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ABSTRACT

Prostatic adenocarcinoma is one of the most commonly occurring cancers among men in the world, and it also
the most curable cancer when it is detected early. Multiparametric MRI (mpMRI) combines anatomic and
functional prostate imaging techniques, which have been shown to produce high sensitivity and specificity in
cancer localization, which is important in planning biopsies and focal therapies. However, in previous investiga-
tions, lesion localization was achieved mainly by manual segmentation, which is time-consuming and prone to
observer variability. Here, we developed an algorithm based on locality alignment discriminant analysis (LADA)
technique, which can be considered as a version of linear discriminant analysis (LDA) localized to patches in
the feature space. Sensitivity, specificity and accuracy generated by the proposed algorithm in five prostates by
LADA were 52.2%, 89.1% and 85.1% respectively, compared to 31.3%, 85.3% and 80.9% generated by LDA. The
delineation accuracy attainable by this tool has a potential in increasing the cancer detection rate in biopsies
and in minimizing collateral damage of surrounding tissues in focal therapies.

Keywords: Prostate cancer, Multiparametric MRI (mpMRI), Lesion localization, Locality alignment discrimi-
nant analysis (LADA)

1. INTRODUCTION

Prostate cancer is a leading cause of male cancer death worldwide,1 but is the most curable cancer when it is
detected early.2 Clinically, transrectal ultrasound-guided (TRUS-guided) biopsy is the only definitive method to
ascertain the presence of prostatic cancer. Due to the inability of TRUS in targeting lesions, 35% of detectable
lesions were missed in the first biopsy, necessitating repeated biopsies, leading to increased emotion stress for
patients. Multiparametric MRI (mpMRI) has allowed for localization of prostate cancer3 and has the potential
to support personalized management in targeted biopsy procedures and focal cancer therapies. Currently, most
investigations involve manual localization of prostate detection and localization,4,5 which is time-consuming and
prone to observer variability. Therefore, parallel to the development of MRI imaging technology, an equally
important requirement is to develop tools to automate precise and accurate prostate cancer localization. Here,
we focuses on the development of an automated method to localize cancer with voxel precision. The delineation
accuracy attainable by this tool will play a major role in increasing the cancer detection rate in biopsies and in
minimizing collateral damage of surrounding tissues in focal therapies.
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2. METHODS

2.1 Image acquisition and preprocessing

T2, diffusion weighted (DW) and dynamic contrast enhanced (DCE) images are acquired as previously described6

for six patients with prostate cancer histologically confirmed on previous biopsies. The images for each patient
were registered by an expert observer and resampled to standardize the in-plane resolution and slice thickness.
The in-plane voxel size is 0.5 mm x 0.5 mm and the slice thickness is 3 mm after resampling, with the peripheral
zone of each gland represented by approximately 10,000 voxels. Lesions were manually delineated and scored by
four radiologists based on the Prostate Imaging-Reporting and Data System (PI-RADS) detection guidelines.7

For each lesion, each radiologist reported a 5-point likelihood score for each of the T2W, DW and DCE MR
images (i.e., 3 images × 4 observers = 12 scores per lesion), where 1 to 5 indicate that a clinically significant
cancer is highly unlikely to highly likely. In this study, regions with PI-RADS ≥ 3 marked by any radiologist
on any of the three images were considered cancerous, resulting in a binary classification available on a voxel-
by-voxel basis. Our proposed voxel-based cancer localization technique were trained and validated using this
voxel-based expert classification.

2.2 Voxel-based feature extraction

For each voxel of the peripheral zone, the following list of features were extracted: (i) Physical coordinates.
The reason for including the coordinates as features was that there is a high spatial correlation in the status of
voxels within a neighbourhood (i.e., if a voxel is within a cancerous lesion, there is a high probability that its
neighbours is inside a lesion). (ii) Grayscale values in the three imaging sequences at the voxel and its 3× 3 in-

plane neighbourhood.8,9 (iv) Slope of DCE MR sequence, defined as κ = I(t+1)−I(t)
∆t , where I(t) and I(t+ 1) are

two adjacent time points for DCE images acquisition. The voxel-based features described above were collectively
represented by a high-dimensional data point.

2.3 Linear Discriminant Analysis (LDA)

Linear discriminant analysis (LDA) separates two or more classes of high-dimensional data points by finding a
projection matrix to maximize a cost function quantifying the inter-class difference in relation to the intra-class
variability. A commonly used function is the trace ratio cost function,10 and the development of the current
algorithm is based on this cost function. Mathematically, the l D-dimensional data points in the training set are
represented by a D × l matrix X = [x1, x2, · · · , xl]. Each data point belongs to a class ci with i ∈ {1, 2, · · · , c}.
Our application is a two-class problem (i.e., c = 2). We define li to be the total number of data points in ci, µi

to be the mean of all data points in ci, and µ to be the mean of all data points. The within- and between-class
scatter matrices, Sw and Sb respectively, are defined as follows:

Sw =

c∑
i=1

∑
x∈ci

(x− µ)(x− µ)T , (1)

Sb =

c∑
i=1

li(µi − µ)(µi − µ)T , (2)

For later development of the Locality Alignment Discriminant Analysis (LADA) algorithm, Sw and Sb are
expressed in terms of X:

Sw = XLwXT , (3)

Sb = XLbXT , (4)

where Lw and Lb are l × l matrices related to class memberships of data points as described in Tang et al.11

LDA finds a D× d matrix W that projects each D-dimensional data point to a corresponding d-dimensional
data point with D >> d that maximizes the trace-ratio cost function. Mathematically, Y = WTX, with
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the columns of the d × l matrix Y representing the projected d-dimensional data points. The optimal W∗ is
represented by the following equation:

W∗ = arg max
WTW=I

Tr(WTSbW)

Tr(WTSwW)
= arg max

WTW=I

Tr(WTXLbXTW)

Tr(WTXLwXTW)
= arg max

Y

Tr(YLbYT )

Tr(YLwYT )
, (5)

in which we used Eqs. 3, 4 and Y = WTX. The last term in Eq. 5 was associated with a constraint of WTW = I
to ensure uniqueness of the solution. This equation serves as a building block of the LADA algorithm as will be
shown in the next section.

2.4 Locality Alignment Discriminant analysis (LADA)

A disadvantage of LDA is that Sw and Sb were built globally based on the entire training set. The model
would better fit the training data if the whole feature space is divided into local patches and the optimization
carried out on a patch-by-patch basis. LADA has two major components, which are described in detail below.
A generalization of this scheme to a number of dimensionality reduction algorithms were presented by Zhang et
al.12

2.4.1 Patch-by-Patch Optimization

This step established a patch for each of the l data points and its K − 1 nearest neighbours, thereby forming l
patches with K data points. For each data point xi, we denote its K−1 nearest neighbours by xi1 , xi2 , · · · , xiK−1

.
The K data points within the patch associated with xi are represented as columns in the D ×K matrix Xi =
[xi, xi1 , xi2 , · · · , xiK−1

]. Using the results established in Eq. 5, the cost function to be minimized in this patch-
by-patch optimization is:

Tr(YiLb,iYi
T )

Tr(YiLw,iYi
T )
, (6)

where the definitions of Yi,Lb,i,Lw,i are described in detail in Sec. 2.3, but now the application of the LDA
algorithm is limited to the patch represented by Xi.

2.4.2 Global Alignment

This step optimizes the sum of the cost function Eq. 6 associated with the l patches available. As described in
Zhang et al.,12 the solution can be expressed in the similar format as Eq. 5, except that now the matrices Lb and
Lw depends on the groupings of the l patches. Expressing the sum of the l cost functions in the format of Eq. 5
would not only provide a better comparison between LDA and LADA, but would allow the same procedure used
for maximizing the trace ratio in Eq. 5 to be directly applied to optimize the cost function associated with LADA.
A major challenge is to find a way to express Yi associated with each patch in terms of the low-dimensional
representation of the entire set of data point, denoted by Y as described in Sec. 2.3. Zhang et al.12 defined a
l ×K selection matrix for each patch i, denoted by Si, in order to pick out he K data points in Yi from Y:

Yi = YSi, (7)

with the pq entry of Si defined by:

(Si)pq =

{
1 if p = Fi{q}
0 otherwise.

(8)

where Fi = {i, i1, i2, · · · , iK−1} are the indices of the data point within the patch Xi.

With these definitions established, Eq. 6 can be written in terms of Y:

Tr(YSiLb,iSi
TYT )

Tr(YSiLw,iSi
TYT )

, (9)
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Summation of Eq. 9 for all patches results in the following cost function:

∑l
i=1 Tr(YSiLb,iSi

TYT )∑l
i=1 Tr(YSiLw,iSi

TYT )
=
Tr
(
Y
(∑l

i=1 SiLb,iSi
T
)

YT
)

Tr
(
Y
(∑l

i=1 SiLw,iSi
T
)

YT
) =

Tr
(
YL̃bYT

)
Tr
(
YL̃wYT

) (10)

where L̃b =
∑l

i=1 SiLb,iSi
T and L̃w =

∑l
i=1 SiLw,iSi

T . The optimal W∗ can be written in the same form as
for LDA in Eq. 5:

W∗ = arg max
WTW=I

Tr(WT S̃bW)

Tr(WT S̃wW)
, (11)

where S̃b = XL̃bX
T

and S̃w = XL̃wX
T

. Compared to LDA, the between- and within-class matrices were
computed by maximizing the trace-ratio cost function in local patches instead of globally and therefore were
expected to result in a smaller fitting error.

2.5 Classification based on discriminant analyses

Classification was performed for each of the five prostates individually. Two axial images from each prostate
were used for training, and the remaining axial images were reserved for validation. LDA and LADA were used
to find projection matrices to optimally project data points onto a 2D feature space based on the training data.
In the classification stage, data points were projected onto the 2D feature space using the projection matrices
obtained in training. On the 2D feature space, a data point was classified as either cancerous or non-cancerous
based on the labels of its nearest neighbour in the training set.

Since the result produced by the LADA algorithm depends on size of the patch K defined in Sec. 2.4, K
was tuned using image slices of the sixth prostate not involved in the classification process described in the last
paragraph. Training was performed as described above with K varying from 50 to 300 with a 50 increment. The
K associated with the minimum sum of false native and false positive rates (FNR and FPR respectively) in this
parameter tuning step was applied for the images associated with the other five prostates. Since the parameter
K was not involved in LDA, parameter tuning was not required for LDA.

3. RESULTS

LADA were optimized when K = 250. Table 1 lists the sensitivity, specificity and accuracy achieved by LDA
and LADA. Figs. 1-3 show cases where LDA failed to localize the lesion [Figs. 1(c), 2(c) and 3(c)]. The lesions
were much better localized by the introduction of LADA as shown in Figs. 1(d), 2(d) and 3(d).

Table 1. Sensitivity, specificity and accuracy for LDA and LADA.

Method Sensitivity Specificity Accuracy

LDA 0.31±0.07 0.85±0.04 0.81±0.07

LADA 0.52±0.10 0.89±0.04 0.85±0.04

4. DISCUSSION

We demonstrated that the flexibility introduced by LADA in the computation of the projection matrix has led to
a large improvement in prostate lesion localization as compared to LDA. As demonstrated in the three examples
shown in Figs. 1-3, LDA was unable to localize cancerous lesions, with identified voxels scattered throughout
the entire peripheral zone as shown in Figs. 1(c), 2(c) and 3(c). LADA was more able to identify localize blobs
as lesions as shown in Figs. 1(d), 2(d) and 3(d). Although we have shown that LADA was more accurate in
identifying lesions than LDA, there is an obvious requirement to improve the sensitivity of the algorithm before
it can be applied in clinical settings. As a margin of up to 9 mm was acceptable and even recommended in
focal therapies,13 we will investigate how adding margins would improve the lesion detection sensitivity. In
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(a) (b)

(c) (d)

Figure 1. Lesion localization results in Example Axial Slice 1. (a) shows the T2-weighted image. (b), (c) and (d) show
the cancerous regions identified by manual segmentation, LDA and LADA respectively.

addition, we will incorporate prior knowledge of the lesions to further optimize the results provided by LADA.
For example, a lesion should be at least 0.2 cm3 in order to be considered clinically significant according to
the Epstein’s criteria.14 We will remove identified regions that are too small to reduce false positive detection.
Secondly, holes inside a cancerous lesion is highly unlikely. Filling holes in the detected regions should be able
to increase the accuracy of lesion identification. Investigations of these post-processing techniques will be the
focus of a future investigation.

5. CONCLUSION

In this paper, LADA was introduced to localize the prostate lesion. Based on the preliminary results generated
using mpMRI of five prostates, LADA detected lesions with greater sensitivity, specificity and accuracy as
compared to LDA due to the more flexible patch-by-patch formulation. Further improvement in accuracy can
be achieved by removing detected regions which are too small to be considered clinically significant (e.g., 0.2
cm3 by Epstein’s criteria14). A limitation of this study is the small sample size used to validate the algorithm,
and as such, there is a requirement for a future evaluation study involving more subjects. Improvement on the
sensitivity and the overall accuracy in lesion detection by LADA is required, and will be achieved through adding
margin, remove small regions and filling holes inside lesions in a future investigation.
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(a) (b)

(c) (d)

Figure 2. Lesion localization results in Example Axial Slice 2. (a) shows the T2-weighted image. (b), (c) and (d) show
the cancerous regions identified by manual segmentation, LDA and LADA respectively respectively.
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