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Abstract
A reverse Monte Carlo analysis method was employed to extract the structure of CeO2 from
Neutron total scattering (comprising both neutron diffraction (ND) and pair-distribution
functions (PDF) and Ce L3- and K-edge EXAFS data. Here it is shown that there is a noticeable
difference between using short ranged x-ray absorption spectroscopy data and using medium-
long range PDF and ND data in regards to the disorder of the cerium atoms. This illustrates the
importance of considering multiple length scales and radiation sources.

Supplementary material for this article is available online
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Introduction

Ceria has numerous important applications due to the inter-
esting chemistry of the cerium atoms. In contrast to the other
lathanides, Ce can lose a 4f electron, resulting in an electron
configuration of [Xe] 5d1 6s2. In ceria, this facilitates the
reduction of cerium atoms and the release of oxygen. Fur-
thermore this allows the re-oxidation of cerium atoms (which
is enhanced by the fluorite structure). The ability to undergo

reduction–oxidation means ceria is used extensively for a
range of applications, in particular emission based catalytic
control [1–5].

Non-stoichiometry of ceria, which involves reduction of
cerium and removal of oxygen and produces vacancies in the
structure, can be induced by certain synthetic methodologies
[6]. Vacancies are likely to increase the amount of disorder
within the structure and therefore understanding the structure
of highly crystalline, fully stoichiometric CeO2 is crucial in
relating to its reactivity and properties.

Methods such as lab based x-ray diffraction, are used
regularly in the characterisation of ceria, though each tech-
nique only provides insight into certain structural ranges
within the material, so only by combining numerous methods
will a full understanding of the properties of the short, med-
ium and long range structure be obtained. Neutron diffraction
(ND) based methodologies are appropriate for ceria due to the
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relatively similar neutron scattering cross sections for Ce and
O [7] (in contrast to x-ray scattering which is dominated by
the more massive Ce atoms) [8]. Utilising rietveld refinement
[9] and PDF analysis, it has been shown that interstitial
oxygen defects can be present in the system, showing oxide
ions can be highly mobile within the ceria fluorite structure.
Although diffraction techniques are powerful in understanding
the long-range bulk structure, many differences in the short and
medium range order may be missed by these techniques.
Therefore, making use of local structural technique, in part-
icular x-ray absorption spectroscopy as it is element specific
and sensitive to local structural changes, is clearly an advan-
tage. The use of PDF, obtained from total scattering data, is a
useful complementary technique as this simultaneously can
show the short, medium and long range structure in contrast to
x-ray absorption spectroscopy (XAS) and standard diffraction
methods. Whilst the data from these techniques can be ana-
lysed independently, it is necessary to further the analysis
procedure to combine these methodologies to attain a more
thorough understanding of the materials. Reverse Monte Carlo
(RMC) appears to be a method which can provide such pos-
sibility as any of these data sets can be analysed using RMC
based suite of programs. Here we report the use of RMC
methods to extract the structure of a crystalline CeO2.

Experimental

Sample preparation

A CeO2 diffraction standard (674b) was obtained from
National Institute of Standards and Technology (NIST).

Neutron total scattering

Total scattering patterns were obtained on the POLARIS [10]
instrument based at the ISIS Facility, Rutherford Appleton
Laboratory, UK. The sample was ground and placed in a
cylindrical vanadium foil can (internal diameter=8 mm).
Data were collected for six hours. Measured data from each of
the five detector banks were initially processed using Man-
tidPlot [11] to obtain powder diffraction patterns.

XAS at Ce L3-edge and Ce K-edge

XAS data was obtained at the Ce L3-edge (5723.4 eV) at
ambient conditions on the BM26A beam line [12], European
Synchrotron Research Facility (ESRF) operating at 6 GeV
and current of 100 mA. Data was collected in transmission
mode using ionisation chambers and a Si (111) double crystal
monochromator. Roughly 10 mg of the ceria material was
ground with circa 90 mg of fumed silica and pressed into a
pellet. XAS data was measured in step scans between 5623.0
and 6154.0 eV. XAS data was obtained at the Ce K-edge
(40443 eV) at ambient conditions on the BM23 beam line
[13], ESRF. Data was collected in transmission mode using
ionisation chambers and a Si (311) double crystal mono-
chromator. About 95 mg of sample was mixed and ground
with approximately 15 mg of cellulose and pressed into a

pellet. XAS data was measured in step scans between 40200
and 41423 eV.

Data analysis

Reciprocal space refinement

The analysis and processing of the ND data was performed by
the Rietveld method [14] using GSAS and EXPGUI [15, 16].
This used Chebyshev polynomials to fit a background func-
tion and pseudo Voigt functions [17], convoluted with back-
to-back exponentials to model the peak shape. This analysis
allows combined refinement across all the detector banks.

Real space refinement

The data correction for PDF used GUDRUN [18]. This nor-
malises, merges data sets and corrects with respect to the
vanadium containers and sample environment. The Fourier
transformation of the S(Q) data to calculate the G(r) was
performed using STOG [19] with Qmax=40 Å−1 and a
Fourier filter was applied with rmax=1.5 Å to correct for a
sloping background in the S(Q).

XAS data correction and refinement

The XAS data was normalised using EDA [20] software and
underwent background subtraction for both K- and L3-edge.
A correction was required for the L3-edge data to model a
double excitation event at 5856 eV [21]. Ce L3-edge XAS
data was fitted between k=1.82 and 9.26 Å−1 and r=1.0
and 2.70 Å. Ce K-edge was fitted between k=2.00 and
14.10 Å−1 and r=1.0 and 5.5 Å. Amplitude reduction factor
(SO2) was set using ceria with a fixed coordination number of
8 for the first Ce–O path. SO2 was set at 0.72 for the L3-edge
and 1.00 for the K-edge. Simultaneous combined edge analysis
was performed to increase the number of shells that could be
analysed. Artemis [22] was used to analyse the (χ(k)) data to
refine structural properties. Phase-shifts and amplitude factors
were calculated with FEFF8l [23] using ceria fluorite crystal-
lographic data. Hedin–Lundqvist potentials were used to cal-
culate phase shifts and backscattering factors.

RMCProfile modelling

The principle behind RMC is that a random atom within a
configuration is moved a random amount away from its current
position. The data associated with EXAFS and PDF can then
be calculated and compared with experimental data sets, where
fitting allows for calculation of an agreement function. RMC
uses the Metropolis criterion to fit a model to multiple data sets
allowing for short range, medium range and long range data to
be modelled simultaneously. The Metropolis criterion,
equation (1), is used to deduce whether a random move is
accepted or rejected. A move that improves the fit, a negative
Δχ2 will always be accepted. However there is also finite
probability associated with the acceptance of a move that does
not improve the fit, a positive Δχ2, compared with the
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experimental data, however this is an exponentially decaying
function limiting the probability of acceptance [24]

= c-DP exp . 1RMC 2

2

( ) ( )

This procedure however can result in multiple different
structures being found with the simulation being run many
times as the moves are random throughout. As a consequence
of this, in the case of RMCProfile modelling each simulation
was repeated 100 times. The analysis of the final results is then
averaged over all simulations.

RMC simulations of all the ceria materials was accom-
plished using RMCProfile [19, 25]. This software can,
simultaneously, perform modelling on both the Bragg dif-
fraction and G(r) data on a 6×6×6 supercell. RMCProfile
proceeds with the simulation by using an ideal crystal struc-
ture then moving each atom by a maximum amount of 0.05
and 0.10 Å for the Ce and O atoms respectively, with respect
to the periodic boundary (where the cell is bordered by copies
of itself) [24]. This will accept any move that improves the fit
between experimental and calculated data. Further to this it
will accept some moves that do not improve the fit in order to
avoid being stuck in any local minima. The reciprocal space
data is used by RMCProfile to constrain the crystallinity of
the long-range structure whilst the G(r) was modelled as two
distinct data sets; one covering the range 1–5 Å and the sec-
ond 1–15 Å, with the shorter range data being weighted 10-
fold in comparison to the 1–15 Å.

Attempts were made to include EXAFS data into the
RMCProfile fit but were unsuccessful due to software lim-
itations, so EvAX was used to model the L3- and K-edge
EXAFS data.

EvAX modelling

EvAX [26] is an RMC based modelling code that incorpo-
rates an evolutionary algorithm to search a large area of
configuration space using a small supercell, in this case a
5×5×5 supercell was used with a population of 32 used
for the evolutionary algorithm. EvAX simulations were run
10 times to extract statistical errors. The evolutionary algo-
rithm uses three operations: crossover, mutation and selec-
tion. Where a crossover operation is described as a genetic
mixing of two configurations, a mutation involves the random
moving of atoms within a configuration and the selection
operation creates a new population from the old population of
configurations with a weighted probability towards those with
a high fitness value. The simulation also employs a simulated
annealing approach, allowing for larger probability that
moves are accepted at the start of the simulation with the
criterion for acceptance becoming smaller throughout. In this
manner the system reaches the global minimum in a com-
putational efficient procedure. This procedure allows for
unprecedented use of full multiple scattering calculations and
fitting of higher order coordination shells, however due to the
limitations on the k range from the Ce L3-edge this work has
focused on the first two coordination shells.

During the modelling, Fourier transformed Ce L3-edge
data of the first shell, associated to the Ce–O distance, and

Fourier transformed Ce K-edge data of the first and second
shells, associated mainly to the Ce–O and Ce–Ce distances,
were used. This allows for modelling of the first and second
coordination shells to be modelled jointly refining the atom
positions in a real space configuration. The amplitude
reduction factors were set accordingly from initial fitting
undertaken on the CeO2 NIST standard within the Athena/
Artemis code [22] at 0.72 and 1.0 for the Ce L3- and K-edges
respectively. The k range used during the fitting procedure
was between 1.82 and 9.27 Å−1 for the Ce L3-edge and
between 3.00 and 15.22 Å−1 for the Ce K-edge. The fitting
space used throughout the simulation was real space. A per-
iodic boundary condition was employed starting from an
initial ideal crystal structure.

Results and discussion

CeO2 has the fluorite structure (see figure 1) which has a
crystal structure belonging to the space group Fm m3 ,¯ Ce(IV)
ions occupy the 0,0,0 (4a) position and the oxygen atoms
occupy 0.25, 0.25,0.25 (8c) position in the structure which
has been well-established. Typical diffraction pattern of CeO2

(x-ray and ND) data are shown in figure 2. First we discuss
the use of RMCProfile method to determine the structure
CeO2 using ND data followed by the analysis of EXAFS data
using EvAX.

Analysis of diffraction data using RMCProfile

RMCProfile modelling was performed using a 6×6×6
unit cell sized simulation box. This contained 864 cerium
cations and 1728 oxygen anions. All the models assumed the
materials were the stoichiometric fluorite structure as the
input model, as suggested by our previously published
extensive analysis using Rietveld, PDF methods and XAS on

Figure 1. Ceria has the fluorite structure (space group: Fm m3 ,¯ ) Ce
(Red): 4a, 0, 0, 0 and O (green): 8c ¼, ¼, ¼).
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the same sample as described here [27]. In figure 3 we show
the comparison of the diffraction data with that calculated
based on RMCProfile analysis indicating very good agree-
ment between the data and fit. In order to highlight the short
and medium range structure, the G(r) was separated into two
distinct data sets, with one set fitting between 1–5 Å and
another set fitting between 1–15 Å respectively. In figures 4
and 5 we show the best fit between experimental and calcu-
lated data using RMCProfile method, in particular high-
lighting the best match for short and medium range.

Our previously reported analysis of the ND and NPDF
datasets individually show differing lattice parameters
dependent on the technique used [27]. Analysis of the ND and
NPDF data using the RMCProfile method successfully
models these variations. This is performed by fixing the
density to that refined by the Rietveld method for the

supercell then allowing enough freedom for the model to
account for the variations in pair correlations and lattice
parameter across the short, medium and long range structure.
This modelling shows that over these length scales the fluorite
structure is observed. Furthermore with respect to the Bragg
data the short range NPDF data is weighted more highly
resulting in fitting of the low R region more appropriately than
achieved with equal weighting.

For comparison, all the supercells can be reduced down
to a single unit cell, overlaying all the cerium and oxygen
atoms. These representations, figure 6(A), show that the
atoms are all offset from the ideal crystallographic positions,
as expected due to the influence of thermal vibration.

Statistical analysis on the 6×6×6 supercell was per-
formed to give a histogram showing the radial distribution
function around a central cerium cation. This gives a 1D
representation of a 3D structure, figure 7(A). This shows that

Figure 2. Comparison of experimental and calculated neutron diffraction patterns (left) and x-ray diffraction patterns (right) for the ceria
sample derived from rietveld analysis.

Figure 3. Comparison of the experimental and calculated bragg
neutron diffraction patterns for ceria from RMCProfile.

Figure 4. A comparison of experimental and calculated neutron G(r)
between 1 and 15 Å for ceria NIST from RMCProfile.
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the material is not a perfect crystal and the atoms are offset
from their ideal site giving a range of interatomic distances.

Table 1 shows the associated bond angles for O–Ce–O
and Ce–O–Ce respectively. For the O–Ce–O tetrahedral bond
angle, we find that it is slightly disordered with respect to the
ideal value of approximately 109.5°, figure 8 illustrates the
bond angle distributions. This supports our previously pub-
lished analysis indicating that ND, PDF and EXAFS show
disordered atoms on the same sample material [27]. This
discrepancy observed in both the differences with respect to
both interatomic distances and interatomic bond angles is due
to numerous effects. The comparison of the results obtained
from Rietveld refinement and RMCProfile show that for both
models there are relatively similar values seen with the
exception of the Ce cubic angle. This can be explained by

consideration of a random movement away from 180°
resulting in the observed angle reducing as the direction of
movement is not regarded, the inverse sine function always
yields a result less than 180°. This comparison shows the
similarities observed even though both are modelling the data
in different manners, where the Rietveld is performed fitting
one unit cell and the bond lengths/bond angles dependent on
the lattice parameter and for RMCProfile there are no such
symmetry constraints on the model and a supercell of
6×6×6 unit cells is used. Figures 7(A) and (8) shows the
comparison of the bond lengths and bond angles respectively
derived from RMCProfile. The distribution of the values
obtained from this are Gaussian like which indicates the
isotropic disordering of the atoms present which coincides
with that seen in the Rietveld refinement.

The mean square relative deviations (MSRD) have been
calculated using equation (2) below where R relates to the
average interatomic distance for the correlation of interest,
obtained through fitting a Gaussian to the RDF; Ri represents
the interatomic distance for a pair of atoms in the config-
uration. N here is the total number of pair correlations con-
sidered

å -
N

R R
1

. 2
i

i
2( ) ( )

The standard error is calculated through consideration of
the standard deviation of the spread of the parameter of
interest from each of the simulations conducted, equation (3).
Here N represents the total number of simulations, f repre-
sents the mean value of the parameter of interest and fi

represents the same interest parameter from each simulation

f f
=

å -
S

N
. 3N i i

1 2( )
( )

Figure 5. A comparison of the experimental and calculated neutron
G(r) between 1 and 5 Å for ceria NIST from RMCProfile.

Figure 6. Reduced configuration to an overlaid single ceria unit cell derived from RMCProfile models combining neutron diffraction and pair
distribution function data (A) and from EvAX models using joint Ce L3 and K edge EXAFS data (B).
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EXAFS data analysis using EvAX

EvAX simulations using only experimental EXAFS data from
the ceria sample have been carried out and show similar
results to the RMCProfile refinement using ND and NPDF

data. The fitting, in both k and R space EXAFS data, is shown
in figure 9 for both the Ce L3- and K-edge data showing good
agreement of the simulation to the data. Calculations are
performed on the best fitting configuration from the total

Figure 7.Histogram of the resultant radial distribution function around a central Ce atom for ceria NIST derived from RMCProfile combining
Neutron diffraction and pair distribution function data (A) and EvAX modelling using Ce L3- and K-edge EXAFS (B).

Table 1. Calculated distances of atomic pairs and the relative mean square relative deviation from the final configurations produced in
RMCProfile (top). Calculated bond angles associated to the oxygen and cerium coordination environments from the final configurations
produced in RMCProfile (bottom).

Atomic correlation R (Å) Standard error (Å) MSRD (Å−2) Standard error (Å−2) Rietveld R (Å) Rietveld error (Å)

Ce–O 2.344 4×10−5 0.006 77 1×10−5 2.3431 1×10−5

Ce–Ce 3.823 7×10−5 0.006 60 1×10−5 3.8262 1×10−5

O–O 2.708 5×10−5 0.007 86 1×10−5 2.7055 1×10−5

Angle (°) Standard error (°) Rietveld angle (°)

O tetrahedral bond 109.14 0.003 109.47
Ce cubic bond 70.35 0.002 70.53

109.34 0.002 109.47
175.80 0.006 180

Figure 8. The respective O–Ce tetrahedral coordination and Ce–O cubic coordination derived from RMCProfile modelling.
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Figure 9. Fits shown for real space (top) and k space (bottom) for the Ce K-edge (left) and Ce L3-edge (right) respectively of the ceria NIST
sample.

Table 2. Results for interatomic distances and mean square relative deviation for CeO2 NIST EvAX simulation (top). Calculated bond angles
associated with the oxygen and cerium coordination environments from the final configurations produced in EvAX (bottom).

EXAFS path R (Å) Standard error (Å) MSRD (Å−2) Standard error (Å−2) Rietveld R (Å) Rietveld error (Å)

Ce–O 2.3425 1×10−4 0.0065 3×10−4 2.3431 1×10−5

Ce–Ce 3.8253 2×10−4 0.0036 6×10−4 3.8262 1×10−5

Angle (°) Standard error (°) Rietveld angle (°)

O tetrahedral bond 109.12 0.010 109.47
Ce cubic bond 70.25 0.005 70.53

109.22 0.006 109.47
175.77 0.008 180
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population. Figure 7(B) shows the resultant radial distribution
function around absorbing Ce atoms in the total configuration
derived from the EvAX modelling. It is evident that the O
atoms between the layers of Ce atoms are disordered whereas
the Ce atoms are well ordered on their crystallographic sites.
Fitting results are shown in table 2 below. Figure 6(B) shows
the reduced configuration to an overlaid single unit. This
shows the atoms are all offset from the ideal crystallographic
positions, as expected due to the influence of thermal
vibration.

Table 2 shows that there is substantially more disorder
within the O sites as compared to the Ce sites. This is in
contrast to the RMCProfile modelling showing almost equal
disorder. Whilst the RMCProfile simulations were carried
out only using experimental data from Neutron experiments,
the EvAX simulations were carried out only using XAS
data. This illustrates the different sensitivity between the
x-ray and neutron techniques towards differing element
type. Therefore in future combining the x-ray and neutron
datasets should be undertaken. However it should also be
noted that that XAS is an element-specific local structure
probe and due to the Ce absorption edge being used is
centred upon a Ce atom unlike in the neutron total scattering
experiments.

The calculated O–Ce–O tetrahedral and Ce–O–Ce cubic
bond angles derived from the EvAX models are shown in
table 2, with figure 10 illustrating the bond angle distribu-
tions. These values differ from the ideal values from a perfect
crystal structure but similar to those seen from RMCProfile
which indicates that models derived purely from EXAFS data
suggest both cerium and oxygen are disordered. The agree-
ment towards the Ce cubic bond angles between both
RMCProfile and EvAX show that whilst EvAX is using data
centred on the Ce site, RMCProfile is able to equally repre-
sent the disorder around the Ce site without the site specific
local coordination environment information.

Conclusion

Reverse Monte Carlo simulation analysis method was applied
to diffraction, PDF and EXAFS (L3 and K edges) of crys-
talline CeO2 system. The analysis yielded some noticeable
differences between the RMCProfile and EvAX simulation
undertaken on ex situ ceria NIST sample such as variations in
the atomic displacement parameters relating to the disorder
around the Ce cubic site. We attribute this to the difference in
sensitivity between the x-ray and Neutron based techniques
towards the different elements, Ce and O. The models derived
from RMCProfile modelling, combining ND and total scat-
tering suggests that O–Ce–O and Ce–O–Ce bond angles are
offset from the ideal structure due to disorder around these
crystallographic sites, but that there are no drastic deviations
from the ideal fluorite structure. The model obtained from
EvAX analysis of the same sample again shows the fluorite
structure. The refined interatomic distances and bond angles
are offset from those for the ideal crystal structure indicative
of some thermal or static disorder within the sample though
more importantly showing that just using EXAFS for the
model we can obtain an acceptable model in comparison to
utilising short, medium and long range datasets obtained from
neutron total scattering methodologies.
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