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Abstract—Mutation testing realises the idea of fault-based testing, i.e., using artificial defects to guide the testing process. It is used to
evaluate the adequacy of test suites and to guide test case generation. It is a potentially powerful form of testing, but it is well-known
that its effectiveness is inhibited by the presence of equivalent mutants. We recently studied Trivial Compiler Equivalence (TCE) as a
simple, fast and readily applicable technique for identifying equivalent mutants for C programs. In the present work, we augment our
findings with further results for the Java programming language. TCE can remove a large portion of all mutants because they are
determined to be either equivalent or duplicates of other mutants. In particular, TCE equivalent mutants account for 7.4% and 5.7% of
all C and Java mutants, while duplicated mutants account for a further 21% of all C mutants and 5.4% Java mutants, on average. With
respect to a benchmark ground truth suite (of known equivalent mutants), approximately 30% (for C) and 54% (for Java) are TCE
equivalent. It is unsurprising that results differ between languages, since mutation characteristics are language-dependent. In the case
of Java, our new results suggest that TCE may be particularly effective, finding almost half of all equivalent mutants.

Index Terms—Mutation Testing, Equivalent Mutants, Duplicated Mutants, Compiler Optimisation.
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1 INTRODUCTION

Mutation testing [1], [2] has attracted a lot of interest,
because there is evidence that it is capable of simulating
real faults [3], [4], [5] and subsuming other popular test
adequacy criteria [6], [7], [8], [9]. It can also be used as a
technique for generating test data [10], [11], as well as for
assessing test data quality and can also explore subtle faults
[12], [13] in the presence of fault masking and failed error
propagation [14].

A mutant is a syntactically altered version of the pro-
gram under test. The syntactic alterations are typically
small, and are designed to reflect typical faults that might
reside in the original program. A mutant is said to be killed,
if a test case can be found that distinguishes between the
mutant and the original program. The underlying idea of
mutation testing is that test suites that kill many mutants
will tend to be of higher quality than those that kill fewer. In
this way, mutation testing can be used to assess the quality
of a test suite, and can also be used to help the test case
generation, by guiding the construction of test cases towards
those that kill mutants.

However, at the heart of mutation testing lies a problem
that has been known to be undecidable for more than three
decades [15]: the equivalent mutant problem. That is, mu-
tation testing might produce a mutant that is syntactically
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different from the original, yet semantically identical. In
general, determining whether a syntactic change yields a
semantic difference is undecidable. As a result, the tester
would never know whether he or she has failed to find
a killing test case because the mutant is particularly hard
to kill, yet remains killable (a ‘stubborn’ mutant [16]), or
whether failure to find a killing test case derives from the
fact that the mutant is equivalent.

A related, newly identified problem, is the problem
of mutant duplication. A duplicated mutant is simply a
mutant that is semantically equivalent to some other mu-
tant, although both duplicated mutants maybe semantically
different from the original program. Duplicated mutants
are also a problem for mutation testing, because they may
artificially inflate the apparent mutant killing power of a test
suite; a test case that kills two or more duplicated mutants
is, all else being equal, no better than another test case that
kills only a single non-duplicated mutant.

Techniques such as mutant sampling [17], [18], [19],
higher order mutation [20], [21], [22], and mutant execution
optimisation [23], [24], [25], can be used to reduce the
number of mutants that need to be considered, but not
necessarily the proportion that remain equivalent, nor the
proportion of those that are duplicated.

Although theoretically undecidable, practical techniques
may be able to significantly dent the equivalent and du-
plicate problems by detecting a proportion of equiva-
lent/duplicated mutants. Equivalent mutant detection tech-
niques have been extensively studied since 1979. Nev-
ertheless, until now, no scalable, widely applicable tech-
nique has yet been found. Previous work on the detection
of equivalent mutants has involved complicated program
transformation techniques, which have proved difficult to
scale and, thereby, have remained insufficiently practical
to find implementation in current mutation testing tools
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and techniques. The equivalent mutant problem therefore
remains the single most potent barrier to the wider uptake
and exploitation of the potential power of mutation testing.

In this paper we study Trivial Compiler Equivalence
(TCE) as a simple, fast and widely applicable technique
for detecting equivalent mutants. The paper is an extension
of our previous ICSE conference paper [26], which studied
the application of TCE to the detection of equivalent and
duplicated mutants in the C programming language. The
present paper extends this previous study to also consider
the Java programming language, allowing us to compare
TCE performance on these two widely-used languages. The
extended results further confirm that TCE is a highly effec-
tive and readily applicable technique, with strong evidence
to suggest that it may be even more effective when applied
to Java than what is already known to be when applied to
C.

Specifically, while TCE finds, on average, approximately
one third of the equivalent mutants in C programs, it finds
approximately half of the equivalent mutants in Java. These
new findings for Java are based on the study of a known
equivalent ground truth set, which we have augmented for
this study (and make available for replication and further
study1). We also study the application of TCE to much
larger Java programs, for which no ground truth is available,
reporting results for the total number of equivalent and
duplicated mutants found (using both the standard Java
compiler2 and the SOOT analysis framework3).

Overall, we believe that the findings regarding TCE
are extremely encouraging. It can ameliorate the adverse
effects of the equivalent and duplicated mutant problems
for both C and Java programs by removing such invaluable
mutants (by an average of approximately 10% for Java and
nearly 30% for C) and, as a consequence, reduces the overall
work needed to develop mutation adequate test suites by
approximately 37%, while, at the same time, improving the
accuracy of the mutation score measurement by 0%-18% for
Java and 0%-16% for C (depending on the ratio of the killed
mutants). Furthermore, and fundamental to its success and
importance, TCE is not a complicated technique; it can easily
be implemented and added to any mutation testing study.
It has already been included in the mutation testing tool
MILU (Version 3.2), and we were easily able to incorporate
TCE analysis into the results produced by the C and Java
mutation testing tools PROTEUM [27] and MUJAVA [28].

The rest of the paper is organised as follows: Section 2
presents mutation testing and related approaches. Section 3
details our experiment and the studied research questions,
while, Sections 4 and 5 analyse our results. Our findings
are discussed in Section 6. Finally, the threats to validity
are presented in Sections 7, while Section 8 concludes with
potential directions for future work.

1. http://pages.cs.aueb.gr/∼kintism/papers/tce/ and http:
//www0.cs.ucl.ac.uk/staff/Y.Jia/projects/compiler equivalence/

2. http://www.oracle.com/technetwork/java/index.html
3. http://sable.github.io/soot/

2 BACKGROUND

2.1 Mutation Testing
Mutation testing embeds artificial defects on the programs
under test. These defects are called mutants and they are pro-
duced by simple syntactic rules, e.g., changing a relational
operator from > to ≥. These rules are called mutant opera-
tors. By applying an operator only once, i.e., the defective
program has only one syntactic difference from the original
one, a mutant called a first order mutant is produced. By
making several syntactic changes i.e., applying the opera-
tors multiple times, a higher order mutant is produced. In
this paper we consider only first order mutants. These are
generated by applying the operators at all possible locations
of the program under test, as supported by the 3.2 version
of MILU and version 3 of MUJAVA. Additional information
about the corresponding operators can be found at Section
3.4.

By measuring the ability of the test cases to expose
mutants, an effectiveness measure can be established. Mu-
tants are exposed when their outputs differ from those
of the original program. When a mutant is exposed, it is
termed killed, while in the opposite case, live. Of course,
ideally, equivalent mutants should be removed from the test
effectiveness assessment. Doing so gives the effectiveness
measure called mutation score, i.e., the ratio of the exposed
mutants to the number of the introduced, excluding the
equivalent ones.

2.2 Equivalent Mutants
Early research on mutation testing has demonstrated that
deciding whether a mutant is equivalent is an undecidable
problem [15]. Undecidability of equivalences means that
it is unrealistic to expect all the equivalent mutants to
be removed; the best we can have here is just effective
algorithms that can remove most equivalent mutants. Cur-
rently, a large number of mutants must pass a manual
equivalence inspection [16]. This constitutes a significant
cost. In addition, effort is wasted when testers generate test
cases, either manually or automatically, in attempting to kill
equivalent mutants. Apart from the human effort, there is
a computational cost: since equivalent mutants cannot be
killed, they have to be exercised on the entire test suite,
whereas killable mutants only require the executions until
they are killed.

Fortunately, partial and heuristic solutions exist [31].
However, tackling the equivalent mutant problem is hard.
This is evident by the fact that very few attempts exist.
According to a recent systematic literature review on the
equivalent mutant problem [44], which identified 17 rel-
evant techniques (in 22 articles), the problem is tackled
in three ways. One is to address the problem directly by
detecting some equivalent mutants, while, the other two try
to reduce their effects by avoiding their creation of by sug-
gesting likely non-equivalent ones to help with the manual
analysis process. Following the terminology of Madeyski et
al. [44], we refer to them as the Detect, Avoid and Suggest
approaches, respectively.

Table 1 summarises the current state-of-the-art tech-
niques in chronological order by focussing on the most
recent techniques. Specifically, it records: the publication

http://pages.cs.aueb.gr/~kintism/papers/tce/
http://www0.cs.ucl.ac.uk/staff/Y.Jia/projects/compiler_equivalence/
http://www0.cs.ucl.ac.uk/staff/Y.Jia/projects/compiler_equivalence/
http://www.oracle.com/technetwork/java/index.html
http://sable.github.io/soot/
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TABLE 1: Summary of the related work on equivalent mutants.

Author(s) [Reference] Year Language Largest
Subject

#Eq.
Mutants

Publicly
Av. Tool Category Findings

Baldwin & Sayward [29] 1979 - - - - Detect Compiler optimisation can detect eq. mutants
Acree [30] 1980 Fortran - 25 - Detect Humans make mistakes when they identify eq. mutants
Offutt & Craft [31] 1994 Fortran 52 255 - Detect Compiler optimisation can detect eq. mutants
Offutt & Pan [32], [33] 1996-7 Fortran 29 695 X Detect Constraint-based testing can detect eq. mutants
Voas & McGraw [34] 1997 - - - - Detect Slicing may be helpful in detecting eq. mutants

Hierons et al. [35] 1999 - - - - Detect
/Suggest

Program slicing can be used to detect and assist the
identification of eq. mutants

Harman et al. [36] 2001 - - - - Detect
/Suggest

Dependence analysis can be used to detect and assist the
identification of eq. mutants

Adamopoulos et al. [37] 2004 - - - - Avoid Co-evolution can help in reducing the effects of eq.
mutants

Grun et al. [38] 2009 Java 12,449 8 X Suggest Coverage Impact can be used to classify killable mutants

Schuler et al. [39] 2009 Java 94,902 10 X Suggest Invariants violations can be used to classify killable
mutants

Schuler & Zeller [40], [41] 2010-2 Java 94,902 63 X Suggest Coverage Impact can be used to classify killable mutants
Nica & Wotawa [42] 2012 Java 380 1424 - Detect Constraint-based testing can detect eq. mutants

Kintis & Malevris [43] 2013 Java 25,909 84 - Suggest Mutants belonging to software clones exhibit analogous
behaviour with respect to their equivalence

Madeyski et al. [44] 2014 Java 80,023 207 - Avoid Second order equivalent mutants are significantly less
than the first order ones.

Kintis et al. [45], [46] 2012-4 Java 94,902 89 - Suggest Higher order mutants can be used to classify killable
mutants

Papadakis et al. [47] 2014 C 513 5,589 - Suggest Coverage Impact can be used to classify killable mutants

Kintis & Malevris [48], [49] 2014-5 Java 25,909 165 - Detect Data-flow patterns can be used to detect eq. and partially
eq. mutants

Bardin et al. [50] 2015 C 319 118 X Detect Static analysis techniques, such as Value Analysis and
Weakest Precondition calculus can identify eq. mutants

Papadakis et al. [26] 2015 C 362,769 9,551 X Detect
Compiler optimisations can be used to effectively
automate the eq. mutant and duplicated mutant
detection

This paper - C - Java 362,769 13,455 X Detect
Compiler optimisations can be used to effectively
automate the eq. mutant and duplicated mutant
detection

details, column “Author(s) [Reference]”, the year of the
publication, column “Year”, the studied programming lan-
guage, column “Language”, the size of the largest program
used, column “Largest Subject”, the number of equivalent
mutants studied, column “#Eq. Mutants”, the existence of
an automated publicly available tool, column “Publicly
Av. Tool”, the category of the approach, i.e., detection,
avoidance or suggestion, column “Category” and the main
findings of the publication, column “Findings”. From this
table it becomes evident that very few methods and tools
exist. Regarding the equivalent mutant detection, only two
publicly available tools exist with the largest considered
subject being composed of 319 lines of code. It is noted that
all the “large” subjects, i.e., having more than 1,000 lines
of code, that were used in the previous research, involve a
form of sampling. Mutants are sampled from the studied
projects with no information about the relevant size of the
component/class that these mutants are located. In these
lines, in Table 1 we report the size of the projects that
we consider. It is noted that the purpose of this table is
to summarise the related work on equivalent mutants by
focussing on the most recent advances. Further details on
the subject can be found on the systematic literature review
of Madeyski et al. [44].

Acree [30] studied killable and equivalent mutants, and
found that testers correctly identified equivalent mutants for
approximately 80% of the cases. In 12% of the cases, equiv-
alent mutants were identified as killable and in 8%, killable
mutants were identified as equivalent. Therefore, indicating
that detection techniques, such as the one suggested by the
present paper, not only help in saving resources but also at
reducing the mistakes made by the humans.

The idea of using compiler optimisation techniques to
detect equivalent mutants was suggested by Baldwin and
Sayward [29]. The main intuition behind this technique is
that code optimisation rules, such as those implemented by
compilers, form transformations on equivalent programs.
Thus, when the original program can be transformed by an
optimisation rule to one of its mutants, then, this mutant
is, ipso facto, equivalent. Baldwin and Sayward proposed
adapting 6 compiler optimisation transformations. These
transformations were then studied by Offutt and Craft
[31] who implemented them inside Mothra, a mutation
testing tool for Fortran. They found that on average 45%
of the equivalent mutants can be detected. Our approach
is inspired by this recruitment of compilers research to
assist in equivalent mutant detection. As already discussed
and demonstrated in the prior, conference version of this
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work [26], it is surprisingly effective for the case of the C
programming language. However, we propose a truly sim-
ple (and therefore scalable and directly exploitable) use of
compilers, which remained unexplored. Our TCE instead of
deliberately implementing specialised techniques, it simply
declares equivalences only for those mutants which their
compiled object code is identical to the compiled object
code of the original program. As indicated by our empirical
findings, in Section 6, our approach is impressively effective,
practical and scalable.

Offutt and Pan [32], [33] developed an automatic tech-
nique to detect equivalent mutants based on constraint
solving. This technique uses mathematical constraints to
formulate the killing conditions of the mutants. If these
conditions are infeasible then, the mutants are equivalent.

Nica and Wotawa [42] implemented a similar constraint-
based approach to detect equivalent mutants and demon-
strated that many equivalent mutants can be detected. Voas
and McGraw [34] suggested that program slicing can help
in detecting equivalent mutants. Later, Hierons et al. [35]
showed that amorphous program slicing can be used to
detect equivalent mutants as well. Although potentially
powerful, these techniques suffer from the inherent limita-
tions of the constraint-based and slicing-based techniques.

It is evident that the constraint-based approach, [32],
[33], was assessed on programs consisting of 29 lines of code
at maximum, while, the slicing technique remains unevalu-
ated apart from worked examples. The scalability of these
approaches is inherently constrained by the scalability of
the underlying constraint handling and slicing technology.
Furthermore, a new implementation is required for every
programming language to be considered. By contrast TCE
applies to any language for which a compiler exists and so
is as scalable as the compiler itself.

Kintis and Malevris [48], [49] used data-flow patterns
and showed that a large proportion of equivalent mutants
and partially equivalent mutants, i.e., mutants equivalent
only under specific program paths, form data-flow anoma-
lies. Bardin et al. [50] used static analysis techniques, such
as Value Analysis and Weakest Precondition calculus, to
detect mutants that are equivalent because they cannot be
infected. Their results show that a significant number of
those mutants can be detected. Although promising, these
two methods have only been evaluated with less than
200 equivalent mutant instances and so their effectiveness,
efficiency and practicality remain unknown.

Hierons et al. [35] suggested using program slicing to
reduce the size of the program considered during the equiv-
alence identification. Thus, testers can focus on the code
relevant to the examined mutants. Harman et al. [36] also
suggested using dependence-based analysis as a comple-
mentary method to assist in the detection of equivalent
mutants.

Adamopoulos et al. [37] suggested the use of co-
evolutionary techniques to avoid the creation of equivalent
mutants. In this approach test cases and mutants are simul-
taneously evolved with the aim of producing both high
quality test cases and mutants. However, these previous
approaches have been evaluated only on case studies and
synthetic data so their effectiveness and efficiency remains
unknown.

More recently, several studies sought to measure the
impact of mutant execution. Instead of finding a partial
but exact solution to the problem, as done by the Detect
approaches, they try to classify the mutants to help identify
likely killable ones and likely equivalent ones, based on their
dynamic behavior.

This idea was initially suggested by Grun et al. [38] and
developed by the studies of Schuler et al. [39] and Schuler
and Zeller [40], [41] who found that impact on coverage can
accurately classify killable mutants. Kintis et al. [45], [46]
further develop the approach, using the impact of mutants
on other mutants, i.e., using higher order mutants. Pa-
padakis et al. [47] proposed a mutation testing strategy that
takes advantage of mutant classification. Finally, mutants
belonging to software clones have been shown to exhibit
analogous behaviour with respect to their equivalence [43].
Thus, knowledge about the (non-)equivalence of a portion
of such mutants can be leveraged to analogously classify
other mutants belonging to the same clones.

Apart from the technical differences between TCE and
the existing approaches, as discussed above, there is also
a fundamental difference that is the identification of dupli-
cated mutants. Existing approaches only aim at equivalent
mutants while TCE tackles the general problem of mutant
equivalences.

2.3 Reducing the Cost of Mutation Testing

Mutant sampling has been suggested as a possible way to
reduce the number of mutants. Empirical results demon-
strate that even small samples [18] can be used as cost
effective alternatives to perform mutation testing [17], [19].
Other approaches select mutant operators. Instead of sam-
pling mutants at random, they select mutant operators that
are empirically found to be the most effective. To this end,
Offutt et al. [51] demonstrated that five mutant operators are
almost as effective as the whole set of operators.

More recently, Namin et al. [52] used statistically identi-
fied optimal operator subsets. Other cost reduction methods
involve mutant schemata [23], [53]. This technique works
by parameterizing all the mutants through instrumentation,
i.e., introduce all the mutants into one parameterised pro-
gram. However, apart from the inherent limitations of this
technique [28] and the execution overheads that introduces,
it also makes all the equivalent mutant detection techniques
not applicable.

Other approaches identify redundant mutants that fail
to contribute to the testing process. Kintis et al. [54] defined
the notion of disjoint mutants, i.e., a set of mutants that is
representative of all the others (killing them implies killing
all the others), and found that 9% of all mutants are disjoint.
Ammann et al. defined minimal mutants using the notion
of subsumption [55] and demonstrated that a small set
of mutants, approximately 1.2% subsumes all the others.
Based on these works, Papadakis et al. [56] demonstrated
that redundancy among mutants has a very good chance
(> 60%) to inflate mutation score and lead to biassed results.
Along the same lines, Kurtz et al. [57] analysed the validity
of selective mutation and found that selective mutants score
relatively low with respect to subsuming mutants.
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Kaminski et al. [58], [59] and Just et al. [60] leverage the
suggestions made by Tai [61] on fault-based predicate test-
ing and demonstrated it possible to reduce the redundancy
within the relational and logical operators. Higher order
mutation can also reduce mutant numbers: Sampling [19],
[44] and searching [13], [62], [63] within the space of higher
order mutants both reduce the number of mutants and also
of the equivalent mutants.

3 EXPERIMENTAL STUDY AND SETTINGS

This section details the settings of our experiment. First,
it presents the TCE approach (Section 3.1) and the posed
research questions (Section 3.2). Next, the studied C and
Java programs are described (Section 3.3), along with the
employed mutant operators (Section 3.4), and, finally, the
execution environment (Section 3.5).

3.1 Detecting Mutant Equivalences: the TCE approach

Executable program generation involves several transfor-
mation phases that change the machine code. Different
optimisation transformation techniques result in different
executables. However, when there exist multiple program
versions with identical source code, then there is no point
in differentiating them with test data; it is safe to declare
them as functionally equivalent. TCE realises this idea to
detect mutant equivalences. It declares equivalent any two
program versions with identical machine code. TCE simply
compiles each mutant, comparing its machine code with
that of the original program. Similarly, TCE also detects du-
plicated mutants, by comparing each mutant with the others
residing in the same unit, i.e., function. As the reader will
easily appreciate, the TCE implementation is truly trivial,
hence its name: it is a compile command combined with a
comparison of binaries.

3.2 Research Questions

The mutation testing process is affected by the distorting
effects of the equivalent and duplicated mutants on the
mutation score calculation. Therefore, a natural question
to ask is how effective is the TCE approach in detecting
equivalent and duplicated mutants. This poses our first RQ:
RQ1 (Effectiveness): How effective is the TCE approach in

detecting equivalent and duplicated mutants?
We answer this question by reporting the prevalence of

the equivalent and duplicated mutants detected by the TCE
approach using gcc4 and SOOT5.

To reduce the confounding effects of different compiler
configurations, we apply four and two popular options for
gcc and SOOT on the selected classes/packages, and report
the number of the equivalent and duplicated mutants found.
SOOT does not support multiple levels of optimizations,
thus, we only report its intra-procecural optimisations and
report the equivalent and duplicated mutants found. The
answer to this question also allows the estimation of the
amount of effort that can be saved by the TCE method.

4. https://gcc.gnu.org/
5. http://sable.github.io/soot/

The existing mutant equivalent detection techniques suf-
fer from performance and scalability issues. As a result,
the authors are unaware of any mutation testing system
that includes a proposed equivalent mutant detection. By
contrast, the TCE is static, and can be applied to any
program that can be handled by a compiler. This makes
TCE potentially scalable, but we need additional empirical
evidence to determine the degree to which it scales. Hence,
in the second RQ, we seek to investigate the observed
efficiency and the scalability of the TCE approach:
RQ2 (Efficiency): How efficient and scalable is the TCE

approach?
To demonstrate the scalability, we use selected

classes/packages from 12 large open source projects, 6 for
each studied programming language, and we report the
efficiency of the mutant generation, equivalent mutant de-
tection and duplicated mutant detection processes. For the
case of gcc we also explore the trade-off between the effec-
tiveness and efficiency using different compiler settings.

To decide when it is appropriate to stop the testing
process, testers need to know the mutation score. To this
end, they need to identify equivalent mutants. The TCE
approach improves the approximation by determining such
mutants. However, to what extent? This is investigated in
the next RQ:
RQ3 (Equivalent Mutants) What proportion of the equiva-

lent mutants can be detected? What types of equivalent
mutants can be detected?

To answer RQ3, we need to know the ‘ground truth’:
how many equivalent mutants are there in the subjects stud-
ied? We therefore applied the TCE approach on two bench-
mark sets, one for each studied programming language,
with hand-analysed, ground-truth data on equivalent mu-
tants. The first benchmark6, pertaining to the C test subjects,
includes 990 manually-identified equivalent mutants over
18 small- and medium-sized subjects. The second one 7,
for the Java programs, comprises 196 equivalent mutants
selected over 6 small- and medium-sized subjects, detected
with manual analysis.

We report the proportion of the equivalent mutants
found by TCE. We also analyse and report the types of
the detected equivalent mutants. This information is useful
in the design of complementary equivalent detection tech-
niques.

Mutation testers usually employ subsets of mutant op-
erators. Therefore, knowing about the relationship between
the operators and the equivalent and duplicated mutants
found by TCE is useful in the sense that mutation testers can
better understand the importance of their choices. Hence,
the next RQ examines the extent of the equivalent and
duplicated mutants found per mutant operator:
RQ4 (Impact on Mutant operators): What is the contribu-

tion of each operator to the proportion of equivalent
and duplicated mutants found by TCE?

Among the several factors that can affect TCE is
the program size. Thus, one might expect that in larger
programs, the equivalent mutant identification would be

6. www0.cs.ucl.ac.uk/staff/Y.Jia/projects/equivalent mutants/
7. http://pages.cs.aueb.gr/∼kintism/papers/tce/

https://gcc.gnu.org/
http://sable.github.io/soot/
www0.cs.ucl.ac.uk/staff/Y.Jia/projects/equivalent_mutants/
http://pages.cs.aueb.gr/~kintism/papers/tce/
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harder, thereby impeding TCE’s effectiveness. Hence, we
investigate whether the size of the programs or the number
of mutants they contain correlate with the effectiveness of
the TCE approach.
RQ5 (Size Influence): Does program size or number of mu-

tants affect TCE?
We answer this question by investigating correlations

between the number and proportions of both equivalent
and duplicated mutants found by TCE with the program
and mutant set size.

Finally, since we have results for both C and Java, we
investigate the similarities and differences between the two
sets of programs. Thus we ask:
RQ6 (Differences between programming languages):

What are the similarities and differences between C
and Java with respect to TCE?

To answer this question we compare the results of C and
Java and try to provide insights on the differences between
C and Java as viewed by mutation testing.

3.3 Subject Programs
We used two categories of subject programs for both C and
Java. The first category is composed of 6 large to medium
open source programs. In this set, we chose ‘real-world’
programs that vary in size and application domain. The
second category of programs was taken from the studies of
Yao et al. [16] and Kintis and Malevris [49]. We chose these
sets because they are accompanied by manually-identified
equivalent mutants. The availability of known equivalent
mutants allows us to answer RQ3, because it provides a
‘ground truth’ on the undecidable equivalence question for
a set of subjects. The rest of RQs are answered using the
larger programs.

Regarding the large programs, compiling all their mu-
tants constitutes a time consuming task. This is due the in-
crease of the mutants according to the size of the programs.
It is evident by our reported results, presented in Section
4.2, where it took more than 50 hours to compile only the
mutants involved in the Vim-Eval component (under -O3).
TCE may be scalable in itself, but applying it to all possible
mutants of a large program is clearly infeasible.

Though there are techniques to reduce the number of
mutants, i.e., by sampling, we prefer not to use them in
case we unintentionally bias our sample of mutants. We
prefer to sample, safer, over the code to be mutated in a
systematic way so that we do not pre-exclude any mutants
from our investigation. Therefore, in C we rank their source
files according to their lines of code. Then, we select the
two largest components (source code files). On these two
components we apply mutation to all the functions they
contain. In Java we followed a similar process by ranking
all the project packages according to their size and selected
the three largest classes that could be handled without a
problem by MUJAVA among the four largest packages.

Tables 2 and 3 respectively present the information
about the first category of subject programs for C and
Java. Regarding Table 2 (large C subjects), the Gzip and
Make are GNU utility programs. The first program performs
file compression and the second one builds automatically
executable files from several source code files. The two

largest components of Gzip are the ‘trees’ and ‘gzip’. The
former implements the source representation using variable-
length binary code trees and the later implements the main
command line interface for the Gzip program. The two
largest components of the Make program are ‘main’ and
‘job’. The later implements utilities for managing individual
jobs during the source building processes and the former
implements the command line interface. The GSL (GNU
Scientific Library) is a C/C++ numerical library, which
provides a wide range of common mathematical functions.
Its two largest components are ‘gen’ and ‘blas’. The ‘gen’
implements utilities that compute eigenvalues for gener-
alised vectors and matrices. The ‘blas’ implements BLAS
operations for vectors and dense matrices.

The program MSMTP is an SMTP client for sending and
receiving emails. The components studied are the ‘smtp’
and the ‘msmtp’. The ‘smtp’ implements the coreutilities for
exchanging information with SMTP servers and the ‘msmtp’
component implements the command line interface.

The program Git is a source code management system
and the components selected are the ‘refs’ and ‘diff’. The
‘refs’ implements the ‘reference’ data structure that asso-
ciates history edits with SHA-1 values and the ‘diff’ compo-
nent implements utilities for checking differences between
git objects, for example commits and working trees.

Finally, the program Vim is a configurable text editor. The
selected components, ‘spell’ and ‘eval’, implement utilities
for checking and built-in expression evaluation, respec-
tively.

The first two columns of Table 3 (large Java subjects)
refer to the first category of programs and their size in terms
of source code lines. The domains of the chosen subjects
range from mathematics libraries (Commons-Math) to build
systems (Ant). The application domains of the remaining
subjects appertain to enhancements of Java’s core class
(Commons-Lang), bytecode manipulation (BCEL), date and
time manipulation (Joda-Time) and database applications
(H2). Finally, the size of the studied Java programs ranges
between 16,753 and 104,479 source code lines. The next
two columns of the table present the names of the utilised

TABLE 2: Details of C subjects: ‘LoC’ shows the lines of
code of the project; ‘Comp’ and ‘Comp-Size’ show the com-
ponents considered and their size; ‘Func’ and ‘Muts’ show
the number of functions and mutants of the components.

Program LoC Comp Comp-Size Func Muts

Gzip-1.6 7,323 trees 1,075 14 3,859
gzip 1,744 26 4,402

MSMTP-1.4.32 13,068 smtp 1,914 23 3,479
msmtp 4,096 26 9,967

Make 4.0 32,122 main 3,439 11 2,268
job 3,618 10 2,106

Git-2.1 106,012 refs 3,726 121 6,644
diff 5,024 125 12,855

GSL-1.16 228,863 gen 2,116 20 7,260
blas 2,190 106 3,889

Vim-7.2 362,769 spell 16,181 136 33,188
eval 22,827 374 39,244

Total 750,157 - 67,950 992 129,161
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TABLE 3: Java Test Subjects’ details: ‘LoC’ shows the source code lines of the projects; ‘Package’ and ‘Class-Size’ present
the packages of the considered classes and their size; the ‘Methods’ and ‘Mutants’ columns show the number of methods
and the corresponding number of generated mutants.

Program LoC Package Class-Size Methods Mutants

Commons-Math-1.2 16,753

org.apache.commons.math.ode 951 34 5,868
org.apache.commons.math.analysis 429 16 2,861
org.apache.commons.math.linear 1,294 119 4,962
org.apache.commons.math.distribution 244 32 546

Commons-Lang-2.4 18,168

org.apache.commons.lang 4,008 350 10,371
org.apache.commons.lang.builder 967 130 1,661
org.apache.commons.lang.text 1,915 237 5,983
org.apache.commons.lang.math 1,247 104 3,999

BCEL-5.2 23,726

org.apache.bcel.generic 1,658 145 2,514
org.apache.bcel.classfile 897 112 1,065
org.apache.bcel.verifier.structurals 2,599 351 1,711
org.apache.bcel.util 974 39 1,666

Joda-Time-2.4 28,255

org.joda.time 1,858 302 2,840
org.joda.time.format 1,091 90 2,247
org.joda.time.chrono 487 59 1,723
org.joda.time.tz 353 36 310

H2-1.0.79 72,359

org.h2.jdbc 4,324 476 3,248
org.h2.command 4,707 163 4,666
org.h2.expression 1,130 55 1,774
org.h2.tools 2,177 277 3,058

Ant-1.8.4 104,479

org.apache.tools.ant.taskdefs 2,035 177 1,194
org.apache.tools.ant 2,349 163 1,635
org.apache.tools.ant.types 1,354 91 583
org.apache.tools.util 1,388 110 1,698

Total 263,740 - 40,436 3,668 68,183

packages and the size of the considered classes, respectively.
Finally, the last two columns of the table refer to the number
of methods that belong to the examined classes and the
number of the generated mutants.

The second category of subjects contains 8 C and 6 Java
programs. The C programs have lines of code ranging from
10 to 42 lines, 7 programs with 137 to 564 lines and 3 real-
world programs with 9,564 to 35,545 lines. Additional de-
tails for these programs can be found in the work of Yao et al.
[16]. Details regarding the Java programs are given in Table
4. The first two columns of the table present the examined
programs and the considered methods. Bisect is a simple
program that calculates square roots, Commons-Lang and
Joda-Time are enhancements to java core library and time
manipulation libraries, Pamvotis is a wireless LAN simu-
lator, Triangle is the classic triangle classification program
and XStream is an XML object serialisation framework. The
last two columns of the table present the number of the
generated and manually-identified equivalent mutants. It
is noted that for the purposes of the present study we ex-
tended the original set of programs by manually analysing
approximately 400 additional mutants. Thus, in total the
considered set is composed of 1,542 manually analysed
mutants, out of which 196 are equivalent.

3.4 Mutant Operators

Based on previous research on mutant operator selection,
we identify and use two sets of operators (one for C and
one for Java). The C set of operators was based on the

TABLE 4: Manually-analysed Java test subjects’ details:
‘Program’ and ‘Method’ columns present the examined
programs and the considered methods; ‘Mutants’ shows
the number of the generated mutants and ‘Equivalent’ the
number of the manually-identified equivalent ones.

Program Method Mutants Equivalent
Bisect sqrt 135 17

Commons-Lang capitalize 69 14
wrap 198 19

Joda-Time add 257 37

Pamvotis addNode 318 33
removeNode 55 7

Triangle classify 354 40
XStream decodeName 156 29
TOTAL - 1,542 196

studies of Offutt et al. [51] and Andrews et al. [4], [64] and
it is composed of 10 operators. A detailed description of the
operators is reported in Table 5.

We detail exactly how these operators were applied since
this is an important piece of information that differs from
one tool to another. The ABS and UOI operators were only
applied to numerical variables. The CRCR was applied to
integer and floating numeric constants. No mutant oper-
ator was applied to the variables of the lefthand side of
assignment statements; we only apply them to the right
hand sides. This is an implementation choice that avoids the
generation of duplicated mutants (as any variable on the
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TABLE 5: Mutant operators of MILU.

Name Description
ABS: Absolute Value
Insertion {(e,abs(e)), (e,-abs(e))}

AOR: Arithmetic
Operator Replacement

{(op1, op2) | op1, op2 ∈ {+,-,*,/,%} ∧
op1 6= op2}

LCR: Logical Connec-
tor Replacement

{(op1, op2) | op1, op2 ∈ {&&,||} ∧
op1 6= op2}

ROR: Relational
Operator Replacement

{(op1, op2) | op1, op2 ∈ {>,>=,<,<=,
==,!=} ∧ op1 6= op2}

UOI: Unary Opera-
tor Insertion {(v,--v), (v, v--), (v,++v), (v, v++)}

CRCR: Integer
constant replacement

{(ci, x) | x ∈ {1,−1, 0, ci + 1,
ci − 1,−ci}}

OAAA: Arithmetic
assignment mutation

{(op1, op2) | op1, op2 ∈ {+=,-=,*=,
/=,%=} ∧ op1 6= op2}

OBBN: Bitwise
operator mutation

{(op1, op2) | op1, op2 ∈ {&,|} ∧
op1 6= op2}

OCNG: Logical
context negation {(e,!(e)) | e ∈ {if(e),while(e)}}

SSDL: Statement
Deletion {(s,remove(s))}

lefthand side of assignment statements will be used (and
mutated) later in the program). All operators are applied
recursively to all sub expressions.

With respect to the Java programming language, we
used all the method-level operators of MUJAVA (version
3) [28]. This means that we excluded all the object ori-
ented related mutation operators. Previous research [65]
has shown that object oriented mutation operators produce
a small number of mutants and a rather low number of
equivalent ones and thus, there is no need to investigate this
case. MUJAVA supports a wide range of mutant operators
built based on the experience and studies of Offutt and
colleagues, i.e., [28] and [51].

Table 6 describes the employed mutant operators: the
first column of the table presents their names and the second
one the mutation they impose. In total, 15 mutant operators
were utilised which fall into 6 general categories: arithmetic
operators, relational operators, conditional operators, shift
operators, logical operators, and assignment operators.

We use these operators due to their extensive use in
literature [2]. To generate the C mutants, we use MILU [66],
and for the Java mutants, MUJAVA (version 3).

Further details and the implementation of the tools and
their operators can be found at the webpages of MILU8 and
MUJAVA9.

3.5 Experimental Environment

Two series of experiments were conducted. The first one was
for programs written in C and the second one for programs
written in Java. All the experiments of the C programs
were undertaken on the Microsoft Azure Cloud platform
using a A9 Compute Intensive Instance in the Ubuntu 14.04
operating system with gcc 4.8 compiler. To compile the
mutants we used four configuration options. We compile

8. https://github.com/yuejia/Milu/tree/develop/src/mutators
9. https://cs.gmu.edu/∼offutt/mujava/

TABLE 6: Mutant operators of MUJAVA.

Name Description
AORB: Arithmetic
Operator Replacement
Binary

{(op1, op2) | op1, op2 ∈ {+,-,*,/,%} ∧
op1 6= op2}

AORS: Arithmetic
Operator Replacement
Short-Cut

{(op1, op2) | op1, op2 ∈ {++,--} ∧
op1 6= op2}

AOIU: Arithmetic
Operator Insertion
Unary

{(v,-v)}

AOIS: Arithmetic
Operator Insertion
Short-cut

{(v,--v), (v, v--), (v,++v), (v, v++)}

AODU: Arithmetic
Operator Deletion
Unary

{(+v, v), (-v, v)}

AODS: Arithmetic
Operator Deletion
Short-cut

{(--v, v), (v--, v), (++v, v), (v++, v)}

ROR: Relational
Operator Replacement

{((a op b), false), ((a op b), true),
(op1, op2) | op1, op2 ∈ {>,>=,<,<=,
==,!=} ∧ op1 6= op2}

COR: Conditional
Operator Replacement

{(op1, op2) | op1, op2 ∈ {&&,||,∧ } ∧
op1 6= op2}

COD: Conditional
Operator Deletion {(!cond, cond)}

COI: Conditional
Operator Insertion {(cond, !cond)}

SOR: Shift Operator
Replacement

{(op1, op2) | op1, op2 ∈ {>>,>>>,<<} ∧
op1 6= op2}

LOR: Logical
Operator Replacement

{(op1, op2) | op1, op2 ∈ {&,|,∧ } ∧
op1 6= op2}

LOI: Logical Opera-
tor Insertion {(v,∼v)}

LOD: Logical
Operator Deletion {(∼v, v)}

ASRS: Short-Cut
Assignment Operator
Replacement

{(op1, op2) | op1, op2 ∈ {+=,-=,*=,/=,
%=,&=,|=,∧ =,>>=,>>>=,<<=}∧
op1 6= op2}

with no optimisation settings, denoted as None, and with
the three popular ones, as realised by the gcc compiler,
denoted as -O, -O2 and -O3 . We use the Linux time utility
to measure the CPU execution time of all the involved
processes. To check whether two binaries are equivalent we
use the ‘diff’ utility with the flag ‘--binary’. In short, we use
a gcc -flag’ combined with a ‘diff’.

All the experiments regarding the Java language were
performed on a physical machine running Fedora 22,
equipped with an i7 processor (3.40 GHz, 4 cores) and
16GB of memory. TCE relies on compiler optimisation to
detect mutant equivalences. While in programming lan-
guages such as C or C++ many optimisation options have
been embedded within the language compilers, e.g. gcc,
this does not hold true for the standard Java compiler,
i.e. javac. Despite the fact that javac does not possess
advanced optimisation capabilities at the compilation time,
it is able to detect some mutant equivalences.

In order to successfully apply TCE to Java, compiler
optimisations are required. To this end, we used SOOT
[67], a popular framework for analysing and transform-
ing Java applications. SOOT implements various analysis

https://github.com/yuejia/Milu/tree/develop/src/mutators
https://cs.gmu.edu/~offutt/mujava/
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and transformation procedures.We utilised the -O option
of the tool which performs intra-procedural optimisations.
Such optimisations include the ‘elimination of common sub-
expressions’ and ‘copy and constant propagation’, among
others. As in the case of the C language, we used the
diff command line tool, for the purposes of comparing
the optimised classes.

4 TCE VIA GCC

This section reports the results pertaining to the C program-
ming language. Sections 4.1 and 4.2 respectively present re-
sults regarding the TCE effectiveness and efficiency. Sections
4.3 and 4.4 detail our results regarding the ground truth and
the mutant operators. Finally, Section 4.5 investigates the
impact of program size to TCE.

4.1 gcc: TCE Effectiveness
To assess the effectiveness of the TCE approach, answering
RQ1, we measure the number of the detected equivalent
and duplicated mutants. We also measure the proportions
of these mutants per program, computed as the percentage
of the detected to introduced. When mutants are mutually
equivalent to each other, i.e., they are duplicated, one of
them should be kept, while, the other(s) should be dis-
carded. In our results we only report the number of mutants
that should be discarded.

Table 7 reports our results per program and per consid-
ered optimisation option. Overall, these results indicate that
TCE can detect in total 9,551 equivalent mutants, accounting
for 7.4% of all mutants. TCE also detected 27,163 duplicated
mutants, which account for 21% of all mutants. Overall,
TCE can thus identify and remove approximately 28% of
all mutants as being useless.

Figure 1 depicts the proportions of both equivalent and
duplicated mutants detected per program. The horizontal
axis of the graph is ordered by the size of the components
while the vertical axis records the proportions of mutants
detected. From these results, it is evident that all the sub-
jects have a reasonably high proportion of equivalent and
duplicated mutants. The proportions of equivalent mutants
detected varies from program to program. In the worst case
it is 2%, while in the best, 17%. We observe a small variation
in the proportions of the identified equivalent and dupli-
cated mutants. The only exceptions are the Gsl-Blas and
Gsl-Gen components. In the former case, TCE detects many
equivalent mutants and very few duplicated ones, while, in
the later case, it detects very few equivalent mutants and a
similar to the other programs ratio of duplicated mutants.
This divergence is mainly attributed to the internal structure
and code characteristic of the component.

Finally, Table 7 reveals that, depending on the options
used, the detected equivalences differ. For instance, the -O3
option found on average 84% and 100% of the equivalent
and duplicated mutants that are detected by applying all the
options. Interestingly, with respect to equivalent mutants,
among the different optimisation options, i.e., -O, -O2 and
-O3, there is no clear winner and their behaviour varies be-
tween programs. However, the overall differences between
the options are relatively small. With respect to duplicated
mutants, the results are clear and they show that the best
options are the -O2 and -O3.

4.2 gcc: TCE Efficiency
To assess the efficiency of the TCE approach and answer
RQ2, we report the CPU execution time. Table 8 sum-
marises the execution time of TCE in total, average and
per employed component, using the four studied compiler
settings. The columns ‘Comp.’, ‘Eq.D.’ and ‘D.D.’ record
the execution time with respect to the compilation process,
the equivalent mutant detection and duplicated mutant
detection, per considered compilation option, respectively.

These results reveal that the execution time of the equiv-
alence detection process is reasonably small compared to the
compilation one. For instance, TCE requires on average 22
seconds, for all cases, to detect equivalent mutants, while,
the average compilation cost is 5,942 seconds in the best
case.

A similar case arises when considering the costs for
detecting duplicated mutants. While this is approximately
an order of magnitude higher than the cost of detecting
equivalent mutants, it is still reasonable; 225 seconds, and
no more than 1/30 of the cheapest compilation cost. It is
noted that our approach checks for equivalences only for
the combinations of mutants that are located on the same
function. Therefore, the reported time is analogous to the
number of combinations between the mutants located at
each function of the project and not between the whole
combinations of all project mutants.

Our results show that the compilation time of the -
O3 option is almost 5 times higher than the None option.
However, this is counterbalanced by the improved effec-
tiveness of the option. In this case, the total time spend
for compiling, detecting equivalent and duplicated mutants
is 374,162, 260 and 2,744 seconds, respectively. Therefore,
TCE analyzed 129,161 mutants in 377,166 seconds. This time
accounts for less than 3 seconds per mutant suggesting that
its application is reasonable.

4.3 gcc: Equivalent Mutants
To determine the ratio of detected to all existing equivalent
mutants, we applied TCE to the equivalent mutants iden-
tified by Yao et al. [16], using the accompanying website
data 10. This site is regularly updated, so data may differ
slightly from those previously reported [16]. Additional
details about these data can be found on the website.

Table 9 reports the number and the proportions of equiv-
alent mutants detected by TCE when using the different set-
tings. The results are surprisingly good. They reveal that out

10. www0.cs.ucl.ac.uk/staff/Y.Jia/projects/equivalent mutants/
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Fig. 1: The proportion of equivalent and duplicated mutants
detected by TCE per studied C program.
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TABLE 7: Equivalent and duplicated mutants detected by TCE via gcc. ‘None’, ‘-O’, ‘-O2’ and ‘-O3’ report the fraction
of all identified equivalent mutants that were detected per optimisation flag. ‘#Mutants’ reports the distinct number of
detected mutants by all the options together and ‘% of all Mutants’ reports the percentage of detected to the number of
mutants.

Program None -O -O2 -O3 #Mutants % of all Mutants
Eq. Dup. Eq. Dup. Eq. Dup. Eq. Dup. Eq. Dup. Eq. Dup.

Gzip–Gzip 0.58 0.85 0.92 0.97 0.94 0.99 0.96 1.00 353 942 8% 21%
Gzip–Trees 0.42 0.60 0.73 0.90 0.97 0.99 0.96 1.00 302 910 8% 24%
Vim–Spell 0.33 0.72 0.76 0.92 0.93 1.00 0.87 1.00 2493 7113 8% 21%
Vim–Eval 0.49 0.83 0.88 0.92 0.61 0.99 0.63 1.00 2570 9028 7% 23%
Make–Main 0.28 0.97 0.56 1.00 0.95 0.97 0.95 0.97 236 625 10% 27%
Make–Job 0.47 0.87 0.85 0.95 0.90 0.98 1.00 1.00 101 529 5% 25%
Git–Diff 0.43 0.85 0.85 0.97 0.92 0.99 0.97 1.00 921 2755 7% 21%
Git–Refs 0.42 0.83 0.84 0.96 0.94 0.99 0.97 1.00 602 1282 9% 19%
Msmtp–Msmtp 0.66 0.72 0.95 0.86 0.73 0.97 0.76 1.00 1017 1835 10% 18%
Msmtp–Smtp 0.33 0.79 0.97 0.96 0.96 0.99 0.97 1.00 178 696 5% 20%
Gsl–Blas 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 651 102 17% 3%
Gsl–Gen 0.66 0.93 0.96 0.99 0.97 1.00 0.95 0.99 127 1346 2% 19%
Total 0.49 0.80 0.86 0.94 0.83 0.99 0.84 1.00 9,551 27,163 7% 21%

TABLE 8: Execution time, measured in sec.: compilation ‘Comp.’, equivalent mutant detection ‘Eq.D.’ and duplicated
mutant detection ‘D.D.’.

Optimisation settings for gcc

Program None -O -O2 -O3
Comp. Eq.D. D.D. Comp. Eq.D. D.D. Comp. Eq.D. D.D. Comp. Eq.D. D.D.

sec sec sec sec
Gzip–Trees 269 8 112 532 8 231 747 8 165 1,217 8 183
Msmtp–Smtp 405 7 180 743 7 163 1,085 7 201 1,145 7 197
Gzip–Gzip 496 8 230 941 9 212 1,444 9 236 1,578 9 230
Gsl–Gen 1,352 14 193 2,663 14 215 3,945 15 196 3,988 15 212
Gsl–Blas 814 7 58 1,318 7 53 1,864 7 61 1,914 7 59
Make–Main 322 4 138 654 5 155 994 5 148 1,099 5 139
Make–Job 243 4 112 488 4 93 747 4 89 997 4 133
Git–Refs 2,087 13 243 4,038 14 201 5,878 13 232 10,432 14 226
Msmtp–Msmtp 1,929 21 251 3,801 21 274 6,019 21 218 6,751 21 266
Git–Diff 5,662 27 516 11,015 26 470 17,650 25 446 22,318 26 399
Vim–Spell 20,832 65 348 51,475 65 304 85,313 65 327 142,218 67 335
Vim–Eval 36,890 79 287 81,981 81 266 132,888 77 408 180,505 77 365
Total 71,301 257 2,668 159,649 261 2,637 258,574 256 2,727 374,162 260 2,744
Average 5,942 22 222 13,304 22 220 21,548 21 227 31,180 22 229

of all the existing equivalent mutants, TCE can detect from
9% to 100% (with 30% on the average case) of them. With
respect to the total number of mutants (killable and equiv-
alent ones), the TCE equivalent ones are approximately 7%.
These results are achieved within a few seconds with the
potential to save considerable manual and computational
resources. Together with the previously presented results,
we conclude that TCE is effective and practically applicable
on large real-world programs.

Regarding the types of the equivalent detected mutants,
i.e. second part of RQ3, we recall that equivalent mutants
are equivalent because: a) they reside in unreachable code,
b) it is impossible to affect the program state that pertains
immediately after mutant execution or c) there is no possible
way to propagate the infection they introduce to the pro-
gram output. Interestingly, the equivalent mutants detected
by TCE reside within all of these categories. In particular,

TCE detected 6%, 25% and 45% of the equivalent mutants
caused by a), b), and c), respectively.

4.4 gcc: Mutant Operators

To determine the influence of the mutant operators on
the effectiveness of TCE, answering RQ4, we measure the
number of detected equivalent and duplicated mutants per
operator. We also measure the ratios of detected to intro-
duced mutants by the studied operators. It is noted that
the choice of which mutants should be discarded when
computing the duplicated mutants, can unfairly influence
the reported numbers with respect to the mutant operators
that they belong to. To avoid this, in this section we report
the number and proportions of all the mutants that are
duplicated and not the discarded ones.

Table 10 reports the number and proportions of the
equivalent and duplicated mutants found by TCE per pro-
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TABLE 9: TCE applied to Yao et al. [16] benchmark set:
Number ‘No.’ and proportion ‘%’ of detected equivalent
mutants.

Program None -O -O2 -O3
No. % No. % No. % No. %

Min 0 0% 7 78% 9 100% 9 100%
Bubble 0 0% 2 22% 4 44% 2 22%
Profit 0 0% 24 52% 24 52% 24 52%
Mid 0 0% 14 74% 14 74% 14 74%
Prime 0 0% 2 22% 6 67% 6 67%
Triangle 0 0% 16 40% 16 40% 16 40%
Insert 0 0% 11 58% 7 37% 7 37%
Day 3 21% 6 43% 7 50% 7 50%
Calendar 0 0% 12 39% 14 45% 14 45%
Carsimulator 0 0% 33 75% 33 75% 33 75%
Tcas 7 8% 7 8% 8 9% 8 9%
Defroster 16 11% 20 14% 20 14% 20 14%
Schedule 0 0% 14 29% 15 31% 15 31%
Hashmap 0 0% 18 27% 18 27% 18 27%
Replace 29 13% 29 13% 29 13% 29 13%
Space 17 20% 22 25% 26 30% 27 31%
Flex 8 20% 9 23% 12 30% 12 30%
Make 21 35% 39 65% 39 65% 39 65%
Total 101 10% 285 29% 301 30% 300 30%

gram and operator. These results suggest that on different
programs a similar proportion of equivalent and duplicated
mutants can be detected by TCE. The only exceptions are
the Gsl-Blas and Gsl-Gen components.

Figure 2 depicts the proportions of equivalent and du-
plicated mutants detected per operator. The horizontal axis
follows the presentation order of the operators from Ta-
ble 10, while, the vertical axis records the proportions of
detected mutants. These results reveal that the ABS and
UOI operators introduce at least 15% equivalent mutants
of all that they introduce. They also show that TCE detects
more than 5% of equivalent mutants produced by the ABS,
ROR, UOI and CRCR operators. Regarding the duplicated
mutants, TCE detects large proportions, above 10%, on all
of them but, the ABS, LCR and OAAA. Interestingly, the
LCR operator seems to produce very few equivalent or
duplicated mutants.

In conclusion, our results show that all but the LCR and
OAAA operators produce a relatively high ratio of useless
mutants, i.e., equivalent and duplicated. In practice this
involves a huge overhead that, fortunately, can be saved by
TCE.

4.5 gcc: Program Size and Mutant Equivalences

To answer RQ5, we use the Spearman rank correlation
coefficient ρ. This is a non-parametric statistical test that
measures whether two variables’ ranks are related, i.e., it
assesses the monotonic relationship between the two vari-
ables. The Spearman correlation gives values in the range of
[-1, +1] with 0 indicating no relationship and +1 indicating
a perfect one (-1, also implies a perfect inverse relationship).
In addition to the the correlation coefficient ρ we report the
obtained p-values that represent the chance that we would
observe the ρ value reported, were there, in fact, to be no
correlation.

We found a correlation between the number of mutants
and the number of equivalent mutants detected (ρ = 0.818,
p − value = 0.002). This suggests that more mutants lead
to more equivalent ones. Similarly, a strong correlation
between the number of mutants and the detected duplicated
ones (ρ = 0.930, p − value < 2.2e − 16) was also found.
The correlation between the number of mutants and the
proportion of TCE equivalent and duplicated mutants was
found to be (ρ = −0.091, p−value = 0.783) and (ρ = 0.280,
p − value = 0.379) respectively. These results suggest that
we have no evidence supporting the argument that mutants’
number can have a strong influence on the proportions of
the equivalences detected by TCE.

We also study the relation between the program size
with the number of detected equivalences. We found a
medium to small correlation in case of equivalent mutants
(ρ = 0.692, p− value = 0.016). A slightly lower correlation
was found between the size of program and the number of
duplicated mutants (ρ = 0.650, p − value = 0.026). With
respect to proportions, i.e., correlation between the program
size and the proportion of the detected equivalences, we
found (ρ = −0.035, p − value = 0.921) and (ρ = 0.084,
p−value = 0.800) for the cases of equivalent and duplicated
mutants, which indicate that we have no data supporting
the argument that program size impacts the ratios of the
detected equivalences.

Finally, we found a medium correlation between the size
of program and the whole number of mutants (ρ = 0.671,
p − value = 0.020), which indicates that larger programs
have more mutants than smaller ones. In conclusion, we find
no evidence of any correlation between the ratios of equiv-
alent and duplicated mutants in any of the size indicators.
This means there is no evidence that the proportion goes up
or down as the size of the program or the number of mutants
changes. However there is evidence that the number goes
up with the size, as one would expect. Taken together
based on the studied mutant set, these can be regarded
as evidence suggesting that the number of TCE equivalent
and duplicated mutants is a fairly consistent proportion,
unaffected by the size of the program. These results may
be explained by the fact that the compiler optimisations we
use only apply “locally”, i.e., on the occurrences of code
patterns, and not on the semantic of the entire system.

5 TCE VIA JAVAC AND SOOT

This section details our results for Java. Sections 5.1 and 5.2
respectively present results regarding TCE effectiveness and
Efficiency. Sections 5.3 and 5.4 detail our results regarding
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Fig. 2: The proportion of equivalent and duplicated mutants
detected by TCE per mutant operator in case of C.
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TABLE 10: Number ‘No.’ and proportion ‘%’ of equivalent and duplicated mutants detected by TCE per operator.

Equivalent Mutants

Program
ABS AOR LCR ROR UOI CRCR OAAA OBBN OCNG SSDL

No. % No. % No. % No. % No. % No. % No. % No. % No. % No. %
Gzip–Trees 111 27% 3 0% 0 0% 44 9% 74 9% 39 2% 0 0% 0 0% 1 1% 30 11%
Msmtp–Smtp 43 27% 3 1% 0 0% 7 1% 102 32% 19 1% 0 0% 0 0% 0 0% 4 0%
Gzip–Gzip 42 27% 1 0% 10 16% 37 4% 70 22% 141 6% 0 0% 1 2% 6 2% 45 7%
Gsl–Gen 24 2% 6 0% 0 0% 22 4% 14 21% 59 1% 0 0% 0 – 0 0% 2 0%
Gsl–Blas 0 0% 0 – 0 0% 0 0% 0 – 650 50% 0 – 0 – 0 0% 1 0%
Make–Main 26 59% 26 9% 0 0% 38 10% 14 15% 104 9% 22 26% 0 0% 3 3% 3 1%
Make–Job 22 22% 0 0% 0 0% 16 4% 32 16% 27 2% 0 0% 0 0% 0 0% 4 1%
Git–Refs 131 27% 0 0% 0 0% 19 2% 184 19% 260 8% 0 0% 0 0% 0 0% 8 0%
Msmtp–Msmtp 131 20% 8 3% 0 0% 7 0% 216 17% 645 14% 0 0% 0 0% 0 0% 10 0%
Git–Diff 189 22% 4 0% 0 0% 63 4% 328 19% 327 5% 0 0% 0 0% 0 0% 10 0%
Vim–Spell 832 26% 47 2% 0 0% 476 8% 760 12% 353 3% 9 3% 0 0% 0 0% 16 0%
Vim–Eval 671 32% 8 0% 0 0% 697 7% 836 20% 331 1% 0 0% 0 0% 0 0% 27 0%
Total 2,222 24% 106 1% 10 0% 1,426 6% 2,630 16% 2,955 5% 31 3% 1 0% 10 0% 160 1%

Duplicated Mutants

Program
ABS AOR — LCR — ROR — UOI — CRCR OAAA — OBBN OCNG SSDL

No. % No. % No. % No. % No. % No. % No. % No. % No. % No. %
Gzip–Trees 24 5% 139 42% 2 20% 193 42% 239 29% 738 50% 8 10% 4 80% 44 80% 65 25%
Msmtp–Smtp 6 3% 66 35% 3 6% 108 18% 46 14% 831 50% 0 0% 3 25% 71 63% 67 16%
Gzip–Gzip 8 5% 25 19% 1 1% 178 22% 74 24% 1193 56% 0 0% 17 41% 97 47% 88 14%
Gsl–Gen 28 3% 418 21% 0 0% 88 18% 8 12% 1691 55% 3 3% 0 – 39 33% 53 8%
Gsl–Blas 0 0% 0 – 0 0% 88 5% 0 – 0 0% 0 – 0 – 88 67% 28 4%
Make–Main 0 0% 145 54% 0 0% 90 24% 9 10% 701 64% 0 0% 0 0% 34 41% 24 10%
Make–Job 3 3% 41 66% 2 5% 84 21% 33 16% 636 68% 0 0% 5 31% 41 47% 40 14%
Git–Refs 25 5% 76 46% 4 3% 170 21% 184 19% 1654 56% 0 0% 27 50% 70 24% 61 6%
Msmtp–Msmtp 17 2% 95 43% 7 4% 188 13% 257 20% 2026 45% 13 13% 9 33% 149 35% 300 22%
Git–Diff 35 4% 95 20% 8 4% 357 23% 313 18% 3494 59% 11 18% 47 35% 142 23% 165 11%
Vim–Spell 353 11% 730 32% 16 4% 1888 31% 1306 21% 6809 59% 22 8% 23 27% 533 60% 504 18%
Vim–Eval 124 5% 329 38% 16 2% 2503 28% 1036 24% 10793 62% 1 0% 13 17% 882 61% 430 11%
Total 623 7% 2,159 31% 59 3% 5,935 25% 3,505 21% 30,566 57% 58 7% 148 32% 2,190 49% 1,825 13%

the ground truth and the mutant operators. Finally, section
5.5 investigates the impact of program size on TCE.

5.1 javac and SOOT: TCE Effectiveness

In an analogous manner to the results of Section 4.1, we
present our findings that are pertinent to RQ1, i.e. the
effectiveness of TCE. These results are illustrated in Table
11 and Figure 3.

Table 11 presents the equivalent and duplicated mu-
tants detected by javac and SOOT per test subject. The
’#Mutants’ column, which is divided into the ’Eq.’ and
’Dup’ sub-columns, presents the number of the detected
equivalent and duplicated mutants (per tool). The ’% of
all Mutants’ column records their corresponding proportion
to the generated mutants. From the depicted results, it
is clear that SOOT outperforms javac in both equivalent
and duplicated mutant detection, managing to detect 3,904
equivalent mutants and 3,687 duplicated ones. Thus, code
optimisations implemented in SOOT appear to be superior
to the ones of javac. Furthermore, it should be mentioned
that the mutants detected by SOOT form a superset of the
ones detected by javac. Therefore, we conclude that SOOT
constitutes an appropriate tool for TCE.

It is noted that most Java-to-bytecode compilers mainly
perform runtime optimizations than static ones. Thus, class
files are optimised by the Java virtual machine as they are

interpreted and not at the compilation time. This explains
why the Java stock compiler is infective.

Figure 3 illustrates the proportion of equivalent and
duplicated mutants per test subject. The horizontal axis
presents the corresponding proportions and the vertical
presents the test subjects in ascending order, according to
their size. By examining the figure, it becomes evident that
TCE manages to detect a considerable number of equivalent
and duplicated mutants, ranging between 1% and 18% for
equivalent ones and 2% and 17% for duplicated ones.

To summarise, in the case of Java, TCE managed to
detect 6% of all mutants as equivalent and 5% of them as
duplicated ones.

5.2 javac and SOOT: TCE Efficiency
In this section, we detail the empirical findings pertaining
to TCE’s efficiency for the case of Java. To this end, Table 12
presents the CPU execution time that the equivalent and du-
plicated detection required per test subject and optimisation
tool.

Table 12 is divided into three columns: ’Program’ refers
to the names of test subjects; the ’javac’ column reports
the compilation time (’Comp.’ sub-column), the equivalent
mutant detection time (’Eq.D.’ sub-column) and the dupli-
cated mutant detection time (’D.D.’ sub-column) of TCE
via javac; and, ’SOOT’ presents the corresponding results
in the case of TCE via SOOT. It should be noted that in
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TABLE 11: Equivalent and duplicated mutants detected by TCE via javac and SOOT.

Program
javac SOOT

#Mutants % of all Mutants #Mutants % of all Mutants
Eq. Dup. Eq. Dup. Eq. Dup. Eq. Dup.

org.apache.commons.math.ode 2 63 0% 1% 150 110 3% 2%
org.apache.commons.math.analysis 0 25 0% 1% 192 91 7% 3%
org.apache.commons.math.linear 0 90 0% 2% 82 140 2% 3%
org.apache.commons.math.distribution 0 8 0% 1% 64 14 12% 3%
org.apache.commons.lang 0 645 0% 6% 498 697 5% 7%
org.apache.commons.lang.builder 20 108 1% 7% 84 110 5% 7%
org.apache.commons.lang.text 0 265 0% 4% 364 339 6% 6%
org.apache.commons.lang.math 8 171 0% 4% 260 199 7% 5%
org.apache.bcel.generic 1 92 0% 4% 157 108 6% 4%
org.apache.bcel.classfile 0 27 0% 3% 54 27 5% 3%
org.apache.bcel.verifier.structurals 1 256 0% 15% 29 257 2% 15%
org.apache.bcel.util 0 30 0% 2% 104 35 6% 2%
org.joda.time 5 118 0% 4% 511 129 18% 5%
org.joda.time.format 6 97 0% 4% 156 151 7% 7%
org.joda.time.chrono 0 39 0% 2% 184 75 11% 4%
org.joda.time.tz 2 21 1% 7% 26 25 8% 8%
org.h2.jdbc 11 138 0% 4% 433 150 13% 5%
org.h2.command 30 210 1% 5% 214 240 5% 5%
org.h2.expression 20 124 1% 7% 78 129 4% 7%
org.h2.tools 1 115 0% 4% 134 161 4% 5%
org.apache.tools.ant.taskdefs 14 123 1% 10% 24 127 2% 11%
org.apache.tools.ant 1 157 0% 10% 44 162 3% 10%
org.apache.tools.ant.types 2 100 0% 17% 4 101 1% 17%
org.apache.tools.util 0 101 0% 6% 58 110 3% 6%
Total 124 3,123 0% 5% 3,904 3,687 6% 5%

this column the reported compilation time also includes the
execution time of the tool. Finally, the last two rows of the
table present the total and average time of the examined
analyses.

Regarding equivalent mutant detection, TCE via javac
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Fig. 3: The proportion of equivalent and duplicated mutants
detected by TCE per studied Java program.

required in total 140 seconds to detect 124 equivalent mu-
tants, while, TCE via SOOT required 208 seconds for the
identification of 3,904 equivalent mutants, with an average
of 6 and 9 seconds per examined package, respectively.
Given that the corresponding compilation time is 2,703
seconds for javac and 78,318 seconds (compilation and
optimisation) for SOOT, with an average of 113 and 3,263,
it can be argued that TCE forms a practical approach for
detecting equivalent mutants. Considering the duplicated
mutants, the application of javac detected 3,123 mutants in
13,636 seconds and SOOT detected 3,687 mutants in 19,399
seconds. It is noted that both equivalent and duplicated
mutants that are detected by javac form a subset of those
detected by SOOT. Overall, the presented data suggest that
TCE manages to automatically and safely discard a signifi-
cant number of useless mutants in only a small fraction of
the time, in less than 2 seconds per examined mutant.

The question that is raised here is whether the time
required by TCE is acceptable. While this depends on many
uncontrolled parameters, we would like to underline that
detecting equivalent mutants is a tedious and manual task.
Previous research estimated the time of the manual identifi-
cation of a single equivalent mutant to be approximately 15
minutes [40]. Assuming this is a fair approximation, iden-
tifying the TCE equivalent mutants pure manually would
require 124 × 15 minutes or 111,600 seconds for the case
of javac and 3, 904 × 15 minutes or 3,513,600 seconds
for the case of SOOT. Thus, it can be easily concluded
that the execution cost of TCE is small when compared to
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TABLE 12: Execution time, measured in sec., of equivalent and duplicated mutant detection per considered tool and test
subject.

Program
javac SOOT

Comp. Eq.D. D.D. Comp. & Opt. Eq.D. D.D.
sec sec

org.apache.commons.math.ode 82 11 4,376 5,583 16 7,065
org.apache.commons.math.analysis 27 6 1,277 2,194 8 2,022
org.apache.commons.math.linear 90 9 633 5,060 14 1,029
org.apache.commons.math.distribution 9 2 22 381 2 34
org.apache.commons.lang 995 18 903 13,930 26 1,319
org.apache.commons.lang.builder 45 4 112 1,480 5 184
org.apache.commons.lang.text 152 12 665 6,847 17 960
org.apache.commons.lang.math 57 7 582 3,658 12 923
org.apache.bcel.generic 62 5 185 2,530 7 242
org.apache.bcel.classfile 26 2 54 991 3 77
org.apache.bcel.verifier.structurals 138 4 67 2,673 6 110
org.apache.bcel.util 45 4 484 1,529 5 702
org.joda.time 65 6 102 2,923 8 126
org.joda.time.format 37 5 291 1,997 7 397
org.joda.time.chrono 21 4 266 1,348 5 379
org.joda.time.tz 9 1 12 301 2 17
org.h2.jdbc 165 8 365 4,870 21 424
org.h2.command 349 9 2,011 8,656 14 1,721
org.h2.expression 39 4 179 1,645 5 247
org.h2.tools 98 6 715 3,887 8 934
org.apache.tools.ant.taskdefs 46 3 51 1,367 4 78
org.apache.tools.ant 64 4 91 1,966 5 132
org.apache.tools.ant.types 26 2 21 615 3 33
org.apache.tools.util 56 4 172 1,887 5 244
Total 2,703 140 13,636 78,318 208 19,399
Average 113 6 568 3,263 9 808

the estimated manual effort. In fact, the total cost of TCE
(optimisation phase + detection phase) constitutes only 3%
of the estimated manual effort.

5.3 javac and SOOT: Equivalent Mutants

This section, which answers RQ3, provides insights into
the actual proportion of equivalent mutants that can be
automatically detected by TCE. We perform this evaluation
based on manually-identified sets of such mutants to gives
us a ground truth. Table 13 describes the corresponding
findings per utilised tool. As can be seen, javac failed to
detect equivalent mutants on our ground truth benchmark.
By contrast, SOOT detected 105 out of 196 equivalent mu-
tants, indicating that it can automatically weed out more
than 50% of the studied equivalent mutants. These results
provide strong evidence regarding the TCE’s effectiveness.
Finally, it should be stated that these automatically-detected
equivalent mutants correspond to 7% of all the studied ones,
which is in line with the results of the large-scale experiment
we report in Section 5.1.

A manual analysis of the types of equivalent mutants
that are TCE equivalent reveals that all but one of the
detected mutants belong to the third category, i.e., the
corresponding mutant can be reached and can infect the
program state locally but subsequently fail to propagate the
corrupted state to the observable output. The one mutant

TABLE 13: TCE applied to Java benchmark set: Number
‘No.’ and proportion ‘%’ of detected equivalent mutants.

Method javac SOOT

No. % No. %
sqrt 0 0% 11 65%
capitalize 0 0% 2 14%
wrap 0 0% 12 63%
add 0 0% 22 59%
addNode 0 0% 31 94%
removeNode 0 0% 6 86%
classify 0 0% 21 52%
decodeName 0 0% 0 0%
Total 0 0% 105 54%

not falling into this category is a mutant that can be reached
but not infected.

5.4 javac and SOOT: Mutant Operators

In order to answer RQ4 for Java, this section reports the
contribution of each mutant operator to the detected mu-
tants. More precisely, Table 14 presents the number of the
detected equivalent mutants per operator, along with their
proportion to all the generated mutants by that specific
operator, and Table 15 presents the respective results for the
case of the duplicated mutants. For brevity, we only record
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the cases that the number of detected mutants was higher
than 0 in the studied programs.

By examining Table 14, it becomes clear that TCE (via
SOOT) managed to detect equivalent mutants that belong
to 7 out of the 15 utilised mutant operators, indicating that
it can be effective across a wide range of operators. With
respect to the duplicated mutants discovered, the findings
of Table 15 show that these mutants belong to 8 operators,
corroborating the previous statement.

Figure 4 visualises the proportions of detected mutants
across the corresponding mutant operators. It can be seen
that TCE manages to identify at least 4% of the equivalent
mutants produced by LOR, AODS and AOIS and at least
24% of the duplicated ones generated by ROR and COI.
Again, for brevity reasons we depict only those operators
with higher than 0% detection rates.

It is noted that the TCE equivalences are a special
form of redundancy as they require mutual subsumption
between mutants (mutant a subsumes mutant b and mutant
b subsumes mutant a). This is different from the redundant
mutants studied by Kaminski et al. [59] and Just et al.
[60] which consider non-mutual subsumptions (mutant a
subsumes b and mutant b does not subsumes a). In view of
this, it is normal that the COR operator produces redundant
mutants that are not captured by TCE (results reported
in Tables 14 and 15). Still, a stronger version of the COR
operator may provide more chances for TCE equivalences.

5.5 javac and SOOT: Program Size and Mutant Equiva-
lences

In order to answer RQ5, i.e., whether or not the number
of generated mutants or the program size affects TCE, we
examined the correlation between the program size and
the number and proportions of the detected equivalent
and duplicated mutants. All ρ values, and p-values, were
computed using the Spearman rank correlation test.

Regarding the correlation between the number of mu-
tants and the number of identified equivalent ones, a ρ of
0.786, p − value = 8.536e − 06, was obtained, indicating
a strong correlation. The correlation between the number
of mutants and the proportion of the equivalent ones was
found to be ρ of −0.008, p− value = 0.972.

In the case of duplicated mutants, i.e., correlation be-
tween the number of mutants and the number of duplicated
ones, ρ = 0.657, p − value = 0.001 and ρ = −0.271,
p − value = 0.199 with respect to number and proportions
of duplicated mutants detected. Based on these data, it can
be concluded that the number of equivalent and duplicated
mutants detected by TCE tends to increase as the number
of the generated mutants increases. However, this does
not appear to be the case when considering the detected
proportions.

With respect to the correlation of program size with the
detected equivalent and duplicated mutants, the obtained
results suggest that there is a very weak correlation in the
case of the equivalent mutants (ρ = 0.230, p − value =
0.277) whereas, in the case of the duplicated ones, there
is a strong one, i.e., ρ = 0.797, p − value = 3.081e − 06.
The correlations between program size and proportion of
detected equivalent and duplicated mutants was found to

be ρ = −0.337, p−value = 0.107 and ρ = 0.423, p−value =
0.041. It is noted that this last case, i.e., program size and
duplicated mutants, is the only one where our data show a
correlation.

In conclusion, our data show that an increase in the pro-
gram size is expected to increase the number of equivalent
and duplicated mutants identified by TCE. However, the
proportion of equivalent mutants detected is expected to
be unaffected by the program size, while the proportion of
duplicated ones is affected. Finally, we found a low but
nontrivial correlation between the program size and the
number of generated mutants, i.e., ρ = 0.417, with p-value
= 0.044).

6 DISCUSSION

This section summarise our results and concludes the stated
RQs. It also discusses the practical implications and con-
straints of applying mutation with the use of TCE.

6.1 Results Summary
6.1.1 TCE Effectiveness
Our results suggest that TCE can reduce the total number
of mutants by 11% for Java and 28% for C. In the case of C,
TCE equivalent mutants range from 2% to 17% depending
on the studied program and account for 7.4% of all mutants
on average. In the case of Java, TCE, using Soot, revealed
5.7% equivalent mutants, on average, that range from 1%
to 18%. TCE duplicated mutants range from 3% to 27% and
account for 21.0% on average when considering C, while
for Java, they range from 2% to 17% and they are 5.4% on
average.

6.1.2 TCE Efficiency
The time to detect equivalent and duplicated mutants,
using the diff utility, ranges between programs and it is
on average 22 and 225 seconds for C and 9 and 808 sec-
onds for Java. This indicates that once the mutants have
been compiled/optimised, the equivalence detection comes
‘almost for free’. This is an important finding because it
suggests that TCE can be applied to remove equivalent
and duplicated mutants before the application of other time
consuming cost-reduction methods.

Our results show that the total time spent for compiling,
detecting equivalent and duplicated mutants is 374,162 and
95,222 seconds for C and Java respectively. Thus, a candidate
mutant can be analyzed by TCE in less than 3.0 and 1.5
seconds for C and Java respectively.

6.1.3 Equivalent Mutants
In an attempt to identify the prevalence of TCE equiva-
lent mutants we estimated their ratio, with respect to all
equivalent mutants, based on the studied benchmarks. We
found that approximately 30% and 54% of the benchmark
mutants are trivially equivalent with respect to C and Java.
Here it should be noted that there is a large variation
on the detected ratios among the studied programs. This
is common for both C and Java subjects, indicating that
program characteristics have a strong influence on the TCE
equivalences.



This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2017.2684805, IEEE
Transactions on Software Engineering

16

TABLE 14: Number ‘No.’ and proportion ‘%’ of equivalent mutants detected by TCE per operator.

Program AODU AOIS AOIU AORB AORS ASRS LOR
No. % No. % No. % No. % No. % No. % No. %

org.apache.commons.math.ode 0 0% 148 6% 0 0% 2 0% 0 0% 0 0% 0 0%
org.apache.commons.math.analysis 0 0% 192 13% 0 0% 0 0% 0 0% 0 0% 0 0%
org.apache.commons.math.linear 0 0% 82 3% 0 0% 0 0% 0 0% 0 0% 0 0%
org.apache.commons.math.distribution 0 0% 64 28% 0 0% 0 0% 0 0% 0 0% 0 0%
org.apache.commons.lang 2 5% 494 14% 2 0% 0 0% 0 0% 0 0% 0 0%
org.apache.commons.lang.builder 20 44% 64 12% 0 0% 0 0% 0 0% 0 0% 0 0%
org.apache.commons.lang.text 0 0% 364 14% 0 0% 0 0% 0 0% 0 0% 0 0%
org.apache.commons.lang.math 4 17% 252 17% 4 2% 0 0% 0 0% 0 0% 0 0%
org.apache.bcel.generic 0 0% 156 17% 0 0% 0 0% 0 0% 0 0% 1 25%
org.apache.bcel.classfile 0 0% 54 11% 0 0% 0 0% 0 0% 0 0% 0 0%
org.apache.bcel.verifier.structurals 0 0% 28 10% 0 0% 0 0% 0 0% 0 0% 1 25%
org.apache.bcel.util 0 0% 102 16% 0 0% 0 0% 2 6% 0 0% 0 0%
org.joda.time 0 0% 506 51% 5 1% 0 0% 0 0% 0 0% 0 0%
org.joda.time.format 0 0% 150 19% 6 4% 0 0% 0 0% 0 0% 0 0%
org.joda.time.chrono 0 0% 184 25% 0 0% 0 0% 0 0% 0 0% 0 0%
org.joda.time.tz 0 0% 24 24% 2 8% 0 0% 0 0% 0 0% 0 0%
org.h2.jdbc 0 0% 422 33% 11 3% 0 0% 0 0% 0 0% 0 0%
org.h2.command 0 0% 184 14% 29 5% 1 1% 0 0% 0 0% 0 0%
org.h2.expression 0 0% 58 14% 20 9% 0 0% 0 0% 0 0% 0 0%
org.h2.tools 0 0% 130 10% 2 1% 0 0% 0 0% 2 7% 0 0%
org.apache.tools.ant.taskdefs 0 0% 10 5% 14 19% 0 0% 0 0% 0 0% 0 0%
org.apache.tools.ant 1 100% 42 11% 1 1% 0 0% 0 0% 0 0% 0 0%
org.apache.tools.ant.types 0 0% 2 2% 2 7% 0 0% 0 0% 0 0% 0 0%
org.apache.tools.util 0 0% 58 12% 0 0% 0 0% 0 0% 0 0% 0 0%
Total 27 11% 3,770 15% 98 2% 3 0% 2 0% 2 0% 2 4%

TABLE 15: Number ‘No.’ and proportion ‘%’ of duplicated mutants detected by TCE per operator.

Program AODS AOIS AOIU AORB COD COI ROR SOR
No. % No. % No. % No. % No. % No. % No. % No. %

org.apache.commons.math.ode 0 0% 96 4% 0 0% 24 1% 0 0% 47 24% 47 11% 0 0%
org.apache.commons.math.analysis 0 0% 106 7% 0 0% 0 0% 0 0% 25 31% 25 7% 0 0%
org.apache.commons.math.linear 0 0% 100 4% 0 0% 0 0% 0 0% 90 36% 90 15% 0 0%
org.apache.commons.math.distribution 0 0% 12 5% 0 0% 0 0% 0 0% 8 27% 8 8% 0 0%
org.apache.commons.lang 0 0% 102 3% 0 0% 0 0% 0 0% 643 63% 643 25% 0 0%
org.apache.commons.lang.builder 0 0% 4 1% 0 0% 0 0% 0 0% 108 57% 108 27% 0 0%
org.apache.commons.lang.text 0 0% 206 8% 0 0% 0 0% 0 0% 235 68% 235 21% 0 0%
org.apache.commons.lang.math 0 0% 48 3% 2 1% 0 0% 0 0% 171 56% 171 17% 0 0%
org.apache.bcel.generic 0 0% 32 3% 0 0% 0 0% 0 0% 92 63% 92 24% 0 0%
org.apache.bcel.classfile 0 0% 0 0% 0 0% 0 0% 0 0% 27 37% 27 27% 0 0%
org.apache.bcel.verifier.structurals 0 0% 2 1% 0 0% 0 0% 1 1% 255 77% 256 45% 0 0%
org.apache.bcel.util 0 0% 10 2% 0 0% 2 1% 0 0% 29 37% 29 19% 0 0%
org.joda.time 0 0% 18 2% 0 0% 0 0% 0 0% 118 87% 118 25% 0 0%
org.joda.time.format 0 0% 70 9% 0 0% 0 0% 0 0% 97 61% 97 21% 0 0%
org.joda.time.chrono 0 0% 70 9% 0 0% 0 0% 0 0% 39 71% 39 18% 0 0%
org.joda.time.tz 0 0% 8 8% 0 0% 0 0% 0 0% 20 69% 20 36% 2 33%
org.h2.jdbc 0 0% 24 2% 0 0% 0 0% 0 0% 138 63% 138 30% 0 0%
org.h2.command 1 1% 56 4% 0 0% 8 5% 0 0% 206 44% 206 20% 0 0%
org.h2.expression 0 0% 10 2% 0 0% 0 0% 1 5% 123 59% 124 31% 0 0%
org.h2.tools 0 0% 66 5% 6 4% 0 0% 0 0% 115 52% 115 23% 0 0%
org.apache.tools.ant.taskdefs 0 0% 8 4% 0 0% 0 0% 0 0% 123 44% 123 42% 0 0%
org.apache.tools.ant 0 0% 10 3% 0 0% 0 0% 0 0% 157 48% 157 46% 0 0%
org.apache.tools.ant.types 0 0% 2 2% 0 0% 0 0% 0 0% 100 65% 100 54% 0 0%
org.apache.tools.util 0 0% 21 4% 0 0% 0 0% 0 0% 99 47% 99 20% 0 0%
Total 1 1% 1,081 4% 8 0% 34 1% 2 0% 3,065 56% 3,067 24% 2 4%
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Another important finding regards the causes of mutant
equivalences that are detected by TCE. Our results are
surprising since they show that the majority of detected
mutants are due to failed propagation, i.e, there is no pos-
sible way to propagate the mutant infection to the program
output. This is true for both C and Java. In Java almost all,
99%, of the detected mutants are of this category, while in C
these are 57%. In the case of C, 41% of the detected mutants
fall in the second category, i.e, it is impossible to affect
the program state that pertains immediately after mutant
execution, and 2% to the first one, i.e., mutants reside in
unreachable code.

6.1.4 Mutant Operators
To better understand the nature of TCE mutants we iden-
tified their prevalence according to the considered mutant
operators. Our results suggest that in C the ABS and UOI
operators introduce more than 15% of trivial equivalent
mutants, ROR and CRCR more than 5% and OAAA just
3% while, LCR, OBBN, AOR, OCNG and SSDL introduce
a small fraction, less than 1%. Regarding Java most of
the detected equivalent mutants are due to AOIS, 15%,
and AODU, 11%. Also, LOR and AOIU introduce notable
numbers that respectively account for 4% and 2%. The rest
of the operators introduce none or non-significant numbers.

With respect to duplicated mutants, all operators intro-
duce a large number of such mutants in C. Most of them,
account for more than 7%. Only LCR introduces a smaller
fraction that is 3%. In the case of Java, the situation is
a bit different. Only COI and ROR operators have large
proportions of TCE duplicated mutants. These are 56% and
24% for COI and ROR. AOIS also produces a large number
of duplicated mutants which accounts for 4%. The rest of
the operators introduce none or small numbers.

6.1.5 Program Size and Mutant Equivalences
We measured the correlation between the number of mu-
tants and the size of programs. Our results reveal that
in both cases there is medium level correlation which is
stronger for C, i.e., ρ = 0.671 for C and ρ = 0.417 for
Java. Thus, programs of similar size can vary much in terms
of number of mutants. By measuring the average number
mutants per statement we get 1.90 and 1.69 for C and
Java respectively. Hence, for the programs we studied, we
conclude that C programs have approximately 10% more
mutants and a stronger correlation, between mutants num-
ber and program lines of code, than the Java ones.

With respect to equivalent mutants, our results indicate
a strong correlation with the number of mutants, for both
C and Java, i.e., ρ = 0.818 and ρ = 0.786. This is getting
weaker when considering program size, i.e., ρ = 0.692 for C
and ρ = 0.230 for Java. However, in all cases we found no
evidence indicating that the ratio of the detected equivalent
mutants correlates with the number of mutants. Together
these two results can be regarded as evidence suggesting
that the number of the detected equivalent mutants is a
fairly consistent proportion, unaffected by the size indica-
tors of the program under analysis.

With respect to duplicated mutants, our results suggest
a strong correlation with the number of mutants, for both C
and Java, i.e., ρ = 0.930 and ρ = 0.657. However, both

in C and Java we found no evidence indicating that the
ratio of the duplicated mutants correlates with the number
of mutants. Program size has medium to strong correlation
with the number of TCE duplicated mutants, i.e., ρ = 0.650
and ρ = 0.797 for C and Java. In case of C we found no
evidence indicating that the ratio of the duplicated mutants
correlates with program size. In contrast a medium level
correlation was found in the case of Java, ρ = 0.423.

6.2 Differences between C and Java

Our presentation this far has focused on our results as
found by the two versions of TCE, i.e., for C and Java.
Here we attempt to compare the results of the C with Java
versions, answering RQ6, and highlight commonalities and
differences between them.

One first observation is that TCE detects more equiv-
alences in C than in Java. This can be attributed to the
compiler optimisations implemented in gcc that are way
more advanced than that of Java and SOOT. We took a close
look at the analysis on the detected causes of equivalence
and found that almost all TCE equivalent mutants detected
in Java programs are those that cannot propagate, while,
only the 57% of the C ones are due to the same reason. This
suggests, that there is a 42% difference between the results
of C and Java, mainly due to the lack of Java optimisations.
The average detected ratios are 7.4% and 5.7%, for C and
Java, that reflects the mentioned differences.

Our results demonstrate that equivalent mutants are
more prevalent in C than in Java. This is evident from our
ground truth analysis which revealed that in C the equiva-
lent mutants account for 23%, while, in Java for 12.7% of all
mutants. Additionally, Java has a larger number of trivially
equivalent mutants. This is also shown by our ground truth
analysis, which revealed that 54% of all Java equivalent
mutants are TCE equivalent. The same ratio for C is 30%.
In this result, we should consider our first observation, i.e.,
that 42% of the TCE equivalent mutants cannot be detected
by SOOT due to lack of compiler optimizations, that a poten-
tially high number of Java trivially equivalent mutants exists
but not found by SOOT. Thus, we can easily conclude that
Java programs have considerably less equivalent mutants
than the C ones and at the same time Java programs contain
a much larger proportion of trivially equivalent mutants.

Regarding duplicated mutants, we found TCE dupli-
cated mutants in C are more prevalent than in Java pro-
grams. As our results shown that while in C a large pro-
portion, of 21.0% on average, exists, in Java these mutants
are considerably less and account for 5.4% on average. This
difference is partly attributed to the lack of optimisations in
Java and to language characteristics. Thus, characteristics,
like the distinction of logical and arithmetic operators in
Java, the typed conventions that are stronger in Java than in
C and the use of pointers and arrays make C mutants more
vulnerable to duplication.

Another interesting point is that after removing the TCE
equivalent mutants, a ratio of 5.8% of equivalent mutants
remain in java, while in C the ratio of equivalent mutants
that remain is 16.1%. Considering this observation together
with the one regarding the number of mutants, that are
approximately 10% less in Java than in C, we conclude that,
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Fig. 4: The proportion of equivalent and duplicated mutants
detected by TCE per program studied in case of Java.

based on the programs we studied, mutation analysis in C
is harder than in Java.

The efficiency differences between C and Java in detect-
ing duplicated mutants is believed to be due to the language
differences. Our results suggest that 0.028 sec are required
per C mutant under analysis while 0.28 per Java one. C
binary code tends to be smaller than Java bytecode. While
the differences are not practically significant, these could be
ameliorated by using some form of checksum, as done by
md5 to improve substantially the performance of the diff
comparisons.

Considering other parameters, like the tools and opera-
tor sets used, could also lead to the differences in C and Java
results. While, in C we have 10 operators and in Java 15,
this difference is more conventional than actual. It is noted
that the CRCR operator corresponds to many Java operators
mainly due to the language differences, i.e. in C there are
only arithmetic values while in Java logical operations are
strictly of boolean types. Only two C operators, the ABS
and SDL, are only partially implemented in Java; ABS is
partially implemented by AODU and SDL by the various
deletion operators like the COD. Three Java operators, SOR,
AODS, and AORS, are not implemented in C.

Comparing individual operators, C-ABS produces 24%
of TCE equivalent mutants while Java-AODU 11%. Sim-
ilarly, C-UOI 16% while Java-AOIS 15%. Interestingly, C-
ROR, C-CRCR and C-OAAA account for 6%, 5% and 3%
respectively while their Java version for 0%. With respect to
duplicated mutants, C-ROR produces 25% while the Java-
ROR 24%. C-OCNG produces 49% and the Java-COI 56%.
C-UOI produces 21% and the Java-AOIS 4%. All other C
operators introduce many duplicated mutants not detected
by the related Java ones. A manual inspection of the de-
tected C mutants suggests that most of these mutants are
due to a failed infection, i.e., mutant execution cannot result
in a corrupted program state. As shown by our results, Java
optimizations are ineffective for these cases and hence we
get a reduced effectiveness.

6.3 Implications for Research Studies

Our results have direct implications for research studies: the
application of TCE can improve the accuracy of a study’s
results when no manual analysis of equivalent mutants have
been performed. To better understand these implications,
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Fig. 5: Mutation score improvements by TCE, when no
manual analysis of equivalent mutants has been performed,
e.g. in large-scale experiments.

Figure 5 illustrates the range in which TCE can change the
resulting mutation scores in the case of Java (left part of
the figure) and C (right part of the figure), when assuming
that our results are generalisable. Both parts present the
mutation scores with no manual analysis (line “traditional”)
and the improved mutation scores that could be obtained
by applying TCE. We report the minimum and maximum
number of detected equivalent mutants (lines “TCE min”
and “TCE max”) to better reflect the impact of TCE. Note
that the minimum and maximum values are based on the
results of our large-scale experiment (see also Sections 4.1
and 5.1). By examining the figures, it can be seen that TCE
can improve the accuracy of the obtained mutation scores.
More precisely, in the case of Java, this improvement ranges
between 0%-18% and, in the case of C, it ranges between
0%-16%.

While these results are only illustrative and have to be
treated with a great deal of caution, they provide evidence
that research studies will benefit from the application of
TCE, by automatically improving the accuracy of the re-
sults reported. Consider for instance a study that compares
two test generation methods, say methods X and Z which
achieve a mutation score (without the analysis of equiva-
lent mutants) of 60% and 67% respectively, and the study
concludes that Z is better because it manages to achieve a
better mutation score of 67% with an improvement of 7%
over the previous method. TCE can be used to improve
the accuracy of the study’s results: by applying TCE, the
mutation score of X will range between 61% and 73% and
the one of Z, between 68% and 82%. Thus, the application
of TCE will result in more accurate mutation scores and will
potentially reveal a greater difference, of 9%, between X and
Z, improving the empirical evidence of Z’s superiority.

6.4 Practical Implications
Practitioners use test criteria to develop test suites and to
assess the level of test thoroughness. Thus, in practice, TCE
affects the effort needed (required work) to develop test
suites and the ability of the criterion to accurately measure
the effectiveness of the test suites. This section investigates
these two practical implications of TCE by examining its
impact on the work required, when generating mutation
adequate test suites, and by examining the improvements it
makes when measuring the mutation score.
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TABLE 16: TCE applied to Siemens suite and PROTEUM
mutants (benchmark set by Papadakis et al. [47]): Number
‘No.’ and proportion ‘%’ of detected equivalent mutants.

Program Mutants Killable Equivalent Duplicated
No. % No. %

Replace 10,694 8,572 918 8.58% 2431 22.73%
TCAS 2,872 2,357 156 5.43% 482 16.78%
TotInfo 6,411 5,839 177 2.76% 1422 22.18%
Schedule 2,107 1,769 143 6.79% 527 25.01%
Schedule2 2,594 2,068 229 8.83% 535 20.62%
Printtokens 4,266 3,541 295 6.92% 1139 26.70%
Printtokens2 4,574 3,783 377 8.24% 1534 33.54%

To reliably investigate both the required work and the
improvements of TCE we need to know which mutants are
equivalent. We also need to have multiple test suites of
various levels of test thoroughness, i.e., with low and high
mutation scores. The benchmark set of Yao et al., which
we use to answer RQ3 (for C programs), is unfortunately
short on both of the above two requirements. Thus, we
used the benchmark of Papadakis et al. [47], which is an
extension of the famous Siemens suite [68] and contains
manually augmented test suites (mutation adequate) and
analysed mutants. This benchmark was constructed using:
a) the PROTEUM11 mutation testing tool to generate mutants,
b) manual analysis to characterise these mutants as killable
or equivalent and c) manual analysis to augment the test
suites (generate tests that kill the identified killable mutants)
[47]. In the case of Java, we used the mutation adequate test
suites, which we generated when analysing the mutants of
the ground truth set (used to answer RQ3).

A summary of the mutants produced by PROTEUM,
when applied to the Siemens suite and the results of TCE
(using the -O option) are given in Table 16. From these data,
it becomes evident that a non-trivial number of mutants has
been detected by TCE. The numbers of the TCE equivalent
mutants account for 30% - 48% (41% on average) of all
the existing equivalent mutants. Interestingly, the results are
very similar to those reported in our previous analysis (ap-
proximately 6.9% and 24% of all the PROTEUM mutants are
TCE equivalent and duplicated) and thus, we are confident
that they are representative.

6.4.1 Practical Implications: Required Work

To measure the manual effort involved when performing
mutation testing, we adopt the model used by the recent
study of Kurtz et al. [57]. Thus, we define work as “the
number of mutants that are examined by the engineer”, or
equally, “the sum of the number of tests written to kill all
non-equivalent mutants and the number of equivalent mu-
tants identified” [57]. This metric in essence approximates
the manual effort that a tester needs to perform when doing
mutation testing.

Equation 1 presents the work model. In order to com-
pare the results across different programs, we normalise
the recorded work by dividing with the overall required
work, per subject. The corresponding formula is presented
in Equation 2.

11. We used the version 2.0 of the Proteum/IM tool [27].

work = |testCases|+ |EquivalentMutants| (1)

normalised work =
|testCases|+ |EquivalentMuts|

OverallWorkRequired
(2)

Algorithm 1 presents the procedure followed to calculate
work, as suggested by Kurtz et al. [57]. First, a mutant is
randomly selected from the generated set of mutants of the
program under test. Next, if the mutant is equivalent, the
work is increased by one and the process is repeated. If
the mutant is killable, a test case that kills this mutant is
randomly selected, the value of work is increased by one
and the other mutants that can be killed by this test case are
marked as killed. This process continues until every killable
mutant of the considered mutants is selected/killed.

Algorithm 1 Calculating the work metric.

Let muts represent the program’s generated mutants
Let tcs represent the program’s mutation test suite

1: function WORKCALCULATION(muts, tcs)
2: work ← 0
3: while ∃ killable mutant ∈ muts do
4: mut←SELECTRANDOMALIVEMUTANT(muts)
5: if ISEQUIVALENT(mut) then
6: work ← work + 1
7: CONTINUE
8: end if
9: killing tc←SELECTRANDKILLINGTC(mut,tcs)

10: work ← work + 1
11: UPDATEKILLEDMUTANTS(killing tc, muts)
12: end while
13: return work
14: end function

As can be seen from the algorithm, it requires two inputs:
a mutant set and a set of mutation adequate test cases.
Thus, we calculate the work based on manually analysed
test subjects. To avoid any bias from the selection process,
we repeated the experiment 100 times.

Figures 6 and 7 illustrate the results obtained for both
programming languages. These figures plot the normalised
work (x-axis) against the subsuming mutation score [56]
(MS∗, y-axis) realised at each step of Algorithm 1 with
and without the application of TCE (denoted by the “TCE”
and “Traditional” lines respectively) per test subject and
programming language. Following the process of Kurtz et al.
[57], we used the subsuming mutation score as effectiveness
measurement. This measurement avoids the inflation effects
caused by redundant mutants [56], [57].

By examining Figure 6, it can be seen that TCE manages
to substantially reduce the work required to achieve a given
test effectiveness level: for instance, in the case of Joda-
Time, by applying TCE, the work required to achieve a 70%
subsuming mutation score is reduced by 11% compared
to the application of mutation without TCE, this reduc-
tion increases to approximately 20% when the subsuming
mutation score reaches 80% and to 30% when the score
reaches 90%; finally, at the 100% effectiveness level, TCE
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Fig. 6: Work required for different effectiveness levels with
and without the application of TCE in the case of Java.

realises a 49% work reduction. This trend, i.e., the increase
of the work reduction as the subsuming mutation score
increases is present in most Java subjects12. This fact can
be justified by TCE’s equivalent mutant detection which, in
turn, gives practitioners a higher chance of selecting killable
mutants than equivalent ones, as the application of mutation
progresses. Regarding the results for C depicted in Figure 7,
it can be seen that analogous conclusions can be drawn.

To better portray TCE’s implications for work, Figure 8
presents the overall work reduction when developing muta-

12. XStream is a clear outlier but it should be mentioned that it is the
only program for which TCE did not detect any equivalent mutant.
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Fig. 7: Work required for different effectiveness levels with
and without the application of TCE in the case of C.

tion adequate test suites per test subject and programming
language. It can be seen that the application of TCE realises
a work reduction between 0% and 51%, with an average of
37%, in the case of Java and a work reduction that ranges
between 28% and 47%, with an average of 37%, in the case of
C. These results suggest that the work of an engineer aiming
at creating mutation adequate test suites can be substantially
reduced by the application of TCE.

6.4.2 Practical Implications: Mutation Score Improvement
This section investigates how the use of TCE improves the
accuracy of the mutation score measurement. Consider the
following example: an engineer applies mutation to a test
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Fig. 8: Overall Work Reduction after the application of TCE
per test subject and programming language.

subject based on the available test cases and obtains a value
x of mutation score; the question that is raised here is
how much does the x score differ from the true mutation
score, i.e., the score computed by removing the equivalent
mutants?

We calculate the error of the measurement by comparing
the true mutation score with the obtained one (with and
without applying TCE). Equation 3 details the error of
the computation. This metric quantifies the distance of our
metric from the true one. Our results are depicted in Figures
9 and 10 for Java and C, respectively. The y-axis of the
figures refers to the aforementioned error and the x-axis to
the effectiveness levels denoted by the subsuming mutation
score.

Error = True MS −Obtained MS (3)

By examining Figures 9 and 10, it can be seen that
the application of TCE results in a much lower error than
calculating the mutation score without its application in
most test subjects. For instance, in the case of the wrap
method of the Commons test subject, at the 75% subsuming
mutation score, the error in the mutation score’s calculation
is 9% without the application of TCE; this error is reduced
to 4% when TCE is applied; this difference remain approx-
imately the same until the 100% subsuming mutation score
is reached. Overall, in the case of Java, TCE reduces the
calculation error of the mutation score by 1%-10%. In the
case of C, we find analogous results, with the calculation
error reduction ranging between 0% and 4%.
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Fig. 9: Mutation score improvement after the application of
TCE in the case of Java.

6.5 Application constraints

The proposed technique is solely based on the use of compil-
ers and their optimisation options, thereby avoiding the sev-
eral limitations of other methods and tools, e.g. applicability
and scalability. It does not require any sophisticated source
code analysis techniques or any expensive test executions.
Thus, it can be directly applied to real-world systems and
can be easily incorporated within mutation testing tools.

Interestingly, the detected mutant equivalences are
partly dependent on the compiler options used. Although
it is rather unlikely that equivalent mutants detected by one
compiler option are not equivalent according to another, to
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Fig. 10: Mutation score improvement after the application of
TCE in the case of C.

be absolutely sure, beyond any doubt that TCE guarantees
equivalence, we need to know which compiler settings
are going to be used in the deployment environment. No
previous research takes into account the particular compiler
settings, but since we are using TCE, this cannot be ignored.
All previous work implicitly assumes that there is only one
compiler option, but actually there are as many options
as the actual settings used by the deployed programs.
When the deployed-code compiler settings are known, TCE
can exploit this information. When they are unknown at
mutation test time, we can investigate with a reasonable
sample, checking for variance in equivalence behaviour.
We investigated this issue by exploring the main gcc and

SOOT settings covering a wide range of optimisation options
and found that all of them can be used to detect mutant
equivalences (some are more effective than others of course).

We also explored the trade off between effectiveness
and efficiency using different settings. Our results suggest
that the -O and -O2 options are reasonably good, because
they consume less compilation time than the -O3 option.
However, none of them is superior to the others in detecting
equivalent mutants. Here it should be noted that there are
many more optimisation options in the modern compilers,
there might exist some combinations of them that can de-
tect faster or more mutant equivalences. Thus, our future
research is directed towards identifying the options that fit
best to TCE. Detailed information about the performed op-
timizations can be found in the gcc13 and SOOT 14websites.

7 THREATS TO VALIDITY

As it is usual in software engineering experiments, our
subjects might not be representative. It is also possible that
they might not hold for complete system analysis (as we
only analysed sampled components of the large programs).
To ameliorate this issue, we selected 12 real-world programs
of varying size and application domain, 6 written in C and
6 written in Java, several orders of magnitude larger than
those used in previous equivalent mutant detection studies.
We also performed an additional evaluation using different
sets of programs, composed of 31 manually-analysed bench-
mark subjects, taken from the literature. To further cater for
this issue, we draw attention to strongly observed effects
and present our results as ranges of expected values.

The evaluation of our approach resulted in analogous
findings in all studied sets. With reference to the C test
subjects, it detected approximately 7.4% of all the mutants as
equivalent ones for the large-scale experiment, and 7.2% and
6.9% of the mutants of the manually-analysed test subjects
(for the Yao et al. [16] and Papadakis et al. benchmarks
[47]), on average. In the case of Java, it identified 5.7%
and 6.8%, accordingly. Regarding the range of the results
(range between worst and best cases), a similar picture
appears. Thus, we are confident that TCE can eliminate a
considerable number of equivalences.

Additionally, our results are in line with those reported
in the literature15 providing confidence that they are realis-
tic. We studied the mutants of the C and Java languages and
TCE implemented using gcc and SOOT. Therefore, some
of our results might be a realisation of independent un-
controlled variables, such as the sample size, sample selec-
tion procedure (excluding classes not handled by MUJAVA),
programs’ internal characteristics, used software platforms
and tools’ operation. Therefore, it is important to note that
all our results form empirical observations that might not
hold in the general case. However, our findings fit intuition
and rely on the foundations set by previous studies [31].
Furthermore, we control the major factors that we believe

13. https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
14. https://ssebuild.cased.de/nightly/soot/doc/soot options.htm
15. Offutt and Pan [33] reported that 9% of all the mutants are

equivalent. Delamaro et al. [69] found 12% , Kintis et al. [46], Schuler
and Zeller [40] 7%-8%, Papadakis et al. [47] 17%, Yao et al. [16] 23% and
Madeyski et al. [44] 4%-39%.

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://ssebuild.cased.de/nightly/soot/doc/soot_options.htm
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can influence our results. Additional studies are needed to
determine what influences the performance of TCE and its
practical use on different languages and compiler optimisa-
tion techniques.

Other threats are due to the use of software systems.
For instance, the gcc compiler or the SOOT optimisation
framework may have defects. However, these systems are
heavily tested and deployed. Thus, it is unlikely that the
remaining defects would influence our results to a great
extent. Implementation defects of MILU, MUJAVA and PRO-
TEUM may also have an influence. To reduce this threat we
carefully checked their results. However, we consider this
as a minor threat since all the used tools have been used
by several authors in recent studies, e.g., [6], [57], [70], [71],
[72], independently of us. Furthermore, we utilised three
equivalent mutant benchmark sets which were entirely built
by hand. These results served as a ‘sanity check’ to reduce
the threat to validity.

Our results might be affected by our choice of mutant
operators. As shown by other studies [73], [74] it is also
possible that the realisation of the mutant operators by
the employed tools may particularly affect the comparison
between C and Java. To mitigate this threat, we detailed
exactly how the operators supported by the used tools
are realised (Tables 5 and 6) and analysed the common C
and Java operators. Based on these lines we draw some
conclusions. Overall, we used a wide range of 75 mutant
operators (realised by PROTEUM) and all the popular oper-
ators (included in most existing mutation testing tools and
those empirically found to correlate with fault detection).
In all cases we found large numbers of equivalences, which
have a major impact on the application of mutation testing.

The use of the equivalent mutants’ benchmarks may also
pose another threat. This is due to the performed manual
analysis: some killable mutants may have been mistakenly
identified as equivalent. However, these studies were per-
formed independently of the present one and hence, it is
not likely that this kind of mistakes coincidentally match
the results of TCE. Additionally, it is equally possible that
such mistakes have also led to the underestimation of TCE’s
effectiveness.

Finally, all our subjects, tools and data are available
in the accompanied website of the present paper16. This
helps reducing all the above-mentioned threats [75] since
independent researchers can check, replicate and analyse
our findings.

8 CONCLUSION AND FUTURE WORK

We have presented the results of an extensive empirical
analysis of the ability of Trivial Compiler Equivalence (TCE)
to detect both equivalent and duplicated mutants in the C
and Java programming languages.

We have conducted an empirical study of TCE on 25
C and 6 Java benchmark systems, for which the programs
under study are sufficiently small for their equivalent mu-
tants to be determined manually. These systems provided
us with the ground truth against which we can empirically
assess the equivalent mutant detection power of TCE. We

16. http://pages.cs.aueb.gr/∼kintism/papers/tce/

augmented this study with a much larger study for which
no ground truth is possible. In total, we have experimented
with over 1 million lines of code, consisting of the 31 smaller
benchmark systems, together with 6 larger Java systems
(with a total of 263,740 LoC) and 6 larger C systems (with a
total of 750,157 LoC).

Overall, we find that for both C and Java, TCE is a
useful, fast and widely-applicable technique that can de-
tect between 17%-100% (30% on average) of C language
equivalent mutants, and 0%-94% (54% on average) of Java
equivalent mutants (for the ground truth set). Furthermore,
over all mutants studied in all large real-world programs,
the detection of trivially equivalent and trivially duplicated
mutants was found to reduce the total number of mutants
by 5%-23% for Java and 20%-37% for C, which accounts for
11% and 28% on average. These achievements imply that
a practitioner who applies mutation testing and is using
TCE will spend 0%-51% and 28%-47% less manual effort
in the case of Java and for C than without using it. TCE also
improves the accuracy of the mutation score measurement
by 1%-10% and 0%-4% for Java and C. Thus, future research
should integrate compiler optimisations within mutation
testing tools in order to avoid any generation of such
trivial mutants and future research studies should consider
applying TCE to reap the benefit of the technique.

Our results revealed interesting findings that suggest
topics for future work on mutation-based analysis of the
semantic differences between programming languages. For
example, it is intriguing that a larger proportion of Java’s
equivalent mutants were found to be detectable using TCE
than for C. Furthermore, if the proportion of equivalent
mutants from the ground truth study is similar to that for
mutants overall, then it would appear that the Java language
suffers significantly less from the equivalent mutant prob-
lem than the C language does.

One might conjecture that this is related to the relatively
small size of Java methods when compared to the size of
C functions. Alternative conjectures might revolve around
the differing semantic features of these two languages (and
the consequent mutation operators that are applicable). Of
course, since we have insufficient data to make scientifically
reliable statements on these conjectures, we have refrained
from making any claims in the present paper and leave
them as just that; conjectures. Nevertheless, our results
suggest that future work might use TCE as one approach
to tackle such conjectures, potentially leading to a better
understanding of the difference between programming lan-
guage semantics, based on mutation analysis.
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