious Merge (k-OM) of 2 indis-
tinguishable sets of n and s element requires T rounds such that any
order is equally possible, with

7(e) < % -log(g)

4.3 Parallel Mix-ORAM

We now consider the shuffling methods with the mix-net in a strat-
ified configuration, where all the mixes perform the same opera-
tions in parallel and forward the output to each other as shown in
Figure 2.

The mixes have each been allocated a chunk of the database
(M; 45 having [idx - n/m : (idx + 1) - n/m]) and use the public
permutation seeds 0y, to compute which records to send to each
mix.

4.3.1 Parallel Layered scheme. In this design, depicted as the
Wrapping phase of Figure 2, the records are still appended with a la-
bel and an IV token, encrypted and permuted as in subsection 4.1.1,
however now chunks of the database are assigned and processed
by each mix. Before the eviction, the database is permuted with the
old seeds o; and encrypted with the old keys k;. Afterwards, the
records are encrypted with both k; and k;, permuted with both o;

and o7, and the new indices are saved on the client. As no permuta-
tion layer is ever removed, the record indistinguishability assump-
tion holds, the eviction then consists of r = m/2 log(n/s) rounds.

Mix Instructions. The client needs to send to each mix the session
keys to access the database db, the private and public elements
used to compute the encryption keys, the permutation seeds and
the record allocation @; and f;, the security parameter k, the num-
ber of records and rounds n and r, and the ordered list = (ports, ips)
of the mixes participating in the eviction. The client thus send :

C—> M; : db, a;, Bi, k, n, r, list

We generate the permutation seeds and encryption keys as before
and furthermore refresh them at each round by blinding the group
elements. Let hy, : G* — Zg be the hash function used for comput-
ing blinding factors, we can then compute recursively the @ and
for the round j + 1 as follows:

ai0 = g°, ki o, 0i,0 = hkdf(ssi 0, k)
Opub,0 = hkdf(sko, x)

zillg<jbi ke

L —
$Si,0 = yi’oa

. "
Weims, sk = B

Bio=g
bi j+1 = hp(ai j,ssi,j), @ij+1=9

Oi<jbpup, kllizimg

bpup,j+1 = hp(skj), Bij+1=g

Mix operations. In this scheme, the mix M; receives a list of en-
crypted record from all mixes or from the database at the first
round. It first merges the records and sorts them to the order given
by the previous public record allocation. It then encrypts each record
and permutes them with the private encryption key and private
permutation seed. It finally blinds the public permutation seeds,
computes the new record allocation and sends the records to the
mixes accordingly, or to the database at the last round.

Client operations. The client can find the record index locally as
it was stored before the eviction. To decrypt a record, the client
uses a similar algorithm to the one used in the cascade configura-
tion. The Parallel Trial and Error algorithm, as described in Algo-
rithm 4.2, now needs to decrypt the records for each eviction and
each rounds, and determines for each round which mix processed
the desired record. The access method is the same as in the Cas-
cade.

Costs. The mix communication cost is (r + 2) - n - b, the mix per-
mutation cost is mlog(n/s) - Crp(n/m) with Cr(n/m) the cost of
permuting n/m elements and the encryption cost m/2log(n)-Ccp.
with C.p the cost of encrypting one data block. The client Lookup
cost is of the order O(1) as the indices, i.e. nlogn bit, are stored lo-
cally. The client decryption cost will be talked in Section 6, and the
group elements stored on the client represents 2xm bits.

4.3.2 Parallel Rebuild method. This design, depicted in Figure 2,
is composed of three phases as in the Cascade configuration. How-
ever, we now assign a chunk of the database to each mix which
processes during a specified of rounds r = 2n/k log(n) during each
permutation phase and encrypt some of the records in parallel. Be-
fore the eviction, the records are permuted and encrypted by the

1

2

Mix-ORAM: Using delegated shuffles

Unwrapping phase

Simple E/D phase

Wrapping phase

Opub,1 Opub,r-1

0

DB

N

0

DB

N

Figure 2: Parallel Mix-ORAM with 3 mixes.
Rebuild method (all phases) and Layered method (only the Wrapping phase).

ALGORITHM 4.2: Parallel Layered Trial Error Algorithm

Input: Record and index rec, index;
Shared and private encryption keys ky, ix eviction, rounds> Pro;
Permutation seeds o;
Number of rounds r;
List of mixes list = (ips, ports);
j. e=0;
r « decrypt(pro, rec);

3 while rec.data.label! =i do

10

11

if e! = 0 then
| rec « encrypt(pro, rec);
forall j € [[1:r] do
m « retrieve_mix(o, e, j, index, list);
rec « decrypt(k,n, e, j, rec);

JeJj-1L
rec « decrypt(pro, rec);
e«—e—1;
Output: rec

mixes M; with the permutation seeds g, and o; and the encryp-
tion keys k;. Afterwards, the database is encrypted with the keys
k! and permuted with the seeds O'I;M p and o;.

Mix Instructions. The client sends the same information as in the
Parallel Layered design but with twice the number of group ele-
ments:
C— M; : db, ai, af, B, B, x, n, r, list

To derive the permutation seeds o and encryption keys k, we
make use of the random private elements z, i and m;, the public
and private keys y and x as in the Layered method. We furthermore
derive the a r more times for the simple E/D phase.

zillk<;bi k

bij+1 = hp(ai j,ssij), Qijr1=9

Hi<jbpub, kllizimy

bpub,jr1 = hp(ye, skj)s Bij+1=9

Mix Operations. During the first r rounds, the records are first sorted
according to the previous public record allocation, then unwrapped
(permuted and decrypted with the old keys and seeds) and sent to
the mix-net according to the public record allocation generated
from the blinded public seeds. Then the groups of n/m records

-

Y

are encrypted and decrypted in m parallel cascades. Finally, the
records are similarly sorted, wrapped (encrypted and permuted
with the new keys and seeds) and sent to the mix-net during the
last r rounds.

Client Operations. To find a record position, the client uses a simi-
lar algorithm as the one used in the Cascade Rebuild scheme. The
Parallel Index Lookup Algorithm, as described in Algorithm 4.3,
however needs to determine at which round where the record was
sent and processed and compute the associated keys and seeds.
These intermediary results, the list of indices, keys and seeds, can
be stored to facilitate the decryption of the record ; the method be-
ing similar to the one used in the Cascade configuration.

ALGORITHM 4.3: Parallel Index Lookup

Input: Private and public seeds 6; round> Ground:
Number of records, mixes and rounds n, m, r;
Record index index;

mixes «— {, };

indices « {, };

foralli € [1, r] do

mix « |index/m];

mixes « mixes U {mix};

shuffle « g, (i-n/m,)i+1) n/m)
index «— i -n/m+ shuffle.index(index);
indices «— U{index};

shuffle « Mg (1, n)s

index « shuffle.index(index);

Output: mixes, indices

Costs. The mix communication cost is (2m + r + 2) - n - b, the mix
permutation cost is 8mlogn - Cr(n/m) with Cri(n/m) the cost of
permuting n/m elements and the encryption cost n(4log n+2)-Cesr
with Ccyr the cost of encrypting one data block. The client Lookup
cost is of the order m(Cry(n) + Cri(n/m)). The client decryption
cost is (r + m)Cc¢r, and the group elements stored on the client
represents 2x(m + 1) bits.

Mix-ORAM: Using delegated shuffles

5 SECURITY ARGUMENT

We first remark that all of the eviction meta data is independent
of data content, as it is entirely determined by the sole parameter
n. The mix instructions are never shared between parties, the keys
and seeds thus remain secret and are refreshed at every round.

Cascade mix-net. In this architecture, the whole database passes
by every mix including the honest one where it is locally permuted
and re-encrypted with the private shared keys. As a polynomial
adversary cannot break the PRF, the database order is kept confi-
dential.

For the Rebuild method, the simple Encryption/Decryption phase
ensures that the records are always encrypted as the adversary is
not able to break the double AES encryption.

Parallel mix-net. In this architecture, chunks of the database are
exchanged between mixes during r rounds. The adversary can ben-
efit of the fact that some records may never go to the honest mixes
but this happens with negligible probability of p = (e7"/™ << 1
with our parameters.

For the Rebuild method, we derived the number of rounds needed
to secure our design from the method used in Goodrich 2012 [19]
to quantify the information leakage (see Appendix 10.3) and found
that this number of rounds is sufficient to bound the expected sum
of square error between the card assignment probabilities and the
uniform distribution by at most 1/n?. The simple E/D phase simi-
larly to the Cascade configuration prevents any mix or the adver-
sary from the decrypting the records completely when they are not
permuted and thus the leakage of which records were accessed.

For the Layered method, we proposed to use the previous ran-
domness to reduce the number of rounds needed to be close to
the uniform distribution. We can also reuse Goodrich’s proof by
changing the probabilities such that w;(t) being now the probabil-
ity the i record at the " round was in the cache at first and
®(t) = Zw;(t) — s/n, we obtain r > mlog(n/s) see Appendix 10.2
and Conjecture 1).

6 EVALUATION

Layered method. We look here at the average number of encryp-
tion layers e a record has before being decrypted. Making the as-
sumption that the record access distribution is uniform, we can rep-
resent the problem of accessing all records at least once as a coupon
collector problem. In that case, the average number of evictions
before all records have been fetched once is E[ey;;] < (n/s) - Hp
with Hy, the n'" harmonic number. The expected number of en-
cryption layers per record before decryption is however E[r] <

r/s- ("TH -(Hp - 1/2) + 1/2). For n = 10% and s = /n, we have
Ele] ~15-10% and E[r] = 7 - 103 - 1.

PROOF. Lets 7, be the random number of coupons collected when
the first set contains every n types. We have, E[t,] = n X, % =
n - Hy. Since we fetch s unique records per eviction (we cannot
fetch a record already in the stash), the previous result is an up-
per bound of the number of requests needed and so the expected

number of eviction is E[e ;] < n/s Hy.

We now want to find the average number of encryption layers
per record before decryption, this is equivalent to finding the aver-
age number of evictions before a record is deciphered. Hence we

have, Ele] < r/s- X1 Elt;] = r/s X1, (w . l) from

i
which can be calculated the result presented earlier. O

To reduce these numbers, we can modify the access method as
follows. When the client requests a record from the database, d
other records are chosen uniformly at random from the set of un-
accessed records. These records are then fetched, their encryption
is refreshed as written previously and the client overwrites with
these records their older version on the database. Doing so, with d
high enough, yields a better approximation of the uniform distri-
bution assumption and we would obtain E[e,;;] < n/(sd) - H, and
Ele] < r/(sd)- [%2 - (Hn — 1/2) + 1/2] Hp. Withd = v/n, we now
have Ele,;;] < 15r and E[e] < 7r.

Another method to reduce the decryption cost would be to reini-
tialize the database periodically, for instance every e eviction. Do-
ing so, the client would only need to decipher each record a maxi-
mum of e - m times for the Cascade architecture and e - r times for
the Parallel architecture during the reinitialization process and in
the decryption method.

7 COMPARISON

We can find in Table 2 and Table 3 the cost comparisons of the
different Mix-ORAM designs. We did not include the public per-
mutation costs in the Parallel cases as they can be done offline, or
during the records’ exchange at each round, since the permutation
is done on the range of indices and not on the data. We can see
that the Layered method is more efficient than the Rebuild one in
theory, however we have to take into account in practice the added
cost due to the fact that the whole database may not fit in the cache
of the mixes (the time needed to fetch the records from the main
memory). Moreover, the client incurs higher costs, both in term of
memory and computation, with the Layered method. Comparison
of our schemes. The mix cost in the Cascade architecture are qua-
dratic in the number of mixes m while they could be considered
independent of m in the Parallel case. Hence, the Parallel architec-
ture, even if it has a higher number of rounds, can still be faster
than the Cascade depending on the siwe of the network and of the
cache for the Layered method.

Comparing the computation and communication costs of our
designs to existing eviction schemes would be interesting but del-
icate as we take into account the fact that the mixes may have
faster processor or larger RAM and that the bandwidth in the mix-
net may be higher than the one between the client and the ORAM
process thus speeding the eviction. The total communication or
computation cost of each of our design is indeed higher than regu-
lar evictions’ such as Melbourne’s [28]. However, in our cases, the
client only needs to preprocess the database once, and with the pe-
riodic reinitialization of the database in the Layered approach, and
has manageable additional costs for the lookup and description of
arecord. These costs do not compare with the overhead of the pe-
riodic eviction incurred by the client in the non delegated schemes
eviction.

Mix-ORAM: Using delegated shuffles

Cascade - Layered Cascade - Rebuild

Mix memory n n

Mix Encryption cost m-n 4dm-n
Mix Permutation cost mn - Cry(n) 2mnCry(n)
Mix Communication cost (m+1)-Ceom(n) 3m - Ccom(n)
Client Lookup overhead 0o(1) m - Cri(n)
Client Decryption overhead ~ B Hy, 2m

Client Storage overhead

nlog(n) + 2xm

2km

Table 2: Cost comparison of the designs with Cg the cost of 1 encryption, Crj(x) the permutation cost and C¢opm(x) the
communication cost of x records in the scheme.

Parallel - Layered

Parallel - Rebuild

#Rounds (r) Zlog (2) 2mlog(n)

Mix memory n/m n/m

Mix Encryption cost 7 log (%) n(4log(n) + 2)

Mix Permutation cost mlog(2) - Cn (&) 8mlog(n) - Cr (%)
Mix Communication cost m(r +2) - Ceom (%) m@2r+m+2)-Ceom (%)
Client Lookup overhead o(1) m - [Cno (%) h + 2C(n)]
Client Decryption overhead ~ ZLHp m+r

Client Storage overhead

nlog(n) + 2k(m + 1)

2k(m+ 1)

Table 3: Cost comparison of the designs with Cg the cost of 1 encryption, Crj(x) the permutation cost and C¢om,(x) the
communication cost of x records in the scheme.

8 ACKNOWLEDGEMENT

Danezis was supported by H2020 PANORAMIX Grant (ref. 653497)
and EPSRC Grant EP/M013286/1; and Toledo by Microsoft Research.

9 CONCLUSION

We presented in this paper a novel ORAM eviction system where
the randomization, more specifically the oblivious shuffle, is dele-
gated to a semi-trusted mix-net. Doing so, the client is alleviated
from the main overhead of the ORAM technology at the cost of
reasonable additional costs for the record lookup and decryption.
Very thin clients can thus accede to the ORAM technology as only
a few group elements are needed for fetching any records. The
database is moreover accessible and can be made available during
the eviction of the records, and this independent of the structure of
the underlying ORAM server, making the ORAM technology more
portable.

REFERENCES

[1] Miklos Ajtai. 2010. Oblivious RAMs without cryptographic assumptions. In Pro-
ceedings of the forty-second ACM symposium on Theory of computing. ACM, 181-
190.

(2

=

Miklés Ajtai, Janos Komlés, and Endre Szemerédi. 1983. An 0(n log n) sorting
network. In Proceedings of the fifteenth annual ACM symposium on Theory of
computing. ACM, 1-9.

[3] David Aldous and Persi Diaconis. 1986. Shuffling cards and stopping times. The
American Mathematical Monthly 93, 5 (1986), 333-348.

[4] Michael Backes, Amir Herzberg, Aniket Kate, and Ivan Pryvalov. [n. d.]. Anony-
mous RAM. ([n. d.]).

[5] Kenneth E Batcher. 1968. Sorting networks and their applications. In Proceedings
of the April 30-May 2, 1968, spring joint computer conference. ACM, 307-314.

[6] Stephanie Bayer and Jens Groth. 2012. Efficient zero-knowledge argument for
correctness of a shuffle. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques. Springer, 263-280.

[7] Dan Boneh, David Mazieres, and Raluca Ada Popa. 2011. Remote oblivious stor-
age: Making oblivious RAM practical. (2011).

[8] David L Chaum. 1981. Untraceable electronic mail, return addresses, and digital
pseudonyms. Commun. ACM 24, 2 (1981), 84-90.

[9] JoanDaemen and Vincent Rijmen. 2013. The design of Rijndael: AES-the advanced
encryption standard. Springer Science & Business Media.

[10] Ivan Damgard, Sigurd Meldgaard, and Jesper Buus Nielsen. 2011. Perfectly se-
cure oblivious RAM without random oracles. In Theory of Cryptography Confer-
ence. Springer, 144-163.

[11] George Danezis, Roger Dingledine, and Nick Mathewson. 2003. Mixminion: De-
sign of a type III anonymous remailer protocol. In Security and Privacy, 2003.
Proceedings. 2003 Symposium on. IEEE, 2-15.

[12] George Danezis and Ian Goldberg. 2009. Sphinx: A compact and provably secure

mix format. In 2009 30th IEEE Symposium on Security and Privacy. IEEE, 269-282.

George Danezis and Ben Laurie. 2004. Minx: A simple and efficient anonymous

packet format. In Proceedings of the 2004 ACM workshop on Privacy in the elec-

tronic society. ACM, 59-65.

[14] Martin Franz, Peter Williams, Bogdan Carbunar, Stefan Katzenbeisser, Andreas
Peter, Radu Sion, and Miroslava Sotakova. 2011. Oblivious outsourced storage
with delegation. In International Conference on Financial Cryptography and Data
Security. Springer, 127-140.

[15] Oded Goldreich. 1987. Towards a theory of software protection and simulation

by oblivious RAMs. In Proceedings of the nineteenth annual ACM symposium on

[13

Mix-ORAM: Using delegated shuffles

Theory of computing. ACM, 182-194.

[16] Oded Goldreich and Rafail Ostrovsky. 1996. Software protection and simulation

on oblivious RAMs. Journal of the ACM (JACM) 43, 3 (1996), 431-473.

Michael T Goodrich. 2010. Randomized shellsort: A simple oblivious sorting

algorithm. In Proceedings of the twenty-first annual ACM-SIAM symposium on

Discrete Algorithms. Society for Industrial and Applied Mathematics, 1262-1277.

[18] Michael T Goodrich. 2014. Zig-zag sort: A simple deterministic data-oblivious

sorting algorithm running in O(n log n) time. In Proceedings of the 46th Annual

ACM Symposium on Theory of Computing. ACM, 684-693.

Michael T Goodrich and Michael Mitzenmacher. 2012. Anonymous card shuf-

fling and its applications to parallel mixnets. In International Colloquium on Au-

tomata, Languages, and Programming. Springer, 549-560.

[20] Michael T Goodrich, Michael Mitzenmacher, Olga Ohrimenko, and Roberto
Tamassia. 2012. Privacy-preserving group data access via stateless oblivious
RAM simulation. In Proceedings of the twenty-third annual ACM-SIAM sympo-
sium on Discrete Algorithms. SIAM, 157-167.

[21] Jens Groth and Steve Lu. 2007. A non-interactive shuffle with pairing based ver-
ifiability. In International Conference on the Theory and Application of Cryptology
and Information Security. Springer, 51-67.

[22] Jens Groth and Steve Lu. 2007. Verifiable shuffle of large size ciphertexts. In
International Workshop on Public Key Cryptography. Springer, 377-392.

[23] Markus Jakobsson, Ari Juels, and Ronald L Rivest. 2002. Making Mix Nets Ro-
bust For Electronic Voting By Randomized Partial Checking.. In USENIX security
symposium. San Francisco, USA, 339-353.

[24] Jonathan Katz and Yehuda Lindell. 2014. Introduction to modern cryptography.
CRC press.

[25] Hugo Krawczyk. 2010. Cryptographic extraction and key derivation: The HKDF
scheme. In Annual Cryptology Conference. Springer, 631-648.

[26] Grant McWilliams. 2014. Hardware aes showdown-via padlock vs intel aes-ni
vs amd hexacore. (2014).

[27] Ulf Méller, Lance Cottrell, Peter Palfrader, and Len Sassaman. 2003. Mixmaster
protocolaATversion 2. Draft, July 154 (2003).

[28] Olga Ohrimenko, Michael T Goodrich, Roberto Tamassia, and Eli Upfal. 2014.
The Melbourne shuffle: Improving oblivious storage in the cloud. In International
Colloquium on Automata, Languages, and Programming. Springer, 556—-567.

[29] Rafail Ostrovsky. 1990. Efficient computation on oblivious RAMs. In Proceedings

of the twenty-second annual ACM symposium on Theory of computing. ACM, 514-

523.

Michael S Paterson. 1990. Improved sorting networks with O(log N) depth. Al-

gorithmica 5, 1-4 (1990), 75-92.

[31] Benny Pinkas and Tzachy Reinman. 2010. Oblivious RAM revisited. In Annual

Cryptology Conference. Springer, 502-519.

Ling Ren, Christopher W Fletcher, Albert Kwon, Emil Stefanov, Elaine Shi,

Marten van Dijk, and Srinivas Devadas. 2014. Ring ORAM: Closing the Gap Be-

tween Small and Large Client Storage Oblivious RAM. IACR Cryptology ePrint

Archive 2014 (2014), 997.

Emil Stefanov, Elaine Shi, and Dawn Song. 2011. Towards practical oblivious

RAM. arXiv preprint arXiv:1106.3652 (2011).

[34] Emil Stefanov, Marten Van Dijk, Elaine Shi, Christopher Fletcher, Ling Ren, Xi-

angyao Yu, and Srinivas Devadas. 2013. Path ORAM: an extremely simple obliv-

ious RAM protocol. In Proceedings of the 2013 ACM SIGSAC conference on Com-

puter & communications security. ACM, 299-310.

Sameer Wagh, Paul Cuff, and Prateek Mittal. 2016. Root ORAM: A Tunable

Differentially Private Oblivious RAM. arXiv preprint arXiv:1601.03378 (2016).

[36] Douglas Wikstrom and Jens Groth. 2006. An adaptively secure mix-net without

erasures. In International Colloguium on Automata, Languages, and Programming.

Springer, 276-287.

Peter Williams, Radu Sion, and Bogdan Carbunar. 2008. Building castles out of

mud: practical access pattern privacy and correctness on untrusted storage. In

Proceedings of the 15th ACM conference on Computer and communications security.

ACM, 139-148.

[17

[19

[30

[32

[33

[35

[37

10

10 APPENDIX
10.1 Proof k-RTS

Proor. To prove the upper bound, we use Diaconis et al. method [3]
which consists in marking cards depending on whether they have
already been picked or not. Let’s define 7 the stopping time, i.e. the
time when every card has been marked and 7; the number of trans-
positions before i cards have been marked. The 7; are independent
geometric variables with probability of success p; as implied by
the game rules. We thus have,

SR A RV

%.(k.(t+l)-(n—t)+an,t,k)

With &, ; , = O (n_k) positive.

We can thus rewrite 7’s expectation as following.

n-1 n-1 n-1 2

1 — n
EO=E| D)= 2 o< 2 e o amn

0

. . (ln(n) +y+ O(l)) , v = lim H, —1In(n)
n+1 n n—oo

10.2 Proof of Oblivious Merge

Proor. We want to find the mixing time 7(e) of our oblivious
merge of two sets of indistinguishable elements. To do so, we use
the bound of the mixing time of an irreducible ergodic Markov

Chain, where p = ﬁ with the volume V = ('Sl) and 1 — A* is the
spectral gap, we thus have,

A* 1 i <o) < 1 1 1
14 %B\2e) ST ST B\ e

We now represent the arranging of merge of the 2 distinct sets
by the graph G, a k-regular graph with v vertices corresponding to
the different orderings and the undirected edges to transpositions
of two elements. By definition, the eigenvalues of the transition
matrix of the G are k = A’y > 1’1 > ... > A’,,_1, and we have,

log(v — 1 .
<O ith A7 = maxiso(s) = k- 2°

From which we can deduce that A* > ((%) -)ﬁ > (%)ﬁ
since diam (G) = s the diameter of the graph, v = ('Sl) the number
of vertices and k = s - (n — s).

To find an upper-bound of 1*, we will now look at spectral gap
bounding. Let’s Go,1 = {0,1}" be the group of elements with the
XOR operation and S = {x € G, weight(x) = s} the symmetric
subset of G of n-binary array with s 1s and n—s 0s. We call Cayy, s =
Graph (Go,1, S) the Cayley graph generated from these structures.

LEMMA 10.1. Let G be a finite Abelian group, y : G — C be a
character of G, S C G be a symmetric set. Let M be the normalized
adjacency matrix of the Cayley graph G = Cay(G, S). Consider the

Mix-ORAM: Using delegated shuffles

vector x € CY such that xq = y(a). Then x is an eigenvector of G,

with eigenvalue
1
S22, X0
seS

THEOREM 10.2. The Cayley graph Cayp, s has for eigenvalues jiy =
1>p > ... = up—1 with,

B 1 min(r,n—r)(y Afn—r
m o R

i=1

ProoF. Vr € {0,1}", with y,(x) = (=1)271* we have,
1 1
- - -1 2 TiSi
Hr SS§ESX(S) § § (-1

seS

~ 1 min(r,s) 11' Aln—r
w2 (6

i=1

Remark. We recognize here the Vandermonde identity with al-
ternating numbers. We argue that the eigenvalues of the Cayley
graph Cayp, s are all positive as the smallest eigenvalue is null. For
r = n — r, the expression simplifies to y, = (%) if n even, 0 oth-
erwise. For r = 1, the expression simplifies to gy = 1—2- 7, the
spectral gap of Caypy, s is thus equal to 2 - .

We notice that the first graph G actually is a sub-graph of Cayp, s
and as such the adjacent matrix of the first graph is included in the
second’s. For s > 1, Cayp, s is divided in two sub-graphs represent-
ing the cosets of {0,1}" as S is not a generating group of Gy, 1, G
is only contained in one of the sub-graphs. We use the Cauchy’s
Interlace Theorem to bound the eigenvalues of G with the ones of
Cayn,s..

THEOREM 10.3. Let M be a Hermitian n X n matrix with eigen-
values ' > ... > p’,_; and N a m X m sub-matrix of M with
eigenvalues g > ... > A’ 1 , we have

’ ’ ’
ﬂiz/lizlln—m+i+l

We are here only interested in an upper-bound of 1+, as we have
Han ta-(m) SA1<1-27and 0 < Ay < pp, A+ < 1 -2, We thus

have ﬁ < 5% and log ('SI) ~ s(log(n/s — 0.5) + 1) — 1/2log(2ms)
when n > s from which we derive the final result. |

10.3 Proof of Parallel mix-net

Proor. This proofis derived from Goodrich et al [20] who bounded

the closeness of a shuffle to the uniform distribution using a com-
promised parallel mix-net.

Let w;(t) the probability the i‘" record at the ' round was the
first record at start, the sum of square metric ®(t) = X, (w;(t) -
1/n)?, n the number of cards, m the number of mixes out of which
mg are corrupted and k = n/m.

We have by recurrence that the potential A®* changes when a
group of K card is shuffled during a round as following : A®* =
Si<i<n(wi — Wj)z. Thereby,

11

E[A®] = % Z Pr((i,) in the same honest mix)(w; — Wj)2

1<i<n
Z(Wi - wj)?

k-1 m—rmg
i<j

:k(n—l). m

A% _ (m — ma)(k — 1) X1, j(wi = 1/n) = (wj — 1/n))?
@ 2n(n-1) Yk(wg —1/n)?
= W‘#ji’f—l) sinceZk:wk -1/n=0
We thus find,
Blo + 1) = (1 - P EE D gy
Plao) = (1 - P2k
We want to find the conditions on ¢ such that the corrupted

parallel mix-net can mix in ¢ = bclog(n) such that E[®(#)] < nb.

(m-mg)(k-1)

t -b
<n
-1)

E[®(n)] = (1

c-log(1+)>1

—1
Tm D L

Using Taylor series, assuming that n — 1 > (m —mg,)(k — 1), we
finally get

c-(P +o(n/k)) > 1
m=mg)(k—1)
n—1 N m
) e mg Y

Thus, when shuffling n cards with n a parallel mix-net composed
of m mixes out of which m, were compromised, we need t >
b — :"ma log(n) rounds before the expected sum of squares error
E[®(t)] between the card assignment probabilities and the uniform

distribution is at most 1/n? for any fixed b > 1. m]

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 ORAM introduction
	3.2 Security definitions and Threat model
	3.3 Cryptographic Primitives
	3.4 Model

	4 Mix-ORAM
	4.1 A simple Mix-ORAM
	4.2 Parallelizing the Eviction process.
	4.3 Parallel Mix-ORAM

	5 Security Argument
	6 Evaluation
	7 Comparison
	8 Acknowledgement
	9 Conclusion
	References
	10 Appendix
	10.1 Proof k-RTS
	10.2 Proof of Oblivious Merge
	10.3 Proof of Parallel mix-net

