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Abstract

Motivation: Protein–protein interactions are vital for protein function with the average protein having be-

tween three and ten interacting partners. Knowledge of precise protein–protein interfaces comes from

crystal structures deposited in the Protein Data Bank (PDB), but only 50% of structures in the PDB are com-

plexes. There is therefore a need to predict protein–protein interfaces in silico and various methods for

this purpose. Here we explore the use of a predictor based on structural features and which exploits ran-

dom forest machine learning, comparing its performance with a number of popular established methods.

Results: On an independent test set of obligate and transient complexes, our IntPred predictor per-

forms well (MCC¼ 0.370, ACC¼0.811, SPEC¼0.916, SENS¼ 0.411) and compares favourably with

other methods. Overall, IntPred ranks second of six methods tested with SPPIDER having slightly

better overall performance (MCC¼ 0.410, ACC¼ 0.759, SPEC¼ 0.783, SENS¼ 0.676), but consider-

ably worse specificity than IntPred. As with SPPIDER, using an independent test set of obligate

complexes enhanced performance (MCC¼ 0.381) while performance is somewhat reduced on a

dataset of transient complexes (MCC¼0.303). The trade-off between sensitivity and specificity

compared with SPPIDER suggests that the choice of the appropriate tool is application-dependent.

Availability and implementation: IntPred is implemented in Perl and may be downloaded for local

use or run via a web server at www.bioinf.org.uk/intpred/.

Contact: andrew@bioinf.org.uk or andrew.martin@ucl.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Protein–protein interactions are vital for the function of proteins,

allowing them to carry out fundamental biological processes.

Proteins interact via interfaces, areas of protein surface that are geo-

metrically and physico-chemically complementary, allowing ener-

getically favourable interactions to occur. Comparative analysis of

human interaction databases shows that the number of complexes

greatly exceeds the number of interacting proteins in humans

(Futschik et al., 2007) as well as in other species (Missiuro et al.,

2009). In yeast for example, the average number of interacting part-

ners per protein has been estimated between 3 and 10 (Bork et al.,

2004). Typically, the more advanced the species is, the more

connected the protein network is, indicating advancement in regula-

tion of processes (Keskin et al., 2008).

The main resource containing data on protein interfaces is X-ray

crystallographic structures of protein complexes deposited in the

Protein Data Bank (PDB). However, determining interfaces in this

manner is costly and time-consuming. Furthermore, only 50% of

structures in the PDB are protein complexes, the remainder being

monomers or complexes with nucleotide chains, small peptides and

ligand molecules. In addition, only a small fraction of true biological

complexes—particularly transient complexes—is present in the PDB

and verifying the presence of protein–protein interactions in a high-

throughput manner is a hard problem. There is thus a need to pre-

dict interfaces in silico, to further the understanding of biological
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processes, as well as to inform drug design (Fletcher and Hamilton,

2006).

The nature of X-ray crystallography leads to crystal structures

containing biologically irrelevant crystal contacts, or lacking relevant

contacts. For biologically meaningful interfaces to be understood, bio-

logical contacts must be regenerated, or distinguished from crystal

contacts. The ‘Protein, Interfaces, Structures and Assemblies’ (PISA)

resource derives data from the PDB using a method based on chemical

thermodynamics to distinguish macromolecular assemblies from non-

biological crystal contacts (Krissinel and Henrick, 2007).

A large number of methods exist for the prediction of protein–

protein interaction sites [for reviews, see de Vries and Bonvin (2008)

and Esmaielbeiki et al. (2016)], the majority of which apply a ma-

chine learning method trained on a set of features derived from the

sequences and/or structures of proteins with known interface sites.

Prediction methods vary in the datasets used for training and testing,

how interface residues are labelled, the nature of the interface type

(i.e. transient and/or obligate), the nature of the prediction (e.g.

patch- or residue-predictions), the selection of residues for evalu-

ation (e.g. all or just surface residues), the features used and the ma-

chine learning method applied.

One of the biggest challenges in the field of protein–protein

interface prediction is the lack of consensus on how methods should

be evaluated and compared. In particular, benchmarking on inde-

pendent test sets has shown that the performance of methods tends

to be over-optimistically reported (Porollo and Meller, 2006; Zhou

and Qin, 2007), which is most likely due to the common custom of

reporting cross-validated performance on training data only, rather

than testing on an independent dataset.

Some of the most commonly used features that have been shown

to differ significantly between interface and non-interface residues in-

clude amino acid propensity scores (Lo Conte et al., 1999), secondary

structure (Neuvirth et al., 2004), solvent accessibility (Jones and

Thornton, 1997) and sequence conservation (Zhou and Shan, 2001).

Generally these preferences have been exploited for prediction of pro-

tein–protein interfaces by using machine learning methods, including

support vector machines (Bordner and Abagyan, 2005; Bradford and

Westhead, 2005; Chung et al., 2005; Koike and Takagi, 2004; Wang

et al., 2006) and neural networks (Chen and Zhou, 2005; Fariselli

et al., 2002; Ofran and Rost, 2003; Porollo and Meller, 2006).

However, the random forest algorithm (Breiman, 2001) has been

relatively underused for this purpose, despite its success in a range of

biological problems, including activity prediction from chem-

ical structure (Svetnik et al., 2003), renal tumour classification (Shi

et al., 2005), detection of multiple-sclerosis-linked gene candidates

(Goldstein et al., 2010) and prediction of disease associated mutations

(Al-Numair and Martin, 2013; Al-Numair et al., 2016).

Here, the IntPred method for prediction of protein–protein inter-

action sites is presented. For a given PDB structure, IntPred uses se-

quence and structure information to create features that are the

input to a random forest machine learning predictor, which will out-

put a prediction label at either the surface patch- or residue-level.

IntPred is cross-validated on a large set of structures obtained from

PISA, as well as tested and compared with existing popular methods

on an independent test set.

2 Materials and methods

2.1 Datasets
In order to create a training dataset, 58 397 biological units avail-

able in PISA were downloaded and both transient and obligate

interfaces were included. Viral capsids and NMR entries were first

removed, as were structures with resolution worse than 3 Å or R-

factor greater than 30%. Peptide chains (<30 amino acids) were

also removed and then any structure with more than one chain was

kept, leaving 25 876 structures formed from 87 738 chains. To re-

move redundancy, these chains were clustered at 25% sequence

similarity using PISCES (Wang and Dunbrack, 2003), culling ‘by

chain’ and all other parameters set to their defaults. From each clus-

ter, a representative chain was selected by choosing the chain with

the best resolution or, if tied, the best R-factor. The final training set

contained 4345 chains.

In order to create an independent test dataset, all the new biolo-

gical units made available from the PISA resource over the following

5 months were obtained and filtered using the same procedure as

described for the training set, with the exception that no clustering

to remove redundancy was performed. This resulted in 4204 chains.

A dataset of obligate and transient interfaces was built from the

independent test set using NOXclass (Zhu et al., 2006), a high per-

formance prediction method that predicts protein interactions as ei-

ther obligate, non-obligate (transient) and/or crystal packing

contacts. As NOXclass is run on a pair of interacting chains, a list

was first created of all interacting chain pairs in the PQS files of the

independent test set. NOXclass was run using all features except the

‘ConSurf score’ in multi-stage mode, where an interaction is first

given percentage scores for the ‘biological’ and ‘crystal contacts’

labels and then another set of scores for the ‘obligate’ or ‘non-obli-

gate’ labels (the ‘biological’ and ‘crystal contacts’ scores were

ignored since PQS files should already have eliminated non-

biological crystal contacts). Each pair was labelled ‘obligate’ if the

‘obligate’ score was higher than 50% and as ‘transient’ otherwise.

Any PQS file that was predicted to contain both obligate and transi-

ent interfaces was discarded, leaving 916 obligate and 149 non-

obligate PQS structures.

The content of the datasets is described in Supplementary file

‘Datasets.xls’.

2.2 Surface patch creation
In order to calculate the properties of subsets of a protein surface, it

has to be divided into fragments. The program pdbmakepatch

from the BiopTools tool set (Porter and Martin, 2015) was used to

form overlapping surface patches from the protein surface.

Before introducing the algorithm implemented by pdbmake-

patch, the following terms must be introduced:

• Patch centre atom is the central atom that is input to pdbmake-

patch around which the patch is built. The residue to which the

atom belongs is termed the ‘patch centre residue’.
• Patch radius is the threshold distance from the patch centre atom

used to select candidate residues for inclusion within the final

patch.
• Contact radius is defined for a pair of atoms as the sum of their

van der Waals radii, plus a tolerance (here set to 0.2 Å). Two

atoms are in contact if the distance between their centres is less

than the contact radius.
• Residue geometry vector is a vector defined for a given residue

with its initial point at the Ca and its terminal point at the centre

of geometry of the 10 spatially closest neighbours. The centre of

geometry is calculated as the average of the neighbours’ Ca

coordinates.
• Residue solvent vector is also defined with its initial point at the

Ca of a given residue, but points in the opposite direction to the

residue geometry vector.
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• Solvent angle is defined between two residues and is the angle be-

tween the two residue solvent vectors.

For a given PDB file and a patch centre atom, pdbmakepatch itera-

tively builds a patch using the following procedure:

1. Define P as the initially empty set of atoms in the patch and add

the patch centre atom to P.

2. Determine all residues with at least one atom centre within the

patch radius from the patch centre atom. These are the set of

residues C that are candidates for inclusion within the patch.

3. For each member of P, test if any of the members of C are in

contact. If a member of C is in contact with a member of P

and the solvent angle between them is less than 120� then move

it to P.

4. Repeat step 3 until no more members of C are moved to P.

5. Label any residue with an atom in P as a patch residue.

The solvent angle test is used to avoid including residues from op-

posite sides of a pocket in the same patch, preventing the creation of

discontinuous patches (see Fig. 1) (Jones and Thornton, 1997; Pettit

et al., 2007).

2.2.1 Generating patches from a structure

For all of the structures used in this study, a set of overlapping

patches was created to represent its surface. In order to create such a

set, residues with relative solvent accessibility (RASA) >25% were

identified. This is the set of patch centre residues. For each patch

centre residue, the atom with the highest absolute solvent accessible

area (ASA) is found. Each of these highly solvent accessible atoms is

a patch centre atom that is input into pdbmakepatch.

Two different patch radii were tested: 9 and 14 Å. A 9 Å patch

radius corresponds to the smallest biological interface found in the

training set, whilst 14 Å corresponds to the minimum patch size

needed for an interface to occur, according to Bogan and Thorn

(1998).

2.2.2 Assigning class labels

The class label of a patch is calculated by assessing the fraction of its

total relative solvent accessible area (RASA) that is contributed by

residues that have been defined as interface residues. A residue i is

defined as interface if the following holds

RASAn
i � RASAc

i � 10% (1)

where RASAn
i and RASAc

i are the non-complexed and complexed

RASA values of i respectively. The ‘interface fraction’, fASAp, for a

patch p containing a set of residues rp and subset of interface resi-

dues rintf is calculated as

fASAp ¼
P

j2rintf
RASAn

jP
i2rp

RASAn
i

(2)

A class attribute value Cp is then assigned for the patch as

Cp ¼

I; if fASAp � 0:5;

S; if fASAp ¼ 0;

U; otherwise:

8>><
>>:

(3)

where the value U corresponds to unlabelled and is assigned to patches

that are on the rim of the interface (see Fig. 2). Patches with class attri-

bute value U are excluded from training and testing at patch level to en-

sure that classification remains a binary problem, but are included

during testing when patch predictions are mapped to residue predic-

tions (see 2.6, ‘Mapping from patch to residue-level prediction’, below).

2.3 Features
IntPred uses 11 features for learning and prediction (summarized in

Table 1) which can be divided into sequence features and structural fea-

tures. The distributions of the residue-level features on which these

patch-level features are based were all found to differ significantly be-

tween interface and non-interface (see Supplementary Figs S1–5).

Fig. 1. Residue geometry and solvent vectors. A candidate atom (red) is

within the contact distance of a patch atom (purple). The residue geometry

vectors (white) are used to calculate solvent vectors (black) and the angle be-

tween them is calculated. Because the angle is> 120�, the candidate atom is

not included in the patch

Fig. 2. An example interface site (bordered in yellow), an interface patch

(cyan) and a rim patch (magenta). The fraction of the rim patch’s surface

involved in the interface is not high enough for the patch to be labelled as

interface. See Equation 3
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2.3.1 Sequence features

The following features only take sequence-based properties into ac-

count. As these features are based on residue scores, the score of a

patch is simply the average of the scores of its residues.

Hydrophobicity: The hydrophobicity of a residue is simply its

hydrophobicity value on the Kyte and Doolittle hydrophobicity

scale (Kyte and Doolittle, 1982).

Propensity: The propensity of a residue i of type X is calculated

as

Pr i;Xð Þ ¼ ln
Fintf Xð Þ
Fsurf Xð Þ

� �
� ASA ið Þ

ASAsurf Xð Þ
(4)

where Fintf Xð Þ and Fsurf Xð Þ are the interface and surface fractions

(defined below) of residue type X, ASA(i) is the non-complexed ab-

solute solvent-accessible area of residue i and ASAsurf Xð Þ is the aver-

age absolute ASA for all surface residues of type X. The inclusion

of ASA(i) means that the empirically obtained ASA of residue i is

incorporated, rather than treating the contribution of every residue

of type X as identical. Additionally, the inclusion of ASAsurf Xð Þ
controls for the difference in amino acid size, avoiding over-

representation of bulky residues.

A positive propensity value indicates over-representation of resi-

due type X in the interface set, while a negative propensity value in-

dicates an under-representation.

For residue type X, the interface fraction Fintf is calculated as

Fintf Xð Þ ¼
P

ASAn
intf Xð ÞP

ASAn
intf

(5)

where the numerator is the total non-complexed absolute solvent ac-

cessibility for all training set interface residues of type X and the de-

nominator is the total non-complexed absolute solvent accessibility

of all interface residues.

Similarly, the surface fraction Fsurf Xð Þ is calculated as

Fsurf Xð Þ ¼
P

ASAn
surf Xð ÞP

ASAn
surf

(6)

with corresponding values for the set of non-interface surface resi-

dues of the training set.

Conservation scores. For each residue, two conservation scores are

calculated: a functionally equivalent protein (FEP) score and a homo-

logue score. Each score is calculated on the basis of an alignment pro-

duced using the matches generated from two different resources.

In order to calculate FEP scores, PDBSWS (Martin, 2005) is used

to determine an associated UniProtKB/SwissProt entry for a given

PDB chain. The FOSTA resource (McMillan and Martin, 2008) is

then used to find the family of functionally equivalent orthologues

of which the entry is a member. If this family contains at least nine

other members, then it is taken forward for alignment.

In order to calculate a homologue score, a BLAST search

(Altschul et al., 1990) against the UniProtKB/SwissProt database

using the sequence of the PDB chain is undertaken, using default

parameters. Matches containing any of the terms putative, predicted

or hypothetical are discarded, as are matches with an E-val-

ue>0.01. If a minimum of 10 sequence matches are retained, then

up to 200 of the top hits (ranked by lowest E-value) are taken for-

ward for alignment.

For each set of matches, Muscle Version 3.7 (Edgar, 2004) is

used with default parameters to produce an alignment. Each align-

ment is used to calculate residue conservation scores using the

‘Valdar01’ method (Valdar and Thornton, 2001), implemented in

our in-house program scorecons, part of the BiopTools package

(Porter and Martin, 2015). For both conservation scores, the score

of a patch is the average of the score of its residues.

2.3.2 Structural features

The following features require structural information in order to be

calculated.

Averaged features: Again, these features are calculated at the

residue level and calculated for a patch by averaging the scores of its

residues.

Intra-chain disulphide bonds are identified by using the

pdblistss tool from BiopTools. pdblistss identifies disulphide

bonds by searching for Sc-pair distances of less than 2.25 Å. This dis-

tance measure is based upon the average disulphide Sc distance

determined by Hazes and Dijkstra (1988), with an additional 10%

tolerance for structure inaccuracy. A residue is given a score of 1 if it

forms a disulphide bond or 0 otherwise.

Intra-chain hydrogen bonds are identified using the pdbhbond

tool from BiopTools. pdbhbond identifies hydrogen bonds using the

rules of Baker and Hubbard (1984). Given a donor atom D (to

which the hydrogen is bound) and an acceptor atom A, where

hydrogen positions can be calculated, a hydrogen bond is formed if

the H� � �A distance is �2.5 Å and the angle at the hydrogen is 90–

180�; where the hydrogen position cannot be calculated, the D� � �A
distance must be �3.35 Å and the angle between the donor ante-

cedent, D and A is 90–180�. A residue is given a score of 1 if it is

involved in a hydrogen bond and 0 otherwise.

Secondary structure: Secondary structure is assigned to a residue

using the pdbsecstr tool from BiopTools, which assigns secondary

structure according to the method of Kabsch and Sander (1983).

The secondary structure assignment of a patch SSp follows:

SSp ¼

H if a > 20% and b � 20%;

E if a � 20% and b > 20%;

EH if a > 20% and b > 20%;

C if a � 20% and b � 20%

8>>>>><
>>>>>:

(7)

where a and b are the percentages of residues assigned as a-helix and

b-sheet respectively.

Planarity: Patch planarity is calculated by finding the root mean

squared distance of all atoms of the patch from a plane of best fit.

The plane of best fit is found by centring the (x, y, z) coordinates of

Table 1. Summary of IntPred features

Feature Description Type

Sequence

prop propensity score Continuous numeric

hpho hydrophobicity Continuous numeric

homology homology conservation score Continuous numeric

FEP FEP conservation score Continuous numeric

Structural

SS disulphide bonds Continuous numeric

Hb hydrogen bonds Continuous numeric

helix (H) a-helix secondary Structure Binary categorical

sheet (E) b-sheet secondary Structure Binary categorical

mix (EH) mixed secondary Structure Binary categorical

coil (C) coil secondary Structure Binary categorical

pln planarity Continuous numeric

intf Output class label Binary categorical

Note: See text for description of how these features are calculated.
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the atoms of the patch and then undertaking PCA. The first and se-

cond primary components of the PCA define the plane of best fit.

2.4 Machine learning
All machine learning was performed using WEKA version 3.6.3

(Hall et al., 2009; Witten et al., 2011).

All supervised classifiers implemented in WEKA 3.6.3 were

trained on the training dataset with a patch radius of 9 Å and eval-

uated using 10-fold cross-validation. It was found that no available

machine learning method significantly outperformed the others (see

Supplementary Fig. S6) and thus two models were carried forward

for further testing: neural networks and random forests. Neural net-

works were chosen owing to their previous successful application in

the field and random forests because of their success in other biolo-

gical problems.

Neural networks were implemented using the ‘MultilayerPerceptron’

method in WEKA. Models with 5 hidden layer nodes (H¼5) and 50 hid-

den layer nodes (H¼50) were tested, but no improvement in perform-

ance was seen using H¼50, while a 10-fold increase in the time to build

the model was required.

The random forest algorithm implemented in WEKA was trained

using 100 trees. 150 trees was also tested, but the improvements

seen were too small to justify the increased time taken to train the

forest. When there are p input features, it is recommended to use a

feature bag size (Mtry) of
ffiffiffi
p
p

(Hastie et al., 2009) and thus a feature

bag size of 3 was chosen. Additionally, a range of feature bag sizes

from 2 to 9 were tested but no improvement was seen.

Because SSp (equation 7) is a nominal value that has four pos-

sible values, WEKA converts it into four binary attributes. For both

FEP and homologue scores, if insufficient sequences are available

for the alignment to be performed, then missing values will be

passed to the machine learning. WEKA deals with missing values for

neural networks by imputing a value based on the mean of the distri-

bution, while for random forests it uses the ‘fractional instances’

method. When a feature is used to split instances, any instances with

missing features are sent to all child nodes, but weighted at each

node according to the proportion of the number of instances at that

node without a missing value and the total number of instances with

no missing values across all child nodes.

The effect of using patch radii of 9 and 14 Å was tested, as well

as different combinations of feature types.

2.5 Method performance measures
In order to evaluate the performance of a binary classifier, a number

of different measurements can be used (see Supplementary Table

S1). Overall, the Matthews’ Correlation Coefficient (MCC), which

describes the correlation between the predicted and actual labels, is

the most comprehensive measure since it is calculated using all four

outcomes. However, MCC can hide an important trade-off between

Sensitivity (the fraction of positive cases correctly labelled as posi-

tive) and Precision (the fraction of positively labelled cases that are

actually positive, also known as the Positive Predictive Value) or

Specificity (the fraction of negative cases correctly labelled as

negative).

2.6 Mapping from patch to residue-level predictions
In order to compare the IntPred method with existing methods,

residue-level predictions must be produced. This is done by mapping

the prediction label of a patch to its central residue. Because only

those residues that have an RASA > 25% are defined as patch

centre residues, those surface residues with an RASA between 10

and 20% will have no prediction label. Thus, in order to predict

across all surfaces residues, these low-RASA surface residues are al-

ways predicted as non-interface.

2.7 Running existing methods
Interface predictions using IntPred were then performed using the

independent test dataset described in the Materials and Methods.

Several previously published protein–protein interface prediction

tools were also assessed using this dataset: ProMate (Neuvirth et al.,

2004) was accessed through the web page (bioinfo.weizmann.ac.il/

promate/) for batch queries using the default combination of scores

and extracting amino acids coloured according to their probability

of comprising an interface (set as the temperature factor in the PDB

file). SPPIDER (Porollo and Meller, 2006) predictions were obtained

from sppider.cchmc.org/, using the SPPIDER II classifier. PIER

(Kufareva et al., 2007) predictions were obtained from abagyan.ucs-

d.edu/PIER/pier.cgi as downloadable comma-separated value files.

meta-PPISP (Qin and Zhou, 2007) and PINUP (Liang et al., 2006)

scores used within meta-PPISP were both obtained from pipe.scs.f-

su.edu/meta-ppisp.html.

Each surveyed classifier provided residue-level predictions as nu-

merical values. The same thresholds used in the original papers were

used for all the methods to indicate a positive prediction (residue

predicted as interface): p>70 for ProMate; predicted by � 5 neural

networks for SPPIDER; score � 30 for PIER; and p>0.34 for meta-

PPISP.

3 Results

3.1 Overall performance
Cross-validated performance was evaluated using different patch

sizes and with different subsets of feature types. Table 2 shows the

performance of the random forest which significantly out-performed

the neural network (see Supplementary Table S2). In particular, a

random forest trained on patches with a radius of 14 Å, with all fea-

tures as input, performs best and this random forest model was titled

‘IntPred’ and carried forward for further testing.

The predictive performance of IntPred on the surface residues of

the independent test set in comparison with existing methods is

shown in Table 3. IntPred gives the highest precision of all methods,

and thus one can be more confident that residues predicted as inter-

face by IntPred are likely to be correct. Though SPPIDER has a

lower precision and specificity than IntPred, its higher sensitivity

leads to it having the highest MCC score of all the methods tested.

However, SPPIDER also has the lowest specificity of all the methods

tested. Thus, when comparing IntPred and SPPIDER, there is an ob-

vious trade-off between sensitivity and precision/specificity: IntPred

is more likely to miss a true interface residue than SPPIDER, but is

more likely to be correct when it does predict a residue as interface.

In contrast, SPPIDER over-predicts interface residues, leading to

more true interface residues being correctly labelled, but also more

non-interface residues being incorrectly labelled.

Table 3 also shows the patch-level performance of IntPred on the

independent test set. In comparison with residue-level prediction,

patch-level performance is markedly better: specificity is similar, but

precision is much higher. However, for patch-level predictions, only

non-interface and interface patches were used to calculate evalu-

ation statistics, ignoring predictions on U-labelled (rim) patches.

Examples of predictions for the light chain of mouse antibody

HyHEL-5 (PDB code 1yqv chain L), Bos taurus actin-related protein

2/3 complex subunit 3 (PDB code 3dxk chain E), Felis silvestris
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catus hemoglobin-b chain (PDB code 3d4x, chain B) and a poorer

prediction for Salmonella typhimurium uridine phosphorylase (PDB

code 3dps, chain A) are shown in Supplementary Figures S7–10.

3.2 Obligate and transient complexes
The dataset used in training and evaluating IntPred was derived

from the protein databank. Consequently it could be argued that

many of these structures are obligate complexes, whose interface

may be rather different from those in transient complexes (obligate

complex interfaces tend to be more hydrophobic, dominated by aro-

matic residues, more conserved and larger). Indeed obligate inter-

faces are of less interest to a predictor that relies on structure since

information on the interaction is already available in the crystal

structure.

Consequently, a dataset derived from the independent test set,

separated into obligate and transient complexes was evaluated using

MCC with IntPred and the other five popular predictors (Table 4).

IntPred does slightly better on obligate complexes than it did

overall (MCC¼0.381 on obligate; MCC¼0.370 overall) and per-

forms somewhat worse on transient complexes (MCC¼0.303).

Notably, using MCC as an evaluator, IntPred maintains its second-

ranked position on both obligate and transient complexes while

SPPIDER again performs best. The performance of SPPIDER shows

a similar trend to IntPred, being better on obligate complexes than

overall (MCC¼0.426 on obligate; MCC¼0.410 overall) and some-

what worse on transient complexes (MCC¼0.311). Interestingly

the drop in performance for SPPIDER on transient complexes is ra-

ther larger than that seen for IntPred closing the gap in their MCC

performance.

In our evaluation, ProMate performs particularly badly overall,

but has been trained specifically for use on transient complexes. As

expected, its performance is even worse when tested only on obli-

gate complexes, but increases by a factor of >2.8 when tested only

on transient interfaces. Nonetheless, it remains the worst performing

method in this evaluation.

4 Discussion

In this study, we have presented IntPred, a random forest machine

learning predictor for the prediction of protein–protein interface

sites. The method can predict at both the surface-patch level and the

residue level. Testing of IntPred, as well as five popular methods, on

an independent test set showed that IntPred outperformed all exist-

ing methods except SPPIDER, using MCC as a comparator.

However, there is a sensitivity vs. precision/specificity trade-off be-

tween IntPred and SPPIDER such that one may be more suitable

than the other given the problem in hand. If false positives are less

tolerated than false negatives, then IntPred is preferable, whilst

SPPIDER is more suitable for the converse. As with SPPIDER,

IntPred performance assessed by MCC on a dataset of obligate com-

plexes is slightly better than the overall performance, while on tran-

sient complexes it is somewhat worse. Nonetheless, the performance

of IntPred on transient complexes is greater than the performance of

all other methods (with the exception of SPPIDER) on obligate com-

plexes or overall.

While the overall prediction performance is comparable with

SPPIDER (trading sensitivity for precision/specificity), the compari-

son of random forests with neural networks (shown in

Supplementary Table S2) illustrates the higher performance of ran-

dom forests on this type of problem. Random forests are robust to

over-prediction when non-orthogonal features (such as the two

measures of conservation) are used as inputs.

Performance may be improved in the future by combining both

IntPred and SPPIDER, along with other methods, in order to a pro-

duce a meta-predictor. The fact that the gap in MCC between

IntPred and SPPIDER on transient complexes is much reduced sug-

gests that, as the datasets increase in size, we should be able to train

Table 2. Random forest performance

Attributes Performance

Patch radius C FEP CHOM ACC PREC SPEC SENS MCC F

SR � � 0.755 0.537 0.944 0.194 0.208 0.285

SR � 0.749 0.502 0.939 0.184 0.184 0.269

SR � 0.737 0.453 0.913 0.213 0.170 0.290

SR 0.710 0.370 0.875 0.218 0.114 0.274

9 � � 0.760 0.679 0.906 0.439 0.398 0.533

9 � 0.752 0.665 0.906 0.413 0.373 0.509

9 � 0.750 0.651 0.894 0.433 0.374 0.520

9 0.733 0.608 0.881 0.405 0.327 0.486

14 � � 0.795 0.747 0.894 0.604 0.528 0.668

14 � 0.780 0.725 0.888 0.573 0.492 0.640

14 � 0.780 0.718 0.882 0.582 0.492 0.643

14 0.764 0.691 0.871 0.555 0.453 0.616

Note: CFEP ¼conservation score calculated over functionally equivalent

proteins from FOSTA, CHOM ¼conservation scores calculared from homo-

logues collected by a BLAST search of UniProtKB/SwissProt. Structural attri-

butes were used in all instances. SR, single-residue patches; ACC, accuracy;

PREC, precision; SPEC, specificity; SENS, sensitivity; MCC, Matthews’ cor-

relation coefficient; F, F-measure. The highest score in every column is shown

in bold. Mtry (the number of randomly chosen attributes in every split) was set

to 3 and T (the number of trees) was set to 100 in all cases, these having been

found to provide the best performance (data not shown). All scores are aver-

ages over 10-folds of cross-validation.

Table 3. Benchmarking of IntPred and other previously published

general PPI methods using an independent test set

Method ACC PREC SPEC SENS MCC F

ProMate 0.780 0.401 0.987 0.031 0.058 0.057

PIER 0.754 0.511 0.932 0.214 0.207 0.302

SPPIDER 0.759 0.472 0.783 0.676 0.410 0.556

PINUP 0.772 0.459 0.927 0.220 0.199 0.298

meta-PPISP 0.755 0.499 0.902 0.300 0.245 0.375

IntPred 0.811 0.564 0.916 0.411 0.370 0.473

IntPred (patch) 0.771 0.803 0.922 0.522 0.500 0.633

Note: ACC, accuracy; PREC, precision; SPEC, specificity; SENS, sensitiv-

ity; MCC, Matthews’ correlation coefficient; F, F-measure. The highest score

in every column is shown in bold. IntPred refers to the random forest model

trained on all features and 14 Å-radius patches mapped to a residue-level pre-

diction while IntPred (patch) refers to performance at the patch level.

Table 4. Comparison of the performance of methods (assessed by

MCC) on obligate and transient complexes

MCC

Method Obligate complexes Transient complexes

ProMate 0.037 0.166

PIER 0.288 0.217

SPPIDER 0.426 0.311

PINUP 0.205 0.235

meta-PPISP 0.257 0.268

IntPred 0.381 0.303

Note: Overall performance is show in Table 3.
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a version of IntPred solely on transient complexes and achieve better

performance than SPPIDER. We also hope to exploit larger func-

tional families (FunFams) developed by the Orengo group to im-

prove the conservation score calculation (Das et al., 2015).

The source code for IntPred is available at github.com/

ACRMGroup/intpred/and IntPred is available to run via a web-

server at www.bioinf.org.uk/intpred/.
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