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Abstract8

Ocean circulation modeling requires parameterizations of sub-grid scale processes, which in turn9

involves two separate issues. First, the parameterization should mirror the effect of important10

sub-grid dynamics and second, constants and boundary conditions as required by the parameteri-11

zation must be determined. In modern ocean circulation modeling, many parameterizations take12

the form of viscous operators with poorly known coefficients, and the boundary conditions options13

are free-slip, partial-slip or no-slip, suitably adjusted for the order of the operator. The extent to14

which viscous operators are dynamically apt is unclear and there is virtually no dynamical guid-15

ance on how to choose between the boundary conditions. Often the decision about the suitability of16

the parameterizations and the boundary conditions is made based on qualitative characteristics of17

the solution, which is somewhat subjective. Here, a dynamical boundary layer model is developed18

that explicitly determines the boundary potential vorticity fluxes resulting from the sub-grid scale19

interactions of the resolved flow with the boundaries. When applied to a quasi-geostrophic model,20

comparisons of model evolution with high resolution primitive equation simulations are favorable.21

The recipe outlined here, while far from a complete parameterization of boundary dynamics, rep-22

resents a step towards resolving the issues currently surrounding sub-grid scale parameterization.23

1
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The results also argue that boundary dynamics naturally dissipate balanced energy and are likely24

to represent a principal means by which the oceanic mesoscale energy budget is balanced.25

2

7



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

1. Introduction26

Ocean circulation models employ sub-gridscale parameterizations often represented in the mo-27

mentum equations as viscous-like operators where the order of the operator can be higher than28

second. While there are good numerical reasons for this choice, there is no real dynamical justifi-29

cation for it. Poorly known parameters are involved in them and, perhaps even more importantly,30

several different lateral boundary condition choices are available for them. It is a matter of well-31

known numerical experience that the nature of mature model circulation is quite sensitive to the32

sub-gridscale details, affecting such important features as Gulf Stream separation (Bryan et al.33

(2006), Schoonover et al. (2017)) . Indeed, the choices for parameter values and boundary con-34

ditions are often made based on which combination results in qualitative model features, such as35

Gulf Stream separation, that are most realistic. Guidance in sub-gridscale parameterization from36

dynamical considerations would be of great value, but this is an area in which progress has been37

slow. The purpose of this paper is to contribute to this topic through examination of a category of38

boundary mechanics that results in a viscous-like control on interior flows. In contrast to existing39

parameterizations, the results are relatively insensitive to details of the implementation. We sug-40

gest that the approach taken here is a step towards a more complete dynamically based prescription41

for interior-boundary interactions. A second result is that boundary dynamics are likely to be a42

significant sink of interior mesoscale energy.43

a. Background44

The problem of parameterization and boundary condition choices in ocean circulation models45

arose with the earliest dynamical circulation models. Stommel (1948) avoided lateral bound-46

ary conditions by the use of a bottom drag; Munk (1950) with a frictional operator used no-slip47

boundary conditions. In both cases, the parameterizations and boundary conditions were central48

3
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to the solutions so obtained. The first attempts at numerical circulation modeling were based in49

quasi-geostrophic (qg) dynamics and a variety of viscous operators and boundary condition com-50

binations were attempted. A clear demonstration of the solution dependence on the choice of51

either partial slip or no-slip appears in Haidvogel et al. (1992). While the no-flux boundary condi-52

tion is appropriate for the flow normal to the boundary, the physically suggested no-slip boundary53

condition on the tangential flow is less clear due to model discretization (Adcroft and Marshall54

(1998)). The manner in which the free-slip/no-slip choice affects the interior in realistic models55

with irregular coastlines is also an issue (Adcroft and Marshall (1998)).56

Most modern ocean simulations are based on the primitive equations which, while dynamically57

richer than qg, still exhibit a strong dependence on boundary interactions. Bryan et al. (2006)58

systematically investigated parameterization and resolution sensitivities of a North Atlantic circu-59

lation model and illustrated the dependency of Gulf Stream separation to them. Here the type of60

boundary condition was held fixed (they employed free-slip), however the values and grid-scalings61

of the viscous coefficients result in vastly different behaviors. The effects, being centered on Gulf62

Stream separation, demonstrate the importance of both the explicit boundary condition and the63

amplitude of the various parameters.64

Most modern circulation models employ a combination of second (Laplacian) and higher order65

sub-grid scale parameterizations with parameter values tuned to provide a circulation close to that66

of the real ocean (see Chassignet and Garraffo (2001) and Madec (2006)). While the results are67

often quite pleasing according to this metric, it is recognized that there is a real need for a better68

dynamical understanding of boundary physics in order to remove some of this ambiguity.69

The model developed in this paper is offered as a step in this direction. The analysis is strongly70

rooted in qg dynamics, in which the most significant shortcoming of the boundaries relative to71

the real ocean is the restriction to vertical walls. However, the physics that arise involve interior72

4
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flow interaction with boundary waves and, as such, clear dynamical analogs exist with wave types73

belonging to more complicated topography and sloping boundaries. In addition, favorable compar-74

isons with primitive equation results suggest that the involved dynamics transcend qg parameteric75

limitations. We propose that qg has in this case illuminated processes relevant to the primitive76

equations, as it has done frequently in other past settings, such as eddy dynamics. In the present77

setting, it is connections between small scale boundary dynamics and the interior balanced flow78

that have been captured in the dynamical boundary layer model (DBM) appended to the interior79

equations. This study builds on Dewar et al. (2011) where the boundary dynamics were explored80

in isolation from their feedback onto the interior. The present study seeks to close the problem by81

properly coupling the DBM and the interior so that they evolve simultaneously.82

While some degree of success has been achieved in this exercise, the parameterization is by83

no means complete. Rather, one aspect, hopefully a significant one, of boundary dynamics is84

extracted from the complete physical system and clarified.85

Model development is given in Section 2, and is followed by comparisons between a suite of86

models in the next section. Impacts on the system energetics are investigated in Section 4 and the87

paper ends with a summary and discussion of future work.88

5
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2. Model Development89

We start with the hydrostatic equations written in density coordinates90

∂
∂ t

u+u
∂
∂x

u+ v
∂
∂y

u+H
∂

∂ρ
u− f v =− ∂

∂x
M+X (1a)

∂
∂ t

v+u
∂
∂x

v+ v
∂
∂y

v+H
∂

∂ρ
v+ f u =− ∂

∂y
M+Y (1b)

∂
∂ρ

M =gz (1c)

∂
∂ t

∂
∂ρ

z+∇ · (u ∂
∂ρ

z)+
∂

∂ρ
e =0 (1d)

where u,v are horizontal velocities, f the Coriolis frequency, ρ density, z depth of a density surface,91

(X ,Y ) ’viscous’ effects and M the Montgomery potential,92

M = p+(ρ−ρo)gz (2)

with p dynamic pressure and ρo a reference density. The quantity H represents the non-93

conservative processes affecting density, i.e.94

d
dt

ρ = H (3)

and is related to the entrainment, e, by95

e = H
∂

∂ρ
z (4)

The depth variable, z, is broken into a background part dependent only on ρ and a fluctuation96

z = z(ρ)+ z′(x,y,ρ, t) (5)

6
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In keeping the usual quasi-geostrophic (qg) approach, z (analogous to N2 in a level model) is97

assumed known. The equations are now scaled in the classical qg way. The result is98

ε(
∂
∂ t

u+u
∂
∂x

u+ v
∂
∂y

u+ΛH
∂

∂ρ
u)− f v =− ∂

∂x
M+XoX (6a)

ε(
∂
∂ t

v+u
∂
∂x

v+ v
∂
∂y

v+ΛH
∂

∂ρ
v)+ f u =− ∂

∂y
M+YoY (6b)

∂
∂ρ

M =z (6c)

(
∂

∂ρ
z)∇ ·u+ ε(

∂
∂ t

∂
∂ρ

z+∇ · (u ∂
∂ρ

z))+Λ
∂

∂ρ
e =0 (6d)

where f and all other variables are now non-dimensional and the prime has been dropped from99

the perturbation depth. The parameter ε = Uo/( f L) is the Rossby number. The scalings for the100

frictional and diapycnal terms are Xo, Yo and Λ respectively and are assumed small.101

Following well-known methods, the above are expanded in powers of the Rossby number, lead-102

ing eventually to the qg equation written in density coordinates103

∂
∂ t

q+
1
f

J(Mo,q) =−∇ ·Fq; q =
1
f

∇2Mo−
f

zρ

∂ 2

∂ρ2 Mo (7)

where Mo is the lowest order contribution to the Montgomery potential, which is analogous to the104

more familiar equation in depth coordinates. Here Fq is the flux of pv due to non-conservative105

effects and other notation is standard. The explicit form of Fq is106

Fq = (
Λ
ε

H
∂

∂ρ
vo−

Yo

ε
Y )i+(

Xo

ε
X− Λ

ε
H

∂
∂ρ

uo)j (8)

and is consistent with the results of Marshall et al. (2001). We will assume (7) holds everywhere in107

the basin interior. Having shown how non-conservative effects (i.e. e and X , Y ) appear in qg, we108

will not include them for convenience in the following analysis. They will eventually be included109

again where needed.110

We examine the possibility that the essential dynamics on the boundary are richer than simple111

qg. In particular, we are interested in interactions between the interior qg flow and flows on112

7
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the boundary, where Kelvin waves (Pedlosky (2013)) are active. Low mode Kelvin waves when113

viewed from a qg perspective are too fast to be perturbed at leading order by the circulation,114

but higher mode Kelvin waves move more slowly and can be expected to interact with the qg115

flows. Such modes are also associated with short spatial scales in the horizontal (high mode116

deformation radii) and vertical (high mode number). We will build a boundary layer model for qg117

by introducing these two short spatial scales in a standard multiple scales analysis.118

The procedure will be illustrated for the western boundary layer, although generalization to other119

boundaries is straightforward. We simply substitute120

∂
∂x
→ ∂

∂x
+

1
ε

∂
∂ χ

(9a)

∂
∂ρ
→ ∂

∂ρ
+

1
ε

∂
∂Γ

(9b)

where χ is a short zonal variable of O(ε) relative to the first baroclinic deformation radius and Γ is121

a short density interval of O(ε) relative to the full density range, for the existing zonal and density122

derivatives in (6a). All variables are now expanded in powers of the Rossby number ε .123

a. Multiscale Expansion124

The leading order equations are somewhat different than the usual qg result due to the presence125

of the fast variables126

∂
∂ χ

(uo
∂

∂Γ
zo)+

∂
∂ρ

z
∂

∂ χ
uo = 0 (10a)

∂
∂ χ

Mo =
∂

∂Γ
Mo = 0 (10b)

uo(
∂

∂ χ
vo + f ) =− ∂

∂y
Mo (10c)

Eq. (10a) can be written127

∂
∂ χ

(uo
∂

∂Γ
zo +(

∂
∂ρ

z)uo) = 0 (11)

8
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as the mean state stratification z depends only on ρ . Thus, because the quantity uo(
∂

∂Γzo +
∂

∂ρ z) is128

a constant throughout the boundary layer, the no-flux condition at the boundary requires it to be129

zero. We also assume the stratification is non-trivial, so in the boundary layer130

uo = 0 (12)

which is expected in qg theory. This however does not imply ∂
∂xuo vanishes in the boundary layer.131

A second ramification of (12) is132

∂
∂y

Mo = 0 (13)

(see 10c) or that leading order pressure on the boundary is a constant. Again, this agrees with133

classical qg analysis.134

At the next order in Rossby number, one obtains135

∂
∂ t

∂
∂Γ

zo +(
∂

∂Γ
zo +

∂
∂ρ

z)(
∂
∂x

uo+
∂
∂y

vo +
∂

∂ χ
u1)+u1

∂
∂Γ

∂
∂ χ

zo + vo
∂

∂Γ
∂
∂y

zo = 0 (14a)

∂
∂ρ

Mo +
∂

∂Γ
M1 = zo (14b)

f vo =
∂
∂x

Mo +
∂

∂ χ
M1 (14c)

∂
∂ t

vo +uo
∂
∂x

vo + vo
∂
∂y

vo +u1
∂

∂ χ
vo +uo

∂
∂ χ

v1 + f u1 =−
∂
∂y

M1 (14d)

where uo has been retained for the moment. Eqs. (10c) and (14c) can be used to eliminate Mo136

f (
∂
∂x

uo +
∂
∂y

vo) =−
∂
∂x

uo
∂

∂ χ
vo +

∂
∂y

∂
∂ χ

M1 (15)

Note that the form of (15) converges to leading order divergence-free flow as χ → ∞.137

Similarly, (14d) and (10c) can be used to eliminate M1138

∂
∂ t

∂
∂ χ

vo +u1
∂ 2

∂ χ2 vo + vo
∂

∂ χ
∂
∂y

vo +(
∂

∂ χ
vo + f )(

∂
∂x

uo +
∂
∂y

vo +
∂

∂ χ
u1) = 0 (16)

Eq. (16) can be combined with (14a) to yield139

D
Dt

(

∂
∂ χ vo + f

∂
∂Γzo +

∂
∂ρ z

) = 0 (17)

9
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where140

D
Dt

=
∂
∂ t

+u1
∂

∂ χ
+ vo

∂
∂y

(18)

Eq. (17) is the potential vorticity equation of the boundary layer and reduces to the identity141

D
Dt

f
∂

∂ρ z
= 0; χ → ∞ (19)

Eq. (17) is analogous to the pv equation used in Dewar et al. (2011) and describes dynamics on142

the small boundary scales. We segregate the boundary dynamics from the interior dynamics by143

requiring the boundary responses to have vanishing pv anomaly,144

∂
∂ χ vo + f

∂
∂Γzo +

∂
∂ρ z

=
f

∂
∂ρ z

(20)

Using (10b) and (14c) reduces (20) to145

∂ 2

∂ χ2 M1−
f

∂
∂ρ z

∂ 2

∂Γ2 M1 = 0 (21)

which is the elliptic equation also appearing in Dewar and Hogg (2010) and Dewar et al. (2011).146

The solution of this equation is obtained by projecting it on the complete set of orthogonal func-147

tions defined by the eigenvalue problem148

∂ 2

∂Γ2 Fn−
∂

∂ρ z

f
λ 2

n Fn = 0;
∂

∂Γ
Fn = 0; ρ = (ρs,ρb) (22)

The equation resulting from (21) admits growing and decaying exponentials, the latter of which149

is retained to be consistent with the boundary layer analysis (see Dewar and Hogg (2010) for a150

discussion of the linear limit).151

b. Boundary-Interior Connection152

At this point, the analysis has shown the interior pv equation is faced with a constant pressure on153

the boundary, but the value of the constant is unknown. In addition, the dynamics of the boundary154

10

15



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

layer reside in the elliptic equation (21) which needs boundary conditions at χ = 0 for a unique155

solution.156

The first step to obtain this information is to evaluate (14d) at the wall157

∂
∂ t

vo + vo
∂
∂y

vo +
∂
∂y

M1 = 0 (23)

Integrating (23) around the domain yields158

∂
∂ t

∫

∂A
vo ·ndl = 0 (24)

provided the along wall velocity is continuous. If, as in the classical qg equations, the along wall159

flow is provided only by the interior geostrophic dynamics, (24) becomes160

∂
∂ t

∫

∂A
∇Mo ·ndl = 0 (25)

which is the usual condition determining the boundary Montgomery potential value (see161

McWilliams (1977)).162

However, in the present case, from (14c), the quantity vo is seen to consist of two parts, a163

geostrophic part connected to the interior and a geostrophic (in the along wall direction) part that164

belongs to the boundary. Thus, (23) can be rewritten165

∂
∂ t

∂
∂ χ

M1 + vg
∂
∂y

∂
∂ χ

M1 +
∂

∂ χ
M1

∂
∂y

vg+

∂
∂ χ

M1

f
∂
∂y

∂
∂ χ

M1 + f
∂
∂y

M1 =− f (
∂
∂ t

vg + vg
∂
∂y

vg) (26)

where vg denotes the interior geostrophic meridional velocity evaluated at x = 0.166

Note that the solution of (26) is a prediction for the normal derivative of M1 and, as such, is the167

boundary condition needed to uniquely solve (21). Eq. (26) is also the equation solved in Dewar168

et al. (2011) to compute the forced Kelvin wave response given a specified interior geostrophic169

field. The differences here are that the interior is allowed to evolve dynamically and interact with170

11
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the boundary response via the solution to (23). The boundary connection to the interior remains to171

be determined.172

Eq. (26) is hyperbolic and the characteristic solution of it leads to isopycnals pinching together,173

and the unphysical result that vo becomes multivalued (see Dewar et al. (2011)). At such locations,174

we instead require that fronts form and stabilize when the isopycnals become vertical (i.e. they175

are so-called ’weak’ or discontinuous solutions (Whitham (1974)) of (23)). The fully developed176

forms for the fronts are characterized by177

∂
∂ χ

vo + f =
∂

∂Γ
zo +

∂
∂ρ

z = 0 (27)

The latter constraint is equivalent to the layer thickness vanishing, while the former is a statement178

of zero absolute vorticity and is needed for the potential vorticity to remain finite. With vanishing179

layer thickness, and associated discontinuities in along-wall velocity, the quantity vo becomes180

vo = vs +Σi∆viH(x−xi) (28)

where vs is a smooth function, x is a location on the boundary and the index i denotes the front at181

location xi. The function H is related to the usual Heaviside function and is defined by182

H(x) = 0; x < 0; H(0) = 1/2; H(x) = 1; x > 0 (29)

In other words, the along wall velocity is a smooth function interrupted by a series of step dis-183

continuities. The various derivatives in (26) thus involve Dirac delta functions, and the full line184

integral in (25) becomes a sum of measures of the discontinuities at the fronts. Recalling that the185

full along wall velocity is composed of both a (smooth) interior geostrophic velocity and a wall186

response187

∂
∂ t

∫

∂A
vg ·ndl =−Σi((−

∂
∂ t

xi)∆(vi)+∆
v2

i

2
+∆M1,i) (30)

12
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where ∂
∂ txi denotes the rate at which the front at xi moves. According to (30), fronts modify net188

geostrophic circulation which, in turn, influences the value of the boundary Montgomery potential.189

A change in net circulation is equivalent to a change in integrated vorticity, which implies the190

appearance of new vorticity in the interior, so it is still necessary to indicate how the circulation191

changes in (30) appear as qg vorticity. Recalling that in the presence of viscous effects, the adia-192

batic (i.e. e = 0) qg equation is193

d
dt

qo =−∇ ·Fq =
∂
∂x

Y − ∂
∂y

X (31)

where viscous scalings have been set to unity and X ,Y are the nonconservative effects working on194

the momentum equations. When solving the viscous qg equations numerically, it is thus necessary195

to apply a net boundary pv flux to the equations, which for a north-south boundary consists of the196

value of Y on the boundary.197

The full boundary velocity equation including viscous effects is198

∂
∂ t

vo + vo
∂
∂y

vo +
∂
∂y

M1 = Y (32)

where Y is expected to be small everywhere but in the fronts. With Y explicitly present, the199

structure for vo becomes smooth (i.e. the fronts are no longer discontinuous, but are locations of200

very large but finite gradients), so if we consider an integration over a boundary segment from just201

behind a front to just ahead of a front, there results202

(− ∂
∂ t

yi) ∆vi +∆(
v2

i

2
)+∆M1,i =

∫ y+i

y−i
Y dy (33)

Equivalently, the value of the net boundary flux at the frontal location is determined by the front203

parameters. Effectively, the front injects vorticity into the domain, where the ultimate source of204

the vorticity is viscosity. The full solution of the qg system thus consists of simultaneously solving205

the qg equation (with (30) as a boundary condition) and (32), using the latter to determine the pv206

13
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flux from the boundaries into the interior via (33). The equations (30), (32) and (33) constitute our207

DBM.208

3. Numerical Examples209

We have implemented the above procedure in the quasi-geostrophic model Q-GCM (Hogg et al.210

(2003)). The viscous term Y is parameterized as an along wall Laplacian acting on vo, which with211

the viscous coefficient used here (ν = 50m2/s) was sufficient to control the fronts.212

We have compared the parameterized qg evolution with numerical solutions obtained using the213

MITgcm (Marshall et al. (1997)) and the isopycnal model GOLD (Hallberg (2000)) run at high214

resolution.215

Parameters typical of a mid-latitude β plane ocean have been used, i.e. f = 10−4 s−1 and216

β = 2×10−11 s−1. The basic state stratification for the MITgcm was set by a linear temperature217

profile in the vertical218

Tb = ∆T (1− z
H
) , (34)

with H = 1000m the depth of the water column and ∆T = 5 K the temperature difference be-219

tween the top and the bottom. The same profile was used to determine layer temperatures in220

both GOLD and Q-GCM. A linear equation of state is used with thermal expansion coefficient221

α = 2×10−4K−1.222

We consider the initial value problem of a monopolar vortex situated 75km east and 200km north223

of the southwestern corner of a 500km×500km domain (see Fig. 1). The form used for the vortex224

was225

vθ (r) = voF(z)
tanh(r/ro)

cosh2(r/ro)
, (35)

with226

F(z) = 1− er f (z/zo) (36)

14
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where r is a radial coordinate extending from vortex center, ro = 75km, zo = 500m and vθ is the227

corresponding swirl velocity. The initial vortex position was sufficiently far from the boundaries228

that the above formulas were used without modification at the walls.229

The horizontal structure of the vortex is a continuous approximation of the Rankine vortex230

(Doswell 1984). At any height z, we use the geostrophic balance to recover the pressure field231

dP
dr

= f vθ , (37)

which can in turn be used to infer the density field via the hydrostatic balance. The vertical232

function (36) is chosen such that both the velocity and the density anomalies are maximum at the233

surface. This field is used to initialize the three models, all of which employ a 1km horizontal234

resolution. The MITgcm employs 100 levels with a resolution of 10m, while GOLD and Q-235

GCM both use 10 layers with a constant reduced gravity of 10−3m s−2. The vertical profile of236

temperature from the MITgcm and the layer thicknesses from GOLD are plotted in Fig. 2. Note237

that there is no outcropping in the layered model because all of the outcropped densities in the238

MITgcm are contained within in the uppermost GOLD model layer. We use a harmonic viscosity239

of ν = 50 m2 s−1 for GOLD and Q-GCM, ν = 10 m2 s−1 for MITgcm and free slip boundary240

conditions in all cases.241

a. Results242

A typical vortex sequence as shown in surface relative vorticity appears in Fig. 3 from the GOLD243

experiment, in Fig. 4 for the MITgcm experiment and in Fig. 5 from the Q-GCM experiment.244

Early on the vortex migrates westward towards the wall due to β . As it is squeezed on the wall245

it deforms and propagates northward as expected from ’image’ (see Crosby et al. (2013) and246

references therein) dynamics (Day 20). This part of the evolution is entirely consistent with purely247
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balanced dynamics. For unknown reasons, the initial westward vortex drift differs between the248

models; the GOLD vortex arrives at the wall a few days earlier than in either the MITgcm or249

Q-GCM (compare to Figs. 4, 5).250

Upon commencing northward propagation, a very strong cyclonic vorticity filament is peeled251

away from the wall by the vortex in all models (Figs. 3a, b; 4a, b; 5a, b). The source of the252

vorticity is, however, not a frictional sublayer as the boundary conditions are free slip. This part253

of the evolution has no analog in inviscid qg theory. A similar result was seen in Dewar and Hogg254

(2010), and the explanation provided there involved the arresting of southward propagating Kelvin255

waves by the northward directed flows of the anticyclonic vortex.256

If sufficiently strong, the newly formed cyclonic filament rolls up onto itself to form a macro-257

scopic cyclone (Fig. 3b) which pairs up with the primary anticyclone to form a dipole. This occurs258

for all three models, although the strength of the cyclonic partner varies and so the subsequent evo-259

lution can follow more than one path. The asymmetric pair in GOLD moves the primary vortex260

away from the wall and they follow a curved trajectory eventually returning to the wall ((see Days261

30 and 40); Fig. 3b, c). The GOLD dipole splits when it again encounters the wall: the cyclone262

moves southward and the anticyclone resumes its northward migration. At this point, a new cycle263

of cyclonic vorticity generation begins (Fig. 3d).264

The details of the dipolar evolution are highly dependent on the amount of newly created vor-265

ticity at the boundary. Strong vorticity creation (compared to the vorticity of the primary vortex),266

moves the pair faster away from the wall and, as seen in the MITgcm results, can even split the267

primary vortex into two parts (cf. Fig. 4d). For weak vorticity generation, the positive vorticity268

filament may simply be advected around the primary cyclone without forming a coherent vortex.269

In such a situation, the primary vortex may not move away from the wall. This is seen early in the270
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Q-GCM vortex, although continued cyclonic vorticity generation eventually results in a cyclonic271

vortex.272

Figs. 6, 7, and 8 illustrate the vorticity injection process. Here, the interface displacement (con-273

tours) and velocity (colors) on the wall are plotted. In all three cases, as the anticyclone migrates274

northward, the upper layers ’pinch’ such that the flow in these layers is blocked. Most importantly,275

there is effectively a discontinuity in the velocity profile and the Montgomery potential in these276

layers upon which we base the PV injection in the qg model (see (33)). This is consistent with277

the mean flow-Kelvin wave interaction idea that the anticyclone presence is critical to maintaining278

the discontinuity. Indeed, if the subsequent evolution moves the vortex away from the boundary,279

the front can dissolve. This is seen at Day 40 in Fig. 6c, where the vortex has been forced away280

from the wall by the newly created cyclone. As the cycle restarts, we observe strong similarities281

between the plots in Fig. 6b and 6d. The sequences displayed in these figures are not identical, but282

agree qualitatively in the marked evolution of the wall isopycnals and the appearance of cyclonic283

vorticity.284

The initial condition in these experiments consists only of anticyclonic vorticity and, for that285

matter, negative pv anomaly (not shown). Cyclonic vorticity for the most part appears in areas286

consistent with our explanation based on front formation, i.e. it streams from regions on the wall287

slightly north of the vortex center. However, cyclonic vorticity also appears elsewhere in many288

of the plots, as in Fig. 3b, c and d. The other cyclonic zones are not of a wall origin, as can289

be seen in Fig. 9a, which shows potential vorticity at Day 40 from the GOLD results. Note in290

particular the cyclonic streamer along the southwestern boundary between 50km and 200km in291

Fig. 3c. This feature is visible in pv as a streamer whose value is not anomalously high; rather292

at pv1̃×10−6m−1 s−1 it corresponds to the background. Since the wall injects pv into the system293

and the cyclonic streamer is not anomalous in pv, it is clear that cyclonic vorticity is a result of294
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conservative pv evolution. In contrast, the large region of intense cyclonic vorticity paired with295

the original vortex in Fig. 3c corresponds to a strong positive pv anomaly in Fig. 9a. Because such296

pv is not present in the initial condition, it can only be the result of wall injection. Such behavior297

is characteristic of the pv fields in both the GOLD and MITgcm runs. An example of pv from the298

Q-GCM at Day 40 appears in Fig. 9b. Here again a positive pv anomaly appears at the location299

of cyclonic vorticity, but nowhere else. By construction, the source of this pv is due to the wall300

interaction, which supports our theoretical modeling.301

In Fig. 10, we plot the time series of the mean circulation in the upper layer (total circulation302

divided by the area of the domain). Recall that the models all employ free-slip boundaries, so the303

boundary effect on circulation would normally be expected to be small. This is what happens ini-304

tially. Until day 20 there is no significant variation in the circulation as the vortex moves westward305

towards the wall. However, between day 20 and day 40 strong circulation changes are seen, even306

to the point of reversing the sign of the circulation. At day 40, the mean circulation is about 10307

times stronger than its initial absolute value. This increase corresponds to the injection of cyclonic308

filaments into the domain (see Figs. 3, 4, and 5). As mentioned previously, the injection starts309

earlier in GOLD. After the initial injection, we expect the three curves to only qualitatively match:310

in MITgcm, the injection is stronger and forces the vortex further away from the wall such that the311

next peel off and strong circulation change do not occur before day 70.312

In Fig. 10, we also add a curve for an MITgcm experiment using ν = 50 m2 s−1 (dashed red313

line) instead of ν = 10m2s−1 as discussed previously. For this configuration (using the same vis-314

cosity as GOLD and Q-GCM), the vorticity injection was much weaker and inadequate for the315

formation of a coherent cyclone. The reason for this distinction is due to the potentially very dif-316

ferent physical effects of ’horizontal’ viscosity in isopycnal and level models. Away from fronts317

where isopycnals have small slopes, layer horizontal and level horizontal viscosity play compa-318
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rable roles. Near fronts, however, ’horizontal’ layer viscosity in transferring momentum along319

isopycnals acts almost in a vertical sense, whereas in a level model, momentum transfers are320

largely across isopycnals. This works to smooth the along wall velocity profile for a level model321

such that front formation and the accompanying vorticity injection are suppressed. The tendency322

for the isopycnals to form fronts in that experiment was largely suppressed (not shown).323

4. Energetics Consequences324

Consider now the balanced energetics of a closed basin. This is obtained by multiplying the qg325

pv equation by the Montgomery potential and integrating by parts.326

∫ ρb

ρs

∫

S
(Mo

∂
∂ t

q+Mouo ·∇q)
∂

∂ρ
zdAdρ =

∫

V
(Mo

∂
∂ t

qo +Mouo ·∇qo)dV =

− ∂
∂ t

∫

V

[
(∇Mo)

2

2 f
− f

∂
∂ρ z

( ∂
∂ρ Mo)

2

2

]
dV

+
∫

z

[∮
Mo

∂
∂ t

∇Mo ·ndl

]
dz−

∫

S
foweModA =−

∫

V
Mo∇ ·FQdV (38)

where we denotes any Ekman pumping energy source. The no-normal flow conditions have been327

used to eliminate advection and the domain extends into the overlap region of the boundary layer328

where qg is still accurate. The boundary layer analysis assures that the leading order Montgomery329

on the edge must be a constant on any isopycnal, thus allowing it to be migrated outside of the330

boundary line integral in (38). The result is331

∂
∂ t

∫

V
(K +P)dV =−

∫

S
weModA+

∫

z
Mo

∫ ∂
∂ t

∇
Mo

f
·ndldz−Ξ (39)

where free slip boundaries have been used,332

K =
(∇Mo)

2

2 f
(40)
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and333

P =
f

∂
∂ρ z

( ∂
∂ρ Mo)

2

2
(41)

are the kinetic and potential energies seen in (38) and Ξ denotes viscous loss proportional to334

velocity gradients squared integrated over the domain.335

A statement about the net geostrophic circulation change is needed to complete the equation.336

This is obtained from (30), such that (39) becomes337

∂
∂ t

∫

V
(K +P)dV =−

∫

S
weModA−Ξ−

∫

z
Σi(((−

∂
∂ t

xi)∆(vo)+∆
v2

o

2
−∆M1)Mo)dz (42)

Thus the fronts governed by (26) act like an energy sink on the interior balanced flow. Physically338

the sink represents flow up the pressure gradients along the boundaries set up and maintained by339

the wall dynamics.340

Eq. (42) (with we = 0) can be used to examine the energetics in the present case. Fig. 11 (left)341

compares the time evolution of the kinetic and potential energy relative to their initial values in342

the three models. The curves all show their strongest behavior from days 20 to 40 during the343

period of strong wall-vortex interaction. Consistently among the three models, potential energy344

transfers aggressively to kinetic energy during this interval. The level of kinetic energy reached345

after 40 days is about twice its initial value (not shown). After 40 days, the APE dropped by346

50% in both Q-GCM and Gold and 25% in MITgcm (not shown). After 40 days in MITgcm,347

we mentioned previously that the interaction with the wall is less pronounced as the eddy moves348

away from the wall. This tendency is also visible in the PE and KE curves. Note also the overall349

energetic behavior differs between the MITgcm and the layer models. This is due to the differences350

in model construction and the differing trajectories of the vortex relative to the wall.351

Total energy evolutions from the three model runs appear in Fig. 11 (right). Very early (< 20352

day) energy decreases slowly at a rate that can be accounted for from internal dissipation, Ξ. This353
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changes significantly once the vortices begin interaction with the boundary. Consistent with our354

earlier discussion, total energy decays first for GOLD, where the vortex experiences its earliest355

encounter with the wall. Both GOLD and Q-GCM exhibit roughly comparable decay rates. The356

MITgcm is considerably slower in energy loss. However, upon inspection of Fig. 7, it is seen357

that after the initial wall encounter, the cyclone is able to push the vortex away from the boundary358

much more effectively in the MITgcm than in the other models. As a result, the MITgcm cyclonic359

vorticity generation, and thus energy decay, for the duration of the experiments is much less.360

5. Summary361

We have revisited the problem of boundary conditions for general circulation models. When362

applied to the problem of a westward drifting vortex encountering a boundary, classical qg im-363

plementations with free-slip boundary conditions leave the net circulation of the domain virtually364

unchanged. In contrast, primitive equation models inject strong cyclonic vorticity into the domain365

and as a result lose energy considerably faster when compared to the qg result. We have proposed366

a boundary layer analysis that, when used in a qg model (effectively as a DBM), endows it with367

energy and vorticity behavior like that computed from the primitive equation models.368

The essence of the analysis is in the interaction between interior balanced dynamics and bound-369

ary dynamics, the latter generally arising because of the no-normal flow boundary condition. The370

wall dynamics are constrained to have no potential vorticity anomaly; for the case of a wall, Kelvin371

waves are the result. When the interior flow imposes a velocity on the wall in excess of a Kelvin372

wave phase speed, the blocked downstream wave propagation builds a finite amplitude response373

in the form of fronts. Regularization of the fronts, given their form, requires either viscous or374

diabatic effects that, when expressed in a pv framework constitute a pv flux from the wall. The375

size of the flux can be computed from the front characteristics themselves and as such does not376
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require an explicit viscous or diabatic coefficient. The effect of the wall parameterization is to add377

the frontal pv flux to the preexisting interior pv distribution. This effect, when introduced into qg,378

qualitatively and quantitatively (if not exactly) amends the qg evolution to that seen in primitive379

equation models. We have also found that these mechanics effectively drain energy from the inte-380

rior balanced flow, suggesting that a resolution to the open question of the fate of balanced energy381

involves boundary dynamics.382

While we think of this as a DBM for subgridscale parameterization, it describes only a subset383

of possible interior-boundary interactions. These mechanics require an interior flow counter to384

the direction of topographic waves; the case of oppositely directed flows remains unstudied. Fur-385

ther, aspects of the present interaction remain unclear. The boundary fronts govern the amplitude386

of the effect on the interior, but the nature of the frontal dynamics remains unclear. The fronts387

themselves are related to the pv fluxes, thus making the feedback relatively insensitive to poorly388

known parameters like eddy diffusivities, but we have also found too large of an eddy viscosity389

can damp these mechanics. We speculate that the fronts exist in a regime independent of viscous390

coefficients, but have yet to uncover this regime. We have also shown only how to amend sub-grid391

scale qg dynamics with our DBM. Further studies will explore recipes for including these effects392

into the sub-grid scale parameterization of primitive equations.393
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APPENDIX397

An Augmented Jacobian for Stratified QG398
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The Arakawa Jacobian is routinely used for the advection operator in quasi-geostrophy. While it399

is generally apt, stratified qg boundary conditions are not necessarily consistent with the classical400

implementation. The analytical properties of the Jacobian for constant boundary p are401

∫

A
J(p,q)dA = 0

∫

A
pJ(p,q)dA =

∫

A
J(

p2

2
,q)dA = 0 (A1)

∫

A
qJ(p,q)dA =

∫

A
J(p,

q2

2
)dA = 0

because of no normal flow. As shown by Salmon and Talley (1989), the classical Arakawa dis-402

cretization is consistent with these properties only if the boundary p(∂A) vanishes, which in a403

stratified system is not generally true. Equivalently, the classical Arakawa formulation does not404

meet (A1), as can be shown by straightforward numerical integration. Holland (1978) noticed this405

and instead developed an energy equation by multiplying the pv equation by a pressure adjusted406

for the boundary pressure. Here, closely following Salmon and Talley (1989), a generalization to407

the Arakawa Jacobian is developed that allows for non-zero boundary pressure.408

Potential vorticity conservation implies409

∫

A
α(

∂
∂ t

q+ J(p,q))dA = 0 (A2)

for any α(x,y). Manipulating the arguments, one can show410

∫

A
αJ(p,q)dA =

∫

A
qJ(α, p)dA (A3)

by using only the no-normal flow condition on p. However, if the other permutation of arguments411

is attempted, there results412

∫

A
αJ(p,q)dA =

∫

A
pJ(q,α)dA− p(∂A)

∫

∂A
∇q · tdl (A4)

where t is the unit vector tangential to the domain boundary. The last integral on the right hand413

side is not guaranteed to vanish for non-zero boundary pressure.414
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The integrated Jacobian can in general be written415

∫

A
αJ(p,q)dA = a

∫

A
αJ(p,q)dA+

b(
∫

A
pJ(q,α)dA− p(∂A)

∫

∂A
α∇q · tdl)+ c

∫

A
qJ(α, p)dA (A5)

where a+b+ c = 1. We now express (A2) symbolically in discrete form416

ΣiδAiαi(
∂
∂ t

q)i = ΣδAi[aαiJi(p j,qk)+bpiJi(q j,αk)+ (A6)

cqiJi(α j, pk))+δ li p(∂A)αi(∇q)i∆i,ib] = F(αi,q j, pk;a,b,c)

where δAi is the area element associated with point i, δ li the line element associated with boundary417

point i and ∆i,ib is the Kronecker delta function defined by418

∆i,ib = 1; i = ib

∆i,ib = 0; otherwise (A7)

with ib the index of a point on the boundary. The Salmon and Talley (1989) notation has been419

used, but the form of F is different. From (A6), one can show420

− ∂
∂ t

qi =
∂

∂αi
F (A8)

which specifies the form of the Jacobian that satisfies (A2).421

The only modification to (A6) from that appearing in Salmon and Talley (1989) are terms on the422

boundary, implying that the classical Arakawa discretization applies to the interior gridpoints. On423

the boundary, the usual discretization must be augmented by any discretization satisfying424

∮
∇q ·ndl =

∮
q∇q ·ndl = 0 (A9)

The second order discretization425

(
∂
∂x

q)i =
qi+1−qi−1

2∆l
(A10)
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meets this criterion provided the q in the second line integral is evaluated at point i. Evaluating426

F and taking the derivative in (A8) determines the required Jacobian stencil. For a point on a427

north-south wall, the usual discretization must be modified to428

Jib, j(p,q) = Jib, j(p,q)Arakawa + p(∂A)(q(ib, j+1)−q(ib, j−1)) (A11)

where ib, j are the zonal and meridional indices of a western boundary point. A straightforward429

modification of the above applies to points on other boundaries.430
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FIG. 1: Surface vorticity profile (same initial condition used in all three models).
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interval: 0.5 K). Right: position of the isopycnals in GOLD along the same section.
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FIG. 3: Snapshots of the surface relative vorticity at days 20, 30, 40 and 50 (moving clockwise
from the upper left) from GOLD.
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FIG. 4: Snapsots of the surface relative vorticity at days 20, 30, 40 and 50 for the MITgcm
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FIG. 5: Snapsots of the surface relative vorticity at days 20, 30, 40 and 50 for the Q-GCM
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FIG. 6: Snapsots of the along wall velocity (color) and interface displacement (contours) days 20,
30, 40 and 50 for GOLD
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FIG. 7: Snapsots of the along wall velocity (color) and temperature (contours; contour interval =
0.5 K) days 20, 30, 40 and 50 for the MITgcm
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FIG. 8: Snapsots of the along wall velocity (color) and interface displacement (contours) days 20,
30, 40 and 50 for the Q-GCM coupled to the wall equation.
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FIG. 9: Potential vorticity fields at Day 40 from GOLD and Q-GCM. Regions of positive potential
vorticity coincide with regions of cyclonic vorticity; other regions of cyclonic vorticity are invisible
in pv. This is consistent with our theory.
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FIG. 10: Time series of the relative vorticity in the upper layer in the 3 configurations. We also
added the curve for MITgcm with ν = 50 m2 s−1.
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three models. (right) Time series of the total energy from the three model runs.
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