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A B S T R A C T

Throughout the course of a forensic investigation following an explosive attack, the identification and
recovery of tissue fragments is of extreme importance. There are few universally accepted methods to
achieve this end. This project aims to explore this issue through the examination of the spatial
distribution of the tissue fragments resulting from an explosive event. To address this, a two stage pilot
study was conducted: first, a series of controlled explosions on porcine carcases was undertaken. Second,
the data produced from these explosions were used to chart the spatial distribution of the tissue debris. In
the controlled explosions, 3 kg military grade explosive was chosen to create the maximum amount of
fragmentation; this level of explosive also prevented the complete disappearance of forensic evidence
through evaporation. Additionally, the blast created by military grade explosive is highly powerful and
would mean that the maximum possible distance was achieved and would therefore allow the recorded
distances and pattern spread to be a guideline for forensic recovery of associated with an explosive
amount of an unknown size and quality. A total station was employed to record the location of the
resulting forensic evidence, with the collected data analysed using R Studio. The observed patterns
suggested that the distribution of remains is fairly consistent in trials under similar environmental
conditions. This indicates potential for some general guidelines for forensic evidence collection (for
example, the distance from the explosion that a search should cover).
© 2017 The Authors. Published by Elsevier Ireland Ltd. This is an open access article under the CC BY

license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

With acts of terrorisms on the rise, the ability to react and
appropriately handle these situations effectively is of critical
importance within the field of forensic science [1–4]. This includes
the search and recovery of tissue fragments from victims on the
scene at the time of the explosion. In the forensic literature,
research on explosions has been primarily examined from two
different perspectives: chemical and trauma analysis. Firstly, from
a chemical analysis perspective the focus has been on the
examination of the particles created by the explosive device to
predict potential distance ranges expected from the explosive
chemicals in a variety of situations [5,6]. Secondly, within the fields
of forensic medicine and anthropology the focus instead has been
on the types of trauma that occur to the victims of explosions: in
particular, the emphasis with has been on the injuries obtained by
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members of the military serving in Iraq or Afghanistan [7–9].
However, while these two areas have been well addressed, there
appears to be a lack of information regarding the pattern and
spatial distribution of the tissue fragments that are created as a
result of a (likely fatal) explosive event. This dearth is surprising
considering how critical it is to know how far (and where) to search
for potential fragments. The ability to quickly and efficiently search
for evidence fragments is a requirements of any successful search
and recovery operation.

The purpose of this current research is to address this gap in the
literature with an aim to provide a more complete understanding
of the spatial distribution of human tissue fragments specifically
focusing on those produced by single-bomber (or suicide bomber)
explosive events [10–12]. By having access to this data, experts will
be able to conduct searches in a more efficient manner (quicker
and more coherently), limiting unnecessary searches and reducing
cost. Further, this will ensure that the critical forensic evidence can
be collected in such a way that facilitates faster identification
process of those tissue fragments.

In order to fully address this gap in the literature and produce
concrete data which future forensic specialists can use and apply, it
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is important to establish a universally applicable framework and
set guidelines which recovery personnel can implement effective-
ly. Following the National Academy of Science report (2009), the
importance of developing a database that can be drawn upon in
conducting forensic investigations and in the later evidence
interpretation has become a main focus in the field of forensic
science. This research aims to contribute to the slowly expanding
forensic evidence base [13–15].

2. Methods and materials

2.1. Explosion parameters

In order to create an acceptable replication of a real world
explosive attack event, this experiment needed to use an
explosive material that would both create the necessary
shockwave resulting in the fragmentation of the tissue and be
a common explosive element used by terrorist groups [16–18].
From a fragmentation standpoint, the aim was to have sufficient
separation of the material whilst not obliterating the forensic
evidence entirely. In other words, the goal was to create small to
medium sized fragmentation. Considering this, plastic explosive
4 or PE4, was chosen; this is a military high-brisance crystalline
explosive known to be used in terrorist attacks, especially in the
cases of state-sponsored terrorism where there is more access to
military grade equipment [19,1,2]. The amount of explosive was
based on a previous run of experiments and case studies that
examined only the tissue injury and damage following a blast
[20–22]. Pilot explosions were also performed in which the
weight of the explosive was gradually increased until complete
fragmentation of the target was obtained. The optimal amount
was judged to be 3 kg of explosives, as this appeared to result in
the desired complete fragmentation of the porcine test speci-
mens; pigs (Sus scrofa) as commonly used as a human substitute in
many fields, particularly within forensic science [23]. The
deceased pigs used in the course of this experiment were
purchased for 150 pounds per pig directly from a local farmer
who raised them to sell as meat produce.
Fig. 1. A photograph demonstrating the composition of the explosive prior to
detonation.
2.2. Experimental set-up

For these experiments, the explosive materials that comprised
the bomb were placed together and wrapped with duct tape
(Fig. 1). The finished bomb was then placed on the front and centre
of the pig. This composition of the bomb was chosen for two
reasons. The first was that by having the explosive material bound
closely together, the resulting forces are produced in a central
location that then spread outwards from the centre point. This was
the easiest way to create the most powerful force that would
produce the maximum tissue fragmentation. Secondly, it was also
less expensive as it only used one primer charge to create the
explosive train that produces the explosive force. The explosives
were purposely not placed in any type of container or device,
allowing for the examination of what happens to the tissue
fragments with no other material involved.

The pigs were placed directly upright onto a wooden stake to
resemble a suicide bomber (Fig. 2). As observed in Fig. 2, the
position of the both the pig and the explosive of both the pig and
the explosive was chosen as it allowed for the examination of the
maximum distance obtained by the resulting tissue fragments as
all of the force of the explosion was position in one direction
against the pig tissue. The overall direction that the pig and the
explosive faced varied due to the difficulty in getting the pigs
Fig. 2. A photograph representing the completed experiment set-up prior to
detonation.
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upright on the stake. As soon as the pig was in a position to be
secured to the stake, the opportunity was taken. Although the
direction between the different tests differed, the statistical
program that will be described in greater detail later on allowed
for the tests to be compared by rotating the data sets. It should be
noted that before each of the test was performed, the wind speed
was recorded to document how the overall distribution is
impacted by the weather (see Table 1).

As mentioned above, the motivation for this research was in
producing an empirical evidence base of the expected distribution
of tissue fragments. The experiments were necessarily resource
intensive – they required expensive material (pig cadavers,
explosive, hire of technical equipment), locations which were
suitable experimental sites and input from expert personnel
(explosive experts). The number of explosions undertaken needed
to be carefully balanced; each additional explosions adds to the
validity of the resulting evidence base, but also adds to the
expense. In practice, we were able to conduct nine explosions of
large pig cadavers which we describe in more detail in the results
section.

2.3. Recovering and plotting the fragments

This study employed the Waldron Springs Protocol [23–26] and
is described in detail below. This method is designed for fast
recovery of evidence and for plotting of fragments in mass
disasters, which are complicated scenes with many moving parts.
The acquired data was then uploaded to a Global Imaging System
(GIS) program [23–26]. This data was then used to create a map of
the distribution, which produces an empirical database that can be
used by investigators in both the forensic examination of the scene
and in the later evidence interpretation [25]. This process
substantially reduces the risk of human error in the recording of
the tissue fragmentation distribution.

The Waldron Springs Protocol for evidence recovery is split into
four parts [23–26]

� The first step is to search for and locate the physical evidence,
which in the case of this research is the tissue fragments;
� In the case of these experiments, the researcher and the
explosive engineer were the only two present. In order to
practically search the scene within the week time frame, the
two searchers worked from two ends of the space and worked
towards the blast centre. When a fragment was located, it was
marked with a flag. Although it is not realistic to except to
recovery all fragments (e.g. become blood splatters and fluid
stains); when the search area was completed and the large
fragments identified (parts of the four limbs and the head), it
was determined that area was fully searched.

� Secondly a total station is employed to collect the data and assign
a field specimen number;
Table 1
A table outlining the recorded wind speeds during each of the 9 tests.

Test number Recorded wind speed (MPH)

Test 1 30
Test 2 20
Test 3 6
Test 4 7
Test 5 7
Test 6 6
Test 7 3
Test 8 3
Test 9 4
� Once the fragment had be recorded using the total station, the
flag that was used to mark it was removed to reduce the risk of
fragments being marked twice.

� The third step is to photograph the evidence in situ;
� A range of fragments from each test was photographed to give
an example of the types of tissue that was present throughout
the experiments.

� Lastly, the evidence is collected, preserved, and removed from
the scene.
� This step was not conducted as there was no cold storage space
to store the fragments long term.

2.4. Data analyses

Once the data was collected, it was transferred from the total
station and downloaded. The data points were then processed
through Excel and imported into R Studio to produce completed
spatial maps of the collected data points and for statistical analysis.
As a first step, the data was plotted on a scatterplot centred at 0,0 to
look at the shape of the distribution of fragments. These plots
revealed that the data conformed to a roughly circular distribution
around the point of the explosion. Therefore, to describe their
distributions a special class of statistic, known as circular statistics,
are needed here [27]; circular statistics are highly useful as they
can be applied to many types of inherently circular data such as
magnetic fields, winds direction, migration patterns and temporal
crime frequencies [28]. It is useful in describing data like this to
look at the degree the data conforms to a circular distribution. This
adds to the ability to make references about likely distribution
shapes of future events. In this case, the input data was the number
of degrees (from 0 to 360) from which each segment’s position
deviated from a reference line originating from the centre of the
blast. This data was plotted and its continuous distribution was
estimated employing a Kernel Density Estimation technique. In
order to explore distribution shape, Rayleigh’s Test of Uniformity
was applied for each experiment in order to reject or accept the
null hypothesis that the tissue fragments conformed to a uniform
circular distribution (i.e. fall in all directions with equal likelihood
around the centre point of the blast). A further circular statistics
test, known as the Watson–Wheeler test, was performed to explore
the relationship between two circular data distributions. In this
case, the null hypothesis was that the two samples were from the
same underlying distribution [29]. These comparisons were useful
in establishing how similar or distinct the shape of the tissue
fragment distribution was across the various experimental blasts.

In addition to comparing the relative distributions of the tissue
fragments, it is important to examine the actual spatial patterns
emerging from the blast. Expanding on the point mapping of the
spatial locations of the fragments, we were interested in the
direction of the blast and in visualising the density of the segment
distribution. In estimating the blast direction we wished to draw a
line which could represent the main thrust of the blast. Since we
were unable to identify a prior method for doing this, we
conceptualised that one method of doing this would be to
minimise the total deviation of the set of points from the blast
line. This is the equivalent of fitting a line of best fit in a linear
regression of the spatial x co-ordinates against the y co-ordinates
anchored at the centre of the blast (0,0). Since all of the best-fit
lines pass through (0,0) it is possible to compare the angular
deviation of any two distributions or of each distribution against
the aggregated picture across all multiple experiments. In terms of
visualising the density of the tissue segments distribution, we
produced Kernel Density Estimation (KDE) plots which identify
any visible clustering of the tissue fragments. Furthermore,
cumulative density plots were produced to visually demonstrate



Fig. 3. The collected data points with the resulting linear regression line that was used to anchor the data points so that a later data they could be compared to other data sets.
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the density of the fragmentation moving out from the blast centre
[30,31].

3. Results

The collected spatial data from the nine tests illustrated certain
patterns that the resulting tissue fragments took following the
explosion (Fig. 3). Although the patterns from each test differ to
Fig. 4. The accumulative best fit lines of all of the collected data sets across the nine te
original best fit line for each test. (For interpretation of the references to colour in this
some degree, there appears to be a common characteristic in that,
according to the lines of best-fit, they appear to be fairly
directional. This is particular in the case with some experiments
(e.g. Test 1) whereas in other cases this is less defined (e.g. Test 9).
The blast lines tends to demonstrate a left to right of the blast
centre when examined on the data plot. Further, points appear to
distribute at negative co-ordinates rather than positive ones,
indicating a tendency for the fragments to fall behind the blast
sts. The green line is the constant best-fit line, with the black lines illustrating the
 figure legend, the reader is referred to the web version of this article.)



Table 2
Summary statistics for the collected test data.

Test number Q1 distance Median distance Q3 distance Maximum distance Number of fragments recovered Rayleigh test of uniformity

1 30.01 51.39 67.20 97.71 69 0.8593*

2 12.85 26.26 36.37 81.02 91 0.598*

3 13.54 24.84 36.37 80.54 127 0.366*

4 13.11 24.75 34.13 76.35 89 0.3178*

5 7.84 19.45 34.28 74.44 78 0.6658*

6 14.87 26.67 38.24 66.03 70 0.4554*

7 21.96 41.55 55.66 77.68 109 0.6562*

8 13.59 25.89 36.61 55.57 187 0.6242*

9 21.78 34.67 50.47 79.34 225 0.2952*

* p < 0.01.
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centre (the stake on which the pig is placed). Fig. 4 indicates the
change in direction of the line of best-fit as data points are
accumulated across the nine experiments. This demonstrates that
accumulating data across experiments causes only small changes
in the direction of the overall best-fit line and hence indicates little
deviation in directionality across data sets. The final accumulated
blast direction best-fit line is illustrated in green in Fig. 4.

The mean maximum distance that a fragment travelled
throughout the entire experiment was 76.5 m, with a standard
Fig. 5. The directionality observed in the course of the 
deviation 18.78 m. Table 2 gives summary statistics for each
experiment individually. There appears to be reasonable consis-
tency in terms of maximum distances, with some experiments
deviating from this general picture (e.g. experiments 1 and 8).

Table 2 also provides information on the outcome of Rayleigh’s
Test for Uniformity for each experiment. The results demonstrate
that in all cases, the shape of a continuous KDE estimated from the
point data deviates from a uniform circular distribution. The visual
circular statistic distributions, reflecting the Rayleigh results, show
experiments, represented in a circular static graph.



Table 3
The Watson–Wheeler results, with stars demonstrating results with a significant p-value.

Test number 1 2 3 4 5 6 7 8 9

1 100.74* 76.34* 2.03 73.17* 48.64* 2.81 19.84* 68.24*

2 100.74* 166.99 79.21* 140.11* 42.25* 54.53* 162.79* 191.60*

3 76.34* 166.99* 17.32* 20.91* 101.10* 61.03* 50.03* 7.14*

4 2.03 79.21* 17.32* 17.33* 29.46* 75.72* 116.67* 38.92*

5 73.17* 140.11* 20.91* 17.33* 90.58* 107.23* 118.54* 56.82*

6 48.64* 42.25* 101.10* 29.46* 90.58* 45.87* 95.03* 110.92*

7 2.81 54.53* 61.03* 75.72* 107.23* 45.87* 11.32* 39.90*

8 19.84* 162.79* 50.03* 116.67 118.54* 95.03* 11.32* 22.95*

9 68.24* 191.60* 7.14* 38.92* 56.82* 110.92* 39.90* 22.95*

* p value <0.05.
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the deviance in degrees from a centre line originating at (0,0) for
each experiment are shown as Fig. 5. The KDE distribution
approximations (shown diagrammatical as a continuous line
surrounding the inner circle) appear to reflect directionality as
they have distinctive wedge shaped pieces indicating clustering.
Although the nature of this research was directional due to how the
explosive was placed on the pig, the circular statistics played an
important role in understanding the overall distribution.

Table 3 shows the results of the Watson–Wheeler tests which
examine differences between the experimental distributions. The
comparisons reveal that the majority of the experiments showed
some significant deviation from each other in terms of their overall
Fig. 6. The fragment clustering observed in the cours
shape. The exception to this is that Test 1 was not significantly
distinct from Tests 4 and 7 according to this statistic.

In terms of density of fragments, KDE mapping demonstrates
that the fragments tended to cluster around the centre of the blast,
and become sparser as the distance increases from the centre of
the blast sites (Fig. 6). These maps also visually demonstrate
similarities and differences between the experimental distribu-
tions, reflecting the results of the Watson–Wheeler test. Cumula-
tive density analysis shows the clustering of the fragmentation in
each of the experimental tests (Fig. 7) [26–28]. Fig. 7 indicates that
within 40 m at least 50% of more of the fragmentation is recovered
in all cases. Notably, Fig. 7 also speaks to variation in
e of the experiments, represented in a KDE tests.



Fig. 7. The cumulative density graphs, with the vertical lines showing the Q1, Median, and Q3 fragment percentages per distance.

128 E. DuBois et al. / Forensic Science International 279 (2017) 122–129
environmental conditions. Recorded wind speed was higher than
average for Tests 1, 7 and 9. The charts demonstrate that in all three
cases, the first 25% of fragments were distributed further from the
blast centres-approximately 20 m than the remainder of the
experiments, which recorded this quantity at the 10–15 m mark.

4. Discussion

The observed fragment distances that this study recorded
differed from the distances outlined in similar published sources
examining the chemical spread of the explosive material [5,32].
The fragments observed over the course of this experiment never
exceed 80 m, even with employing 3 kg of military grade explosive.
One reason behind this discrepancy is likely to be that the
explosive experiments in these previous studies were designed to
examine the chemical distribution and not the biological
components. Biological fragments are impacted by the stress-
strain relationship that the body will undergo under the extreme
forces of the explosion [33–36]. These fragments are also impacted
by the resulting vacuum that follows as the surrounding
environment aims to return to normal pressure levels, essential
acting to pull objects back towards the blast centre [37,7–9]. Hence,
when the explosions were observed in video taken from the initial
blast, the created force can be seen sending many of the tissue
fragments into the air before directly falling to the ground.

The mean maximum distance of 76.5 m makes additional sense
in the context of how the force that is produced by the explosion
decreases after the initial chemical reaction. The chemical reaction
that is created during the initial explosion results in a blast wave
[10]. It is within this blast wave that there is that huge increase in
surrounding air pressure as it moves away from the blast centre at
supersonic speeds, with the leading edge of this wave called a blast
front [7] creating the tissue fragmentation. This increase in
pressure soon decreases as the blast wave moves away from the
centre of the blast [7]. It is here that the momentum of the tissue
fragments ends and they began to fall to the ground. Although the
initial force produced by the explosive blast is strong enough to
create maximum fragmentation of the pig, the distance the blast
wave was able to allow the tissue fragments to travel was still
below the 100 m distance. Within the literature there are few
examples about how far forensic evidence associated with these
types of explosive events will travel. With most either having a
focus on the chemical distribution or case studies [5–6,10–12], the
ability to scientific examined how far the tissue fragments with
travel is an important step in adding to the forensic evidence base.

Another pattern that can be observed from the data collected
from the nine tests is that the positioning of the bomb on the
centre-front of the pig has an impact on the resulting tissue
fragment distribution. This resulted in the creation of a blast force
directionally ‘pushing’ the tissue away and back from the centre of
the blast, causing the wedge-shaped pattern observed in the
spatial maps.

This research aimed to assist in the production of an evidence
base describing the behaviour and the distribution of biological
tissue when placed at the centre of the blast during an explosive
event. The results demonstrated that consistency can be expected
across distributions associated with this type of explosive scenario.
In addition to being limited in terms of the distance of travel, the
tissue fragments also tend to be directional as demonstrated by the
Rayleigh’s R statistics and the distribution visualisations. These
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imply the influence that the placement of the bomb will have on
the resulting spatial spread of the fragments [38]. The Watson–
Wheeler results along with the KDE visualisation reveal condi-
tional variation between tests. For example, Tests 1, 7 and 9 were
obviously impacted by higher wind speeds, while Tests 1, 4 and
7 appeared to have a more similar shape. One explanation for the
latter is that they had similar overall placement of both the pig and
the explosive when compared to the other tests. It is obvious that
account for these variations is important in interpreting the
resulting forensic evidence.

The characterisations produced by the research described here
should prove helpful in alerting forensic practitioners regarding
what to expect from a biological tissue perspective in the wake of
an explosion. It is also possible that with further experimentation
this research could be applied to other areas e.g. accidental
explosions. However, these results can only be applied to the
particular conditions of these experiments, meaning that the
external validity of the process is likely to be fairly limited [13].
There are also issues with the low sample size in such forensic
experimentation, a problem that has been highlighted elsewhere
in the literature [13,39–40].

Building upon this, albeit small study, there are a number of
ways in which this research could be explored further. The first
could be to examine the viability of using ballistic gel and
downsized experiments in continuing this research. If these
moderations do prove viable this will greatly increase the capacity
and the ability of further pursuits to add to the overall evidence
database. The second could focus on exploring methods to identify
interesting deviations depending on conditions. For example, do
military grade bombs result in a different distribution to
homemade ones? If reliable conditional variation is found this
should assist with the production of forensic intelligence.
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