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Abstract Postseismic recovery within fault damage zones involves slow healing of coseismic fractures
leading to permeability reduction and strength increase with time. To better understand this process,
experiments were performed by long-term fluid percolation with calcite precipitation through predamaged
quartz-monzonite samples subjected to upper crustal conditions of stress and temperature. This resulted in a
P wave velocity recovery of 50% of its initial drop after 64 days. In contrast, the permeability remained
more or less constant for the duration of the experiment. Microstructures, fluid chemistry, and X-ray
microtomography demonstrate that incipient calcite sealing and asperity dissolution are responsible for the P
wave velocity recovery. The permeability is unaffected because calcite precipitates outside of the main
flow channels. The highly nonparallel evolution of strength recovery and permeability suggests that fluid
conduits within fault damage zones can remain open fluid conduits after an earthquake for much longer
durations than suggested by the seismic monitoring of fault healing.

1. Introduction

Rock properties in upper crustal fault zones (down to 5 km depth) change during and after an earthquake,
such as seismic velocities [Peng and Ben-Zion, 2006; Kelly et al., 2013; Olivier et al., 2015], fluid flow properties
[Yaltirak et al., 2005], and fluid composition [Claesson et al., 2007]. After, in the postseismic and interseismic
phase, these properties restore toward their preseismic state [Li et al., 1998; Peng and Ben-Zion, 2006;
Claesson et al., 2007; Brenguier et al., 2008; Kelly et al., 2013; Wästeby et al., 2014]. These changes are caused
by earthquake-related fracture damage and postseismic healing or recovery of such damage. Such recovery
causes the rock to strengthen, but it might also reduce permeability within the fault zone. Consequently,
increasing pore fluid pressure leads to effective weakening of the fault [Sibson, 1990]. Moreover, within
crustal fault zones, postseismic recovery may be correlated to transient postseismic creep [Reilinger et al.,
2000; Lyons and Sandwell, 2003; Cakir et al., 2012]. Thus, postseismic and interseismic recovery of fault rocks
in the upper crust is a complex interplay between mechanical, hydrological, and chemical processes that
accommodate permanent strain and influence fault strength and the recurrence time of earthquakes
[Gratier and Gueydan, 2007].

Contributions to postseismic healing come from both the fault core and the fault damage zone. In the
fault core healing involves compaction of “loose” fragmented material and gouge by grain size dependent
mechanisms that act relatively fast [e.g., Renard et al., 2000; Bos and Spiers, 2002; Tenthorey and Cox, 2006;
Niemeijer et al., 2008; Pluymakers et al., 2014; Chen et al., 2015a, 2015b]. The fault core is therefore often
considered as an impermeable barrier [Sibson, 1990; Faulkner et al., 2010], except for a short period after
a seismic event. By contrast, the fault damage zone can be considered as an elastic medium containing
fractures; thus, the healing of these fractures controls the strengthening of the fault damage zone.
Besides, the fault damage zone acts as a fluid conduit and affects the hydrological properties of the entire
fault zone.

Therefore, it is vital to understand the healing process responsible for strengthening of the fractured medium
while also understanding how the recovery process influences fluid flow in the fault zone. At least, four recov-
ery mechanisms have been suggested.

1. Mechanical time-dependent recovery of microscale cracks by backsliding on wing crack geometries
[Brantut, 2015]. Microscale pressure solution processes accompany the backsliding.
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2. “Self-healing”—sometimes called “healing,” not to be confused with the term healing for large-scale
restrengthening or recovery—involves surface energy-driven closure of microscale cracks [e.g., Brantley
et al., 1990; Brantley, 1992].

3. Sealing by mineral precipitation, resulting in fracture sealing that often consist of calcite or quartz (experi-
ments by, e.g., Lee and Morse [1999], Morrow et al. [2001] Dobson et al. [2003], and Jones and Detwiler
[2016]). Deviatoric stress does not directly influence this mechanism, but deviatoric stress may indirectly
cause fracture opening or closure.

4. Fracture closure by pressure solution creep. Here deviatoric stress causes local differences in the solubility
of a material, causing local dissolution and precipitation. This also accommodates deformation at the
grain scale [Renard et al., 2000; Gratier and Gueydan, 2007; Gratier et al., 2014].

The four mechanisms described above can occur simultaneously, and their dominance depends, among
other parameters, on the size of the fractures [Gratier and Gueydan, 2007]. For instance, mechanisms (1)
and (2) occur in small micrometric fractures at short time scales, while (3) and (4) can close fractures on
centimeter-meter scale and act on longer time scales. All mechanisms are enhanced by, or necessitate the
presence of, an aqueous fluid phase in the rock. To understand the full extent of postseismic recovery in
the damage zone, each mechanism should be studied separately.

Here mechanism (3), sealing by precipitation, is targeted. The goal is to study the evolution and coupling of
hydrological properties and mechanical strengthening during the sealing of a fracture network in a natural
rock sample. To do so, laboratory experiments were performed on predamaged and microfractured quartz
monzonite samples. The samples were subjected to prolonged percolation of a calcite-saturated fluid under
upper crustal conditions. The fluid flow properties and the fluid chemistry were monitored during the experi-
ment. X-ray microtomography scans and Pwave velocity measurements were performed before and after the
experiment. The obtained data set provides unique insights into the first stages of fracture sealing and the
effect it has on the evolution of permeability and elastic properties after an earthquake.

2. Method

Quartz-monzonite was used as sample material (see Aben et al. [2016] for an extensive description of the
material). The low porosity of the undamaged material (0.6–0.9%) ensures that any permeability can be
ascribed to the introduced fracture damage. Two cylindrical samples (labeled QMP3 and QMP4) with a length
and diameter of 2 cm were prepared. The ends were grinded parallel up to 0.006 mm before the samples
were jacketed to prevent premature failure. Dynamically induced microfracture damage was created by uni-
axial high strain rate loading using a “mini”-Split Hopkinson Pressure Bar at the ISTerre laboratory, Grenoble. A
detailed description of the method and the specifications of this apparatus are provided in Aben et al. [2016].
The rock was subjected to successive loadings at relatively low stress (i.e., below the pulverization threshold)
to ensure better control on the amount of damage, similarly to the experiments by Aben et al. [2016]. Such
experiments result in a pervasive sample-wide fracture network without losing the cohesion of the rock
and without accumulating of large amounts of shear along the fractures [Aben et al., 2016]. For samples
QMP3 and QMP4, such a well-defined sample-wide fracture network had been developed after three and
eight successive loadings, respectively. The specific loading conditions of these loadings are given in support-
ing information Table S1.

The recovery experiments were performed at the ISTerre laboratory, Grenoble, in two triaxial pressure vessels
(numbered cell 1 and cell 2) containing pore fluid systems connected to an autoclave and high-pressure
liquid chromatography (HPLC) pump. For more details on these cells, see Hellmann et al. [2002], Le Guen
et al. [2007], Richard et al. [2014a], and supporting information Text S2.

The duration of the healing experiments was 64 days, consisting of three phases: (1) dry loading for 7 days, (2)
percolation of deionized water for 10 days, and (3) percolation of a calcite-saturated fluid for the remainder of
the time. The confining pressure (10 MPa), axial stress (16 MPa), temperature (90–100°C), the flow rate of the
HPLC pump (3 mL/h), and the downflow fluid pressure (3.9 MPa) were kept constant over time, while the
upstream fluid pressure was allowed to vary for both cells individually. All of these conditions were continu-
ously monitored over the course of the experiment. Because the HPLC pump and autoclave were connected
to both cells in parallel, an extra mass flowmeter was emplaced in between the autoclave and cell 2 to obtain
individual flow rates for each cell. The permeability was calculated as follows:
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κ ¼ Q μ l
A ΔP

where κ is the permeability (m2), Q is
the flow rate (m3/s), μ is the dynamic
viscosity (assumed constant and
equal to 8.9 × 10�4 Pa s), l is the
length of the sample (m), A is the
surface area of the sample perpendi-
cular to the flow (m2), and ΔP is the
difference between upstream and
downstream fluid pressure (Pa).

The calcite-saturated fluid for phase 3
was continuously prepared in the
autoclave system. The autoclave was
filled with a sufficient amount of
crushed and sieved Remollon calcite
(grain size between 0.100 and
0.080 mm) and deionized water. The
system was then pressurized using
CO2 gas, increasing the solubility of
calcite. Deionized water was pro-
vided continuously by the HPLC
pump, thereby forcing the calcite-
saturated fluid into the samples. At
regular intervals, extra CO2 gas was
added to ensure abundant CO2 was
present at the top of the autoclave.

The fluid, prepared at room temperature (20–25°C), was heated up within the triaxial cells (90–100°C). This
caused a solubility drop of calcite, yielding calcite precipitation of up to 1.7 g/L [Miller, 1952; Segnit et al.,
1962; Coto et al., 2012]. The fluid chemistry was measured regularly by inductively coupled plasma atomic
emission spectroscopy analysis: every 1–2 weeks for autoclave fluids and every 2–3 days at the outlets of
the cells.

Low-resolution X-ray computed tomography scans (voxel size 15 μm) were performed at the 3S-R laboratory,
Grenoble, on both samples before and after the recovery experiment. In addition, one high-resolution scan
(voxel size 2 μm) was obtained on postrecovery sample QMP3 at the beamline ID19 of the European
Synchrotron Radiation Facility, Grenoble. The P wave velocity in each sample was measured before and after
the recovery experiment, without confining pressure, and used as a proxy of damage [Brantut, 2015]. Finally,
the samples were cut, their surface polished, and the microstructures were studied using a scanning electron
microscopy (SEM).

3. Results

The P wave velocities measured had dropped from 5600 m/s to 4230 m/s (sample QMP4) and to 4450 m/s
(sample QMP3) after fracture damage had been introduced (Figure 1a). The dissipated energy density, which
corresponds to the amount of elastic strain energy transformed into new fractures during the successive
loadings, was 0.35 and 0.65 MJ/m3, respectively, for samples QMP4 and QMP3. The postrecovery velocities
after the flow-through experiment show a significant increase from 4450 m/s to 4929 m/s (sample QMP3)
and from 4230 m/s to 5120 m/s (sample QMP4) after 64 days (Figure 1a). This shows that the more damaged
sample QMP3 has recovered less than the less damaged sample QMP4.

The mechanical and hydrological data are presented in detail in the supporting information Text S2. The
permeability evolution over time was calculated from these data (see Figures 1b and S2 for a more detailed
graph). The permeability of both samples was roughly similar, with an initial value of 10�16 m2. The perme-
abilities varied within 1 order of magnitude over time, but we could not observe an unambiguous overall

Figure 1. (a) P wave velocity measurements of the two tested samples
before and after damaging, and after 64 days recovery. (b) Permeability
measured in situ during the recovery experiments. The gray bars indicate the
time change of the various stages of the experiment. The data are filtered to
remove noise; see supporting information Text S2 for the raw data
(mechanical data and hydrological data).
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increase or decrease of permeability during damage recovery (Figure 1b). The permeability variations, due to
fluctuations in the fluid pressure and flow rate, are caused by the setup (e.g., changing pure water percolation
to calcite saturated fluid) and caused by temperature fluctuations in the laboratory [Aben, 2016]. High-
frequency noise (either on the scale of hours or on seconds) is explained by degassing of the fluid, since
CO2 comes out of dissolution during the heating of the fluid.

The sample-sized fracture network is a volume revealed by the lower resolution X-ray tomography scans
(Figures 2a–2c). During the recovery experiment, the individual sample-scale fractures have undergone a
large decrease in fracture volume. The major contributor of the volume decrease was reduction of fracture
aperture by mechanical closure. A smaller contribution came from small particles that form bridges or

Figure 2. (a) X-ray microtomography 2-D images in sample QMP3, perpendicular to the loading and flow directions (top)
before and (bottom) after the recovery flow through experiment. White arrows point to calcite sealing in the fractures.
(b) X-ray microtomography 2-D images perpendicular to the loading and flow direction of sample QMP4, similar to Figure 2a.
(c) Three-dimensional reconstruction of the open fracture volume in sample QMP3 before (blue) and after (red) the recovery
experiment. Note the small rectangular holes in the red volume, caused by calcite patches. (d) SEM images of sample QMP3,
perpendicular to the loading and flow directions. Fracture edges have been chipped because of polishing. Large euhedral
calcite crystals are recognized in the main fractures, as well as iron oxide patches derived from the experimental system.
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props in the fracture volume, apparent in the larger fractures (Figures 2a and 2b). The high-resolution X-ray
tomography data confirms that such particles are calcite precipitates that also partly fill fractures with smaller
apertures (tomography images in Figure a). SEM images show that these particles are mostly euhedral calcite
crystals (Figure 2d). The calcite patches often spans the whole fracture aperture, but their abundance is not
sufficient to seal an entire fracture.

Partial calcite sealing does not occur randomly throughout the fracture network, in fact two geometric rela-
tions were observed: (1) preferential precipitation of calcite on certain mineral species of the host rock (e.g.,
pyroxene) and (2) a relation between calcite precipitation, fracture geometry, andmacroscopic fluid flow. The
first relation is illustrated by a major fracture that crosscuts a pyroxene grain (Figure 3a). Initially, the fracture
aperture inside and outside this grain is similar. After the experiment, the fracture within the grain has been
fully sealed. In contrast, the fracture outside this grain remained open.

The relationship between fracture geometry, macroscopic fluid flow, and partial sealing is best illustrated in
3-D reconstructions of the high-resolution tomography data. On the scale of individual fractures, calcite is
observed near small fragments or props of the host rock that were displaced into the open fracture volume
(Figure 3b). When the macroscopic flow direction is considered, it becomes apparent that the calcite crystals
always precipitated downstream of such props. Similarly, calcite precipitated in narrow zones such as fracture
steps and bends, as well as downstream of such flow barriers (Figure 3c). A somewhat larger-scale reconstruc-
tion shows that a more complex fracture system also facilitated precipitation of calcite (Figure 3d). At the bot-
tom of this 3D reconstruction, calcite is scarce in fractures with a simple geometry. Toward the top, the
fracture network becomes more complex where it terminates near a biotite grain. Steps, fragments and inter-
sections are more abundant, as well as clusters of calcite crystals precipitating downstream of props
and bottlenecks.

Chemical analyses reveal that the fluid at the outlet of the percolation system has been enriched with the
elements K, Si, and in a lesser degree Na, relative to the injected fluid. This element signature was observed
both during percolation of deionized water and of the calcite-rich fluid with CO2. Over time, the dissolved
amount of these species decreased slightly. After the onset of calcite-rich fluid percolation, the fluids within
the autoclave and the outlets contained a large concentration of Ca, as well as larger concentrations of Sr and
Mg. However, the data quality is not sufficient to calculate how much calcite has precipitated within the
samples and to perform a full mass balance calculation. More detail on the fluid chemistry is provided in
supporting information Figure S3.

4. Discussion: Healing Mechanisms and Permeability

The following interpretations are drawn from the data set presented above: (1) the samples have undergone
recovery, as evidenced by the increase in Pwave velocities (Figure 1a). (2) Fracture volume in the samples has
decreased by permanent fracture closing and by calcite precipitation (Figure 2). (3) Permeability remained
more or less constant over the course of the experiment (Figure 1b). This raises the key question why the
permeability remained near stable, while the elastic constants of the rock recovered and the fracture
volume decreased.

The increase in P wave velocities represents a proxy for bulk recovery of the samples. The recovery is attrib-
uted to the permanent closure of fractures, for which two contributions are identified: (i) the deformation and
collapse of asperities on the fracture walls, either mechanically by local stress concentrations or chemically by
dissolution and smoothing; and (ii): incipient calcite sealing of the fracture space.

Although deformation of asperities within the fractures is not supported by microstructural observations, dis-
solved K, Si, and in a lesser extent Na strongly suggest the dissolution of K-feldspar [Busenberg and Clemency,
1976] and possibly other minerals. The process of fracture closure by asperity dissolution has been observed
by Beeler and Hickman [2004]. The rate of this process slows down nonlinearly over time, which is attributed
to three mechanisms [Beeler and Hickman, 2004].

1. The first mechanism is the chemical potential of the fluid to dissolve chemical species from all free faces in
the fracture. The dissolution rate decreases when the fluid reaches saturation of the chemical species, but
also when the fresh feldspar surfaces are getting progressively weathered [Busenberg and Clemency, 1976;
Hellmann, 1994]. Here continuous fluid flow reduces the effect of chemical saturation.
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2. The second mechanism is the coarsening potential or Ostwald ripening, driven by the minimization of
surface energy. The contribution of this small-scale mechanism is minimal on the scale of the sample-
traversing fractures.

Figure 3. (a) Two-dimensional X-ray microtomography images (15 μm resolution) before and after sealing showing a frac-
ture crossing a pyroxene grain. High-resolution (2 μm) 3-D reconstruction reveals that the postsealing fracture is open on
both sides of the grain but is sealed within the grain. The red bar indicates the location of the same fracture interval in all
three images. (b) High-resolution 3-D reconstruction showing the geometric relation between a prop in the fracture
volume, precipitation of calcite, and the flow direction. (c) Three-dimensional reconstruction revealing precipitation of
calcite within a relatively narrower fracture step. Same subvolume as Figure 3b. (d) Relation between flow direction, fracture
geometry, and calcite deposition on a larger scale. Fracture geometry is straightforward at the bottom of the image; toward
the top complexity increase and calcite precipitation are more abundant. Three-dimensional reconstruction from high-
resolution tomography data.
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3. The third mechanism is the pressure solution potential due to normal stress acting on the asperities and
props. This causes a chemical potential gradient between free and stressed surfaces of the asperities that
can, however, slow down over time by roughness reduction and contact area increase.

Recovery of the P wave velocity is also attributed to the formation of calcite precipitates (Figure 2) which
often form in fracture steps (Figures 3c and 3d). Most fractures are parallel to the axes of the cylindrical
sample, which is similar to the measurement direction of the P waves. Thus, parts of the fracture steps are
oriented at an angle to the wave path. Such kinks, and the sealing of them, have a larger influence on the
P wave velocity than parallel oriented fractures.

The contribution to the P wave velocity recovery of the other three recovery mechanisms proposed in
section 1 (mechanical backsliding, self-healing and pressure solution) should be assessed as well. The rela-
tively low temperature in combination with the rock mineralogy rules out a widespread contribution of
pressure solution. Besides, supporting microstructural evidence is lacking. However, mechanical backsliding
[Brantut, 2015] and self-healing of microscale fractures [Brantley et al., 1990; Brantley, 1992] might occur
pervasively and therefore contribute significantly to the P wave velocity reduction. Again, microstructural
evidence is lacking, but it cannot be ruled out neither since the microfractures might be smaller than the
resolution of themicrotomography scans. This illustrates that the various healingmechanisms cannot be fully
isolated from each other in recovery experiments on natural rock samples, and that recovery of damaged
rocks in nature is a complex interplay between various healing mechanisms.

Nonetheless, we propose two conceptual mechanisms to explain why the permeability remained more or
less constant while fracture volume was reduced: the location at which the calcite precipitates and the
competition between dissolution of asperities and the growth of calcite.

4.1. The Location of Calcite Precipitation Within the Fracture

Irregularities within the fracture space, such as props, kinks, and bends (Figures 3b–3d), cause a heteroge-
neous distribution of the fluid flow through the fracture space. The fluid flow velocity is lower within and
downstream of these regions. Hence, the contribution of these sheltered regions to the overall permeability
of the fracture network is low. Thus, calcite that precipitates within these regions does not contributemuch to
the permeability reduction (Figure 4a).

The geometric relation between sheltered regions, main fluid flow pathways, and precipitation of a solid
phase (Figure 4a) has been observed previously. For instance, computer simulations of calcite precipitation
in a Berea sandstone show that precipitation occurred in low fluid flow zones in pores, adjacent to the main
flow path traversing the pore [Jiang and Tsuji, 2014]. Experiments where calcite precipitated in a single frac-
ture plane showed that the largest calcite patches precipitated adjacent to the preferential main fluid flow
pathways [Jones and Detwiler, 2016]. Precipitation rates were much lower within the main flow path, effec-
tively inhibiting complete sealing of the fracture. Hence, the location of precipitation is controlled by the
trade-off between advection (i.e., the flux of chemical species carried by the fluid flow) and diffusion of the
chemical species toward the precipitating mineral. As a consequence, the permeability does not change.

However, in the experiments performed by [Jones and Detwiler, 2016] the precipitation of calcite and the pre-
ferential fluid flow pathways were controlled by predetermined small-scale reaction sites on the fracture
plane. These reaction sites consisted of pre-experimental calcite. Other sealing experiments in simpler geo-
metries contain similar seeding locations [Hilgers and Urai, 2002; Nollet et al., 2006; Noiriel et al., 2012].
Epitaxial precipitation on a seeding location is energetically favorable over nucleating new crystals on other
surfaces [Teng et al., 2000]. Epitaxial growth and nucleation of new crystals occur simultaneously only when
supersaturation in a fluid is very high [Teng et al., 2000; Noiriel et al., 2012]. Initially present calcite crystals are
lacking in our samples, although some minerals act as a preferential seeding location (Figure 3a). Therefore,
the location of precipitation is mostly determined by the trade-off between advection and
diffusion (Figures 3b–3d).

4.2. Competition between Asperity Dissolution and Calcite Growth

The fracture aperture decreases over time by, among others, dissolution of props and asperities. However,
incipient calcite precipitation competes with fracture closure as follows. Initially, the fracture is kept open
by the props and asperities (Figure 4b, step 1). These props and asperities are slowly dissolved, while their
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role is adopted by the calcite crystals
growing in their flow shadow (Figure 4
b, steps 2 and 3). The calcite crystals
cause the fracture to remain open, and
they relieve the stress on the asperities,
which slows down their dissolution.

If the recovery would continue beyond
the duration of the experiment, the frac-
tures would continue to be sealed by cal-
cite. It is suspected that this will
eventually cause the fracture space to
become more and more compartmenta-
lized and eventually the percolation
threshold will be approached. Thus, the
strength recovery of fractured rock is fas-
ter and more gradual over time relative
to the permeability evolution, which
could be more abrupt later in time.

5. Discussion: Implications for
Postseismic Fault
Strength Recovery

The upscaling of the recovery rates—in
the order of months—presented here
necessitates some discussion regarding
the experimental conditions. The
mechanical loading conditions and pore
fluid pressures are realistic values for
upper crustal conditions (10 MPa confin-
ing pressure equals roughly a depth of
350 m). The presence of CO2 and dis-
solved calcite depends on the specific
geological setting of a fault; nonetheless,
some studies show fault zones that have
been penetrated with CO2-rich fluids
[Miller et al., 2004; Smith et al., 2008].
However, the degree of oversaturation
of calcite that was imposed in the experi-
ment is much larger than in natural fault
zones. Therefore, the recovery rate by
calcite sealing is overestimated and will
be in the order of years to decades
rather than months. Timescales in the
order of years to decades for postseismic
recovery are similar to recovery rates in
shallow fault zones, obtained by geo-
chemistry [Claesson et al., 2007;
Wästeby et al., 2014] and from seismolo-
gical observations [Li et al., 1998, 2003; Li
and Vidale, 2001].

The experimental results suggest that seismic velocities are a poor proxy of postseismic recovery of a fault
zone. Even if the seismic velocity returns to its pre-earthquake value in a few months [e.g., Brenguier et al.,

Figure 4. (a) High-resolution tomography images and simplified inter-
pretations showing (left) a 2-D cross section of a fracture and (right) a
3-D fracture volume. Calcite patches are highlighted by the white arrows
(2-D tomography image) and by the red volumes (3-D tomography
reconstruction). In the sketch, calcite precipitations are highlighted in red
as well. Flow barriers like fracture steps and props reduce the local frac-
ture aperture, forcing the main flow around it. This causes a zone of
reduced flow instream and downstream of the barrier. (b) The competi-
tion between prop or asperity dissolution and calcite growth in a cross
section of a fracture. The first two time steps show dissolution dominated
fracture closing. The third step shows calcite crystals large enough to
adopt the role of the props, slowing down or inhibiting further closure of
the fracture.
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2008], a fault damage zone remains an open fluid conduit for much longer, for instance, during the first few
years after a seismic event, since incipient fracture sealing by mineral precipitation causes progressive
strengthening that is not accompanied with a parallel reduction of permeability. It should be noted that
the relationship between postseismic strengthening and permeability could be different if another
recovery mechanism is dominant instead of sealing, such as pressure solution. In such case, the recovery
rate would depend on the composition of the lithology and pore fluids. For relatively large size fractures
within a fault damage zone, sealing by fluid flow reproduced in this study is the most representative
mechanism for what happens in nature. The resulting fluid flow, lasting several years after an earthquake,
probably contributes to the long-term progressive weakening of fault gouge by activating fluid reactions
leading to the development of clays [e.g., Richard et al., 2014b]. Conversely, upper crustal fault damage
zone would remain a conduit to dissipate pressurized fluids at depth for a longer duration as well.

6. Conclusion

Experiments performed in this study were designed to mimic part of the seismic cycle: first, coseismic dama-
ging resulted in a sample-traversing fracture network. This results in a decrease in Pwave velocity (Figure 1a).
Next, postseismic recovery was achieved by exposing the sample to percolation of calcite-saturated fluids for
2 months, under upper crustal conditions. Recovery was measured as an increase in the P wave velocity after
the experiment (Figure 1a). Two recovery mechanisms are proposed: mechanochemical reduction of the
fracture aperture caused by dissolution and collapse of asperities, and the precipitation of calcite within
the fracture space, leading to incipient sealing (Figure 2). Permeability, however, remained more or less
constant during the recovery experiment (Figure 1b). This is attributed to two effects. On the one hand,
the stress-supporting role of calcite crystals slows down the reduction of the fracture aperture (Figure 4b).
On the other hand, calcite tends to precipitate in zones of the fracture volume away from the main flow path
leading to only small changes in the overall permeability of the system (Figures 3 and 4a). These results
suggest that seismic velocity measurements on postseismic recovery of fault zones do not constrain the
reduction of permeability very well, and upper crustal fault zones (<5 km depth) can remain open conduits
for fluids for a longer duration after a seismic event.
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