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Using the recently developed Coulomb Quantum Orbit Strong-Field Approximation (CQSFA), we
perform a systematic analysis of several features encountered in above-threshold ionization (ATI)
photoelectron angle-resolved distributions (PADs), such as side lobes, and intra- and intercycle inter-
ference patterns. The latter include not only the well-known intra-cycle rings and the near-threshold
fan-shaped structure, but also previously overlooked patterns. We provide a direct account of how
the Coulomb potential distorts different types of interfering trajectories and changes the corre-
sponding phase differences, and show that these patterns may be viewed as generalized holographic
structures formed by up to three types of trajectories. We also derive analytical interference condi-
tions and estimates valid in the presence or absence of the residual potential, and assess the range
of validity of Coulomb-corrected interference conditions provided in the literature.
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I. INTRODUCTION

Orbits and quantum interference play a vital role in
phenomena that occur when matter interacts with laser
fields of intensities I ≥ 1014W/cm2. The archetypal de-
scription of such phenomena relies on an electron under-
going tunnel or multiphoton ionization, propagating in
the continuum and either interacting with its parent ion
via recollision, or reaching the detector directly [1]. For
a given final electron momentum, there are usually many
paths that the active electron may follow. Thus, the re-
lated probability amplitudes interfere.

For a qualitative description of strong-field dynamics,
it often suffices to neglect the binding potential in the
electron propagation and approximate the continuum by
field-dressed plane waves. This is a key idea behind the
strong-field approximation (SFA), which is one of the
most widespread approaches in strong-field and attosec-
ond physics. Since the mid-2000s, however, many fea-
tures stemming from the interplay between the residual
binding potential and the laser field have been identi-
fied in experiments. Examples are (i) the low-energy en-
hancements in above-threshold ionization (ATI) spectra
[2–12], (ii) the fan-shaped structure in angular resolved
ATI electron momentum distributions [13–15], and (iii)
the species dependency in nonsequential double ioniza-
tion (NSDI) with circularly polarized fields [16].

While examples (i) and (iii) may be explained by classi-
cal methods [3–7, 9–11, 16], (ii) is a quantum-interference
effect that occurs near the ionization threshold. Studies
of near-threshold ATI using the SFA [17, 18] have shown
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that the interference of events separated by at most half
a cycle leads to nearly vertical fringes, whose distortion
by the Coulomb potential leads to the fan-shaped struc-
ture. This relationship has been investigated by modify-
ing the final electron scattering state [17, 19], comparing
the full solution of the time-dependent Schrödinger equa-
tion (TDSE) for short- and long-range potentials [19],
and performing classical-trajectory computations which
relate the fringes to laser-dressed Kepler hyperbolae with
neighboring angular momenta [20, 21]. One should also
note that, in strong-field photodetachment of negative
ions, i.e. for short-range binding potentials, there is a
very good agreement between the SFA and the full solu-
tion of the TDSE [22–24] and experimental results [25],
with approximately vertical fringes instead of a fan.

In a previous publication [26], we have performed a di-
rect analysis of how this pattern forms using the Coulomb
Quantum Orbit Strong-Field Approximation (CQSFA)
[27]. We have shown that the fan-shaped structure may
be viewed as a holographic feature caused by the interfer-
ence of the trajectories that reach the detector directly,
with those that are deflected by the binding potential,
but do not undergo hard collisions. The phase difference
between the two interfering types of trajectories is depen-
dent on the electron scattering angle. This causes dis-
tortions in the intra-cycle fringes obtained from the SFA,
which then form the fan-shaped pattern. The abovemen-
tioned work, however, left several open questions. First,
in addition to the fan-shaped structure, there may be
other types of intra-cycle interference, and one should
clarify how the Coulomb potential distorts such patterns.
Second, in photoelectron holographic structures, there
are usually two types of orbits which act as probe and ref-
erence signal. Could one generalize photoelectron holog-
raphy in order to incorporate additional types of orbits?

Other structures are exemplified by the ATI rings,
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caused by the interference of events separated by a full
number of cycles, the carpet-like patterns observed in
ATI angular distributions for electron emission perpen-
dicular to the driving-field polarization [28], and a myriad
of holographic structures that occur due to the interfer-
ence between direct electrons and those undergoing hard
collisions [15, 29–35]. Analytic conditions have been de-
rived for many of such structures. The overwhelming ma-
jority of these conditions, however, neglect the Coulomb
potential in the electron propagation. They are either
based on the SFA, or on its classical counterpart.

Nonetheless, studies employing the Coulomb corrected
SFA [36] show that the Coulomb potential introduces
phase shifts and thus modifies interference patterns in
ATI. Therein, analytic interference conditions are pro-
vided for electron emission parallel and perpendicular to
the laser-field polarization, and the low-frequency limit.
These conditions however are based on a series of assump-
tions, whose validity should be examined more closely.
First, it is postulated that only two main types of orbits
contribute to the interference patterns: those that leave
in the direction and from the opposite side of the detec-
tor, known as orbits type 1 and 2, respectively. This is the
case in the SFA, but the Coulomb potential modifies the
topology of the problem by introducing two more types
of orbits [27, 37]. Second, one assumes that the transi-
tion amplitudes related to orbits 1 and 2 have the same
absolute values for intra-cycle events, and that momenta
associated with different orbits populate the same region.
There is, however, no evidence that these assumptions
hold in the presence of the Coulomb potential.

In the present article, we perform a direct, quantum-
orbit analysis of how the Coulomb potential influences
ATI photoelectron distributions. This includes the side
lobes, inter- and intra-cycle interference. We provide an-
alytic estimates for interference maxima and minima, and
investigate to which extent the assumptions in Ref. [36]
hold. We also assess how specific patterns form, and
whether one must go beyond only two types of orbits.

This article is organized as follows. In Sec. II, we re-
view the strong-field approximation and the CQSFA de-
veloped in [27], and give recent improvements in the lat-
ter. Subsequently, in Sec. III, we analyze near-threshold
patterns in ATI, starting from those occurring in the SFA
(Sec. III A). We then study the main types of orbits in the
CQSFA (III B 1), provide analytic estimates for the PAD
sidelobes (III B 2) and inter-cycle interference (III B 3),
and link different types of orbits to several intra-cycle
holographic structures (Sec. III B 4). Finally, in Sec. IV
we state our main conclusions.

II. BACKGROUND

Our starting point is the time-dependent Schrödinger
equation in atomic units

i∂t|ψ(t)〉 = H(t)|ψ(t)〉 , (1)

which describes the evolution of an electron under the
influence of the binding potential and the external field.
The Hamiltonian H(t) may be split into H(t) = Ha +
HI(t), where

Ha =
p̂2

2
+ V (r̂) (2)

gives the field-free one-electron atomic Hamiltonian and
r̂ and p̂ denote the position and momentum operators,
respectively. We choose V (r̂) to be a Coulomb-type po-
tential

V (r̂) = − C√
r̂ · r̂

, (3)

where 0 ≤ C ≤ 1 is an effective coupling, and HI(t) gives
the interaction with the external field. In the length
and velocity gauge, HI(t) = −r̂ · E(t) and HI(t) =
p̂ · A(t) + A2/2, respectively, where E(t) = −dA(t)/dt
is the electric field of the external laser field and A(t)
the corresponding vector potential. Eq. (1) can also be
written in an integral form if we consider time evolution
operators. This leads to the Dyson equation

U(t, t0) = Ua(t, t0)− i
∫ t

t0

U(t, t′)HI(t
′)Ua(t′, t0)dt′ , (4)

where Ua(t, t0) = exp[iHa(t − t0)] is the time-evolution
operator associated with the field-free Hamiltonian, and
the time evolution operator

U(t, t0) = T exp

[
i

∫ t

t0

H(t′)dt′
]
, (5)

where T denotes time-ordering, relates to the full Hamil-
tonian H(t) evolving from an initial time t0 to a final
time t.

In ionization, the quantity of interest is the transition
amplitude 〈ψp(t)|U(t, t0)|ψ0〉 from a bound state |ψ0〉 to
a final continuum state |ψp(t)〉 with momentum p, which
can be written in integral form using Eq. (4). This gives
the formally exact ionization amplitude

M(p) = −i lim
t→∞

∫ t

−∞
dt′ 〈ψp(t)|U(t, t′)HI(t

′)|ψ0(t′)〉 ,

(6)
with |ψ0(t′)〉 = exp[iIpt

′] |ψ0〉, where Ip is the ionization
potential. Throughout, we will employ the length gauge,
as it gives better results for ATI within the SFA [38].

A. Strong-field approximation

The strong-field approximation is obtained if the full
time evolution operator is replaced by the Volkov time
evolution operator U (V )(t, t′) in Eq. (6). More detail is
provided in [39, 40] and in the review article [41]. The
main advantage is that this operator can be computed an-
alytically. This however approximates the continuum by
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field-dressed plane waves, and thus eliminates the influ-
ence of the binding potential in the electron propagation.

Within the SFA, the transition amplitude for direct
ATI from the initial bound state |ψ0〉 to a final Volkov
state with drift momentum p is given by [42–44]

Md(p) = −i
∫ ∞
−∞

dt′〈p + A(t′)|HI(t
′)|Ψ0〉eiSd(p,t′), (7)

where

Sd(p, t
′) = −1

2

∫ ∞
t′

[p + A(τ)]2dτ − Ipt′ (8)

is the semiclassical action, which describes the propaga-
tion of an electron from the ionization time t′ to the end
of the pulse, which is taken to be infinitely long. The elec-
tron’s continuum state |p+A(t′)〉 is a field-dressed plane
wave with momentum p+A(t′), obtained by back propa-
gating the final state |ψp(t)〉 from t to t′ with U (V )(t′, t).
In Eqs (7) and (8), Ip denotes the ionization potential.
We use the length gauge Hamiltonian, and employ the
steepest descent method. This means that we seek t′ for
which Eq (8) is stationary, which gives the saddle point
equation

∂S(t′)

∂t′
=

[p + A(t′)]2

2
+ Ip = 0. (9)

Physically, Eq. (9) ensures the conservation of energy
upon tunnelling ionization at time t′ for the electron. Be-
cause tunnelling has no classical counterpart, this equa-
tion has only complex solutions. In terms of the solutions
ts of Eq (9), the transition amplitude (9) can be approx-
imated by

Md(p) =
∑
s

C(ts)eiSd(p,ts), (10)

where

C(ts) =

√
2πi

∂2S(p, ts)/∂t2s
〈p + A(ts)|HI(ts)|Ψ0〉. (11)

The prefactor C(ts) is expected to vary much more slowly
than the action at each saddle for the saddle point ap-
proximation to hold [45]. According to Eq. (10), there
are in principle many orbits along which the electron may
be freed. This means that, for the same final momentum,
the corresponding transition amplitudes will interfere.

B. Coulomb quantum-orbit strong-field
approximation

We will now insert the closure relation
∫
dp̃0|p̃0〉〈p̃0| =

1 in Eq. (6). This gives

M(pf ) = −i lim
t→∞

∫ t

−∞
dt′
∫
dp̃0 〈p̃f (t)|U(t, t′)|p̃0〉

× 〈p̃0|HI(t
′)|ψ0(t′)〉 , (12)

where |p̃f (t)〉 = |ψp(t)〉. The variables p̃0 = p0 + A(t′)
and p̃f (t) = pf+A(t) give the initial and final velocity of
the electron at the times t′ and t, respectively. This spe-
cific formulation is very convenient, as 〈p̃f (t)|U(t, t′)|p̃0〉
can be computed using path-integral methods [46, 47].
One should note that the bound states of the system
have been neglected in the above-stated closure relation,
which, physically, corresponds to ignoring transitions be-
tween bound states.

The CQSFA transition amplitude then becomes

M(pf ) = −i lim
t→∞

∫ t

−∞
dt′
∫
dp̃0

∫ p̃f (t)

p̃0

D′p̃
∫
Dr

(2π)3

×eiS(p̃,r,t,t′)〈p̃0|HI(t
′)|ψ0〉 , (13)

where D′p and Dr are the integration measures for the
path integrals [27, 46], and the prime indicates a restric-
tion. These represent a sum over all possible paths in
position and momentum, that the electron can take, be-
tween its start and end points. The action in Eq. (13) is
given by

S(p̃, r, t, t′) = Ipt
′ −
∫ t

t′
[ṗ(τ) · r(τ) +H(r(τ),p(τ), τ ]dτ,

(14)
and

H(r(τ),p(τ), τ) =
1

2
[p(τ) + A(τ)]

2
+ V (r(τ)). (15)

We compute the action along a two-pronged contour, and
perform a series of approximations. The first part of
the contour is taken to be parallel to the imaginary-time
axis, going from t′ = t′r + it′i to t′r. The second part
of the contour is chosen to be along the real time axis,
from t′r to t. Physically, the former and the latter arm of
the contour describe tunnel ionization and the continuum
propagation, respectively. The action then reads

S(p̃, r, t, t′) = Stun(p̃, r, t′r, t
′) + Sprop(p̃, r, t, t′r), (16)

where Stun(p̃, r, t′r, t
′) and Sprop(p̃, r, t, t′r) give the ac-

tion along the first and second part of the contour, re-
spectively. This type of contour has been widely used in
the literature [36, 48–50]. We assume the electron mo-
mentum to be approximately constant in the first arm of
the contour. The explicit expressions for Stun and Sprop

are

Stun(p̃, r, t′r, t
′) = Ip(it

′
i)−

1

2

∫ t′r

t′
[p0 + A(τ)]

2
dτ

−
∫ t′r

t′
V (r0(τ))dτ, (17)

where r0 is defined by

r0(τ) =

∫ τ

t′
(p0 + A(τ ′))dτ ′, (18)
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and

Sprop(p̃, r, t, t′r) = Ip(t
′
r)−

1

2

∫ t

t′r

[p(τ) + A(τ)]
2
dτ

−
∫ t

t′r

[ṗ · r + V (r(τ))]dτ, (19)

respectively. The contour for Stun(p̃, r, t′r, t
′) inside the

barrier will be computed from the origin until the tunnel
exit, which is chosen as

z0 = Re[r0z(t
′
r)] (20)

as given in [51]. It should be noted that in Eq. (17)
the path r0(τ) approaches zero at τ = t′. Hence, the
singular potential will diverge. This divergence will be
treated numerically by integrating ε away from t′, where
ε � Im[t′]. An anlytical treatment of the divergence is
discussed in the appendix B.

The above-stated equation will be solved by the
stationary-phase method. In the CQSFA, we must seek
solutions not only for the ionization time t′ but also for
the intermediate position and momentum r(τ) and p(τ)
so that the action given by Eq. (14) is stationary. This
gives the equation

[p(t′) + A(t′)]
2

2
+ V (r(t′)) = −Ip, (21)

related to the energy conservation upon tunnel ioniza-
tion, and

∇rS(p̃, r, t, t′) = 0 =⇒ ṗ = −∇rV (r(τ)), (22)

∇pS(p̃, r, t, t′) = 0 =⇒ ṙ = p +A(τ), (23)

which describe the dynamics of the electron in the con-
tinuum from t′r to t. Given V (r) = −C/r we find

r · ṗ = −r · ∇rV (r) = V (r). (24)

Hence, Eq. (24) can be substituted into Eq. (19) to sim-
plify it. This yields

Sprop(p̃, r, t, t′r) = Ip(tr)−
1

2

∫ t

t′r

[p(τ) + A(τ)]
2
dτ

−2

∫ t

t′r

V (r(τ)))dτ. (25)

This resembles the virial theorem, for which an analogous
relationship between kinetic and potential energy can be
derived. A similar result was obtained in [52].

In Eq. (17), we have approximated the momentum to
be fixed. We can thus neglect the binding potential in
Eq. (21) which gives the ionization time. This leads to

1

2
[p0 + A(t′)]

2
+ Ip = 0. (26)

The potential is however included in the equations of
motion (22) and (23) and in the action (19), which are

solved for a specific final momentum pf and t→∞. The
initial momenta are computed by solving Eqs. (22) and
(23), with the tunnel exit as an initial position and the
final momenta as a final “limit” condition. In order to
implement the limit on the momenta we solve the prob-
lem iteratively, starting from the SFA and increasing the
influence of the Coulomb potential. This method does
not explicitly parametrize the initial momenta in terms
of the final, but enables each orbit’s initial momentum to
be calculated for any given final momentum. This makes
it much easier to see the momentum distributions for each
orbit, which gives a unique insight into the dynamics.

After a series of manipulations, the Coulomb corrected
transition amplitude becomes

M(pf )∝−i lim
t→∞

∑
s

{
det

[
∂ps(t)

∂rs(ts)

]}−1/2

C(ts)eiS(p̃s,rs,t,ts)),

(27)
where ts, ps and rs are determined by Eqs. (22)-(26)
and C(ts) is given by Eq. (11). In practice, we employ
the stability factor ∂ps(t)/∂ps(ts), which is obtained us-
ing a Legendre transformation. The action will remain
the same as long as the electron starts from the origin.
Eq. (27) is normalized so that the SFA transition ampli-
tude is obtained in the limit of vanishing binding poten-
tial. Throughout, we consider the electron to be initially
bound in a 1s state. For details we refer to [27].

III. QUANTUM-INTERFERENCE EFFECTS

All the different orbits that reach the detector with the
same final momenta will contribute to the interference
patterns. These orbits and the corresponding patterns
will be the main topic of this section, in the SFA and
CQSFA. For simplicity, in the results that follow, we will
consider a linearly polarized monochromatic field

E(t) = E0 sin(ωt)êz. (28)

This corresponds to the vector potential

A(t) = 2
√
Up cos(ωt)êz, (29)

where êz gives the unit vector in the direction of the
driving-field polarization and Up is the ponderomotive
energy. In our studies, we will focus on the action as
it plays the most important role in determining phase
differences between quantum orbits. The prefactors vary
much more slowly, and will only play a secondary role.
Under this approximation, the probability distribution
considering Nc cycles of the driving field and a number
ne of relevant events per cycle is given by

Ω(pf ) =

∣∣∣∣∣
ne∑
e=1

Nc∑
c=1

exp[iSec]

∣∣∣∣∣
2

, (30)

where Sec is the action associated to the e-th event in the
c-th cycle and pf the momentum at the detector. Here
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the single sum over s in Eq. (27) has been replaced by a
double sum in the indices e and c.

For a monochromatic field we find that the difference

Sec′ − Sec =
2πi(c′ − c)

ω

(
Ip + Up +

1

2
p2
f

)
(31)

between the actions related to the same type of orbit but
a different cycle is independent of the orbit. This renders
Eq. (30) factorizable and given by

Ω(pf ) = Ωne(pf )ΩNc(pf ), (32)

where Ωne(pf ) is the probability associated with intra-
cycle interference and

ΩNc
(pf ) =

cos
[

2πiNc

ω

(
Ip + Up + 1

2p
2
f

)]
− 1

cos
[

2πi
ω

(
Ip + Up + 1

2p
2
f

)]
− 1

(33)

is the probability related to inter-cycle interference. De-
tails about Eqs. (30)-(33) are provided in Appendix A.
In the limit of infinitely long pulses, Eq. (33) describes
a Dirac delta comb, whose peaks are unequally spaced,
and remains the same for the SFA and CQSFA. This
condition agrees with the expression in [17].

The number ne of relevant orbits per cycle will depend
on the approach, and will not exceed three in this work.
Hence, we can write an expression for intra-cycle interfer-
ence that is general enough to encapsulate all the effects
discussed. Explicitly,

Ωne(pf )=e−2Im[S1c]
∣∣∣1+e−∆SIm

12 ei∆S
Re
12 +e−∆SIm

13 ei∆S
Re
13

∣∣∣2 .
(34)

Here ∆SRe
1j = Re[Sjc − S1c] and ∆SIm

1j = Im[Sjc − S1c]
with j = 2, 3. This is valid for all cycles c. The term
e−2 Im[S1c] shapes the momentum distribution, and gives
rise to the side-lobes identified in ATI photoelectron mo-
mentum distributions [15]. The real parts of ∆Sij lead
to the interference fringes seen in ATI, while Im[∆Sij ]
switch interference on or off. If Im[∆Sij ] is small, then
interference is on, whereas for large Im[∆Sij ] interference
is off and one of the orbits prevails.

We will next write the action for the monochromatic
fields (28) and (29). The tunnelling and propagation
parts of the action in the CQSFA given in Eq. (17) and
(25), respectively, can be rewritten as

Stun(p̃, r, t′r, t
′) = i

(
Ip +

1

2
p2

0 + Up

)
t′i −

∫ t′r

t′
V (r0(τ))dτ

+
2
√

Upp0z

ω
[sin(ωt′)− sin(ωt′r)]

+
Up

2ω
[sin(2ωt′)− sin(2ωt′r)] (35)

and

Sprop(p̃, r, t, t′r) =

(
Ip +

1

2
p2
f + Up

)
t′r +

2
√

Uppfz

ω
sin(ωt′r)

+
Up

2ω
sin(2ωt′r)−

1

2

∫ t

t′r

PPP(τ) · (PPP(τ) + 2pf )dτ

− 2
√

Up

∫ t

t′r

Pz(τ) cos(ωτ)dτ − 2

∫ t

t′r

V (r(τ))dτ,

(36)

where pjz, with j = 0, f , correspond to the electron mo-
mentum components parallel to the laser-field polariza-
tion and

p(τ) = PPP(τ) + pf . (37)

This has been chosen so that all the integrands go to zero
for large τ . Eqs. (35) and (36) can be combined to give
an explicit form of the action,

S(p̃, r, t, t′) = (Ip + Up) t′ +
1

2
p2
f t
′
r +

i

2
p2

0t
′
i +

Up

2ω
sin(2ωt′)

+
2
√

Up

ω
[p0z sin(ωt′)− (p0z − pfz) sin(ωt′r)]−

∫ t′r

t′
V (r0(τ))dτ

− 1

2

∫ t

t′r

PPP(τ) · (PPP(τ) + 2pf + 2A(τ))dτ − 2

∫ t

t′r

V (r(τ))dτ.

(38)

This equation can be considered general in that we will
recover the SFA if the Coulomb coupling is reduced to
zero, i.e., in the limit C → 0. Then V (r) → 0, pf →
p0 → p and PPP → 0, which leaves us with the SFA action
given in Eq. (39).

A. Strong-field approximation

For the SFA, Eq. (38) gives an explicit form of the
action, if the above limits are taken,

Sd(p, t
′) =

(
p2
z + p2

x

2
+ Ip + Up

)
t′ (39)

+
2pz
√
Up

ω
sin[ωt′] +

Up
2ω

sin[2ωt′],

where pz and px correspond to the momentum compo-
nents parallel and perpendicular to the laser-field polar-
ization, which remain constant throughout (i.e., p0 =
pf = p). The saddle-point equation (9) can be solved
analytically for the ionization time tec related to an event
e occurring in a cycle c. This gives

tec =
2πn

ω
± 1

ω
arccos

(
−pz ∓ i

√
2Ip + p2

x

2
√
Up

)
, (40)

where n is any integer. Convergent solutions require that
Im[tec] > 0. This parametrization has been used in [53]
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1. Interference condition

Within the SFA, the dominant types of interference
are determined by two ionization events, occurring at the
times tec and te′c′ . The number of events in a cycle is
restricted to e = 1, 2 so that they relate to orbit 1 and 2,
respectively. The dominant interference patterns occur
for the condition

Re[tec]± Re[te′c′ ] = 2π/ω. (41)

If e = e′, c 6= c′ and the negative sign is chosen, Eq. (41)
describes the dominant inter-cycle interference contribu-
tions. One should note, however, that there are also sec-
ondary events separated by more than a cycle, which can
be obtained by considering 2ncπ/ω, nc > 1, on the right-
hand side of Eq. (41). For intra-cycle interference, one
must take e 6= e′, c = c′ and the positive sign in Eq. (41).

Furthermore,

Im[tec] = Im[te′c′ ], (42)

which, physically, reflects the fact that, in the SFA, the
potential barrier is determined solely by the driving field.

The quantity of interest is

Ω(p) = |eiSec(1 + ei∆S)|2, (43)

where Sec = S(tec) is the SFA action (39) associated
with each of the interfering events and ∆S = Se′c′ −
Sec is the corresponding phase difference. The real part
of ∆S gives the interference fringes, while its imaginary
part determines the contrast of the patterns. Eq. (42)
guarantees sharp fringes as Im[∆S] = 0.

For intercycle interference, condition (41) gives

∆S
(SFA)
inter =

(
p2
z + p2

x

2
+ Ip + Up

)
2ncπ

ω
. (44)

Interference extrema requires that

p2
z + p2

x =
n

nc
ω − 2Up − 2Ip, (45)

where even and odd n give maxima and minima, re-
spectively. This condition describes a circle centered at
(pz, px) = (0, 0), and it is exact within the SFA frame-
work. For the radius in Eq. (45) to be real, nω ≥
2nc(Up + Ip). The dominant processes correspond to the
shortest time difference, i.e., nc = 1. For nc > 1, the
fringes will be much finer and start at a higher value of
n. For a coherent superposition of all inter-cycle pro-
cesses, the interference condition follows Eq. (33).

For intracycle interference, we use the specific solutions

t1c =
1

ω
arccos

(
−pz − i

√
2Ip + p2

x

2
√
Up

)
(46)

t2c =
2π

ω
− 1

ω
arccos

(
−pz + i

√
2Ip + p2

x

2
√
Up

,

)
(47)
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FIG. 1: Real part of the ionization times tec and actions Sec

as functions of the electron momentum component pz parallel
to the driving-field polarization [panels (a) and (b), respec-
tively]. In panel (a), from top to bottom, we see the real
parts of the solutions t11, t21, t12 and t22, respectively, while
panel (b) displays the real parts of the actions S11, S21, S12

and S22. The circles (squares) indicate the interfering parts
of the orbits for which ∆t is less than (greater than) half a
cycle, which lead to type A (type B) intracycle interference.
We have taken the perpendicular momentum component px
to be vanishing and renormalized pz in terms of

√
Up.

which are both in the upper complex half plane. For
pz > 0, Eqs. (46) and (47) are related to orbits 1 and
2. For orbit 1, the electron is released in the direction of
the detector and for orbit 2 it is released in the opposite
direction, which is subsequently changed by the field. For
pz < 0, the situation is reversed and the solutions are
shifted in half a cycle [27, 37].

Applying conditions (41) and (42) parametrizing
ωt1c = arccos ξ according to Eq. (46) gives

∆S
(SFA)
intra =

(
Ip + Up +

1

2
p2
x +

1

2
p2
z

)(
2π

ω
− 2Re[arccos(ξ)]

ω

)
+

4pz
√
Up

ω
Re
[√

1− ξ2
]

+
2Up

ω
Re
[
ξ
√

1− ξ2
]
.

(48)

Interference maxima and minima require ∆S
(SFA)
intra = nπ,

for n even and odd, respectively. Eq. (48) can be used to
describe two types of interference patterns. If Re[t2c−t1c]
is smaller (greater) than half a cycle, we will refer to
type A (type B) intra-cycle interference, respectively. A
schematic representation of orbits 1 and 2, together with
the corresponding actions, is provided in Fig. 1. Type
A interference has been extensively studied in the litera-
ture, while type B interference has been overlooked. This
type of interference bears some analogy to that leading
to the rhombi interference in Ref. [10], possibly due to
the fact that the times follow similar constraints to those
discussed here. The structures in [10], however, occur for
rescattered ATI and thus are different.

It is helpful to derive approximate intra-cycle con-
ditions by expanding Re[t1c] and Re[t2c] around two
consecutive field extrema. To zeroth order, Re[t1c] =
π/(2ω)+nπ/ω and Re[t2c] = (2n+3)π/(2ω). In this case,
the electron reaches the continuum with vanishing mo-
mentum, i.e., pz = px = 0. This gives ξ0 = i

√
Ip/(2Up),
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FIG. 2: Electron momentum distributions computed with the SFA for Hydrogen Ip = 0.5 a.u. in a driving field of intensity
I = 2 × 1014W/cm2 and frequency ω = 0.057 a.u.. In panels (a) to (c), we display inter-cycle interference patterns obtained
using orbit 1. In Panel (a), we consider the ionization times t11, t12 and t13. In panel (b) we take only events within the first
two cycles, i.e., the times t11 and t12, while panel (c) was computed using only t11 and t13. The solid white lines superimposed
to the fringes in panel (a) give the analytic condition in Eq. (33) with Nc = 3, and those in panels (b) and (c) follow Eq. (45)
with nc = 1 and nc = 2, respectively. In panels (d) to (f), we present intracycle interference patterns computed using the times
t11 and t21. Panels (d) and (e) exhibit type A and B intracycle interference, for which ∆t is less than or greater than half
a cycle, respectively. Panel (f) was computed following the solutions t11 and t21 from negative to positive parallel momenta
without imposing any restriction upon the time difference. This gives type A intracycle interference for pz > 0 and type B
intracycle interference pz < 0. The solid and dashed white lines superimposed to the fringes give the exact and approximate
SFA conditions for intra-cycle interference [Eqs. (48) and (49)], respectively.

which, if inserted in Eq. (48) leads to

(
pz −

4
√
Up

π

)2

+ p2
x = 2nω − 2Up − 2Ip +

(
4
√
Up

π

)2

,

(49)

for ∆S
(SFA)
intra = nπ, which is the equation of a circle cen-

tered at (pz, px) = (4
√
Up/π, 0).

For both types of intra-cycle interference, the approx-
imate condition (49) works well around the origin, but
worsens for increasing momentum components, while Eq.
(48) is exact within the SFA framework. We access the
negative momentum regions by considering pz → −pz in
both equations, which corresponds to a shift of half a cy-
cle in the solutions tec. This gives another circle centered
at (pz, px) = (−4

√
Up/π, 0). Using Eq. (49), one may de-

termine a range for the interference order n, within which
type A interference may occur. The condition that the
radius in Eq. (49) must be positive gives the lower bound
nω > Up + Ip − 8Up/π

2 for n. Furthermore, if the elec-
tron leaves at a field crest, one may set pz = px = 0
in Eq. (49). This yields the upper bound n ≤ Ip + Up.
One should note that, for type B interference, the latter
expression constitutes an approximate lower bound for
n.

2. Interference patterns

Fig. 2 displays photoelectron angular distributions
(PADs) constructed so that specific types of inter- and
intracycle interference are isolated. In Fig. 2(a), we show
ring-shaped patterns from a coherent superposition of
type 1 orbits within three field cycles. The rings are
modulated and follow Eq. (33) with Nc = 3, which sug-
gests a coherent superposition of two types of rings. This
is confirmed by considering only the first and the second
cycle, for which nc = 1 in Eq. (45) [Fig. 2(b)], or the
first and the third cycle, for which nc = 2 [Fig. 2(c)]. For
larger nc, the fringes start at higher momentum and are
finer, as expected from Eq. (45).

The remaining panels display intra-cycle interference.
In Fig. 2(d), we plot type A intra-cycle interference, us-
ing the pairs of orbits marked by the circles in Fig. 1.
Note that, for different signs of pz, the chosen solutions
have been shifted by half a cycle. This leads to sym-
metric patterns with regard to pz → −pz. As the mo-
mentum pz increases in absolute value, the corresponding
ionization times move from two consecutive field extrema
(∆t = π/ω) towards the same field crossing (∆t = 0).
For that reason, the phase difference ∆S decreases [see
black circles in Fig. 1(b)], which leads to broader fringes
in the angle-resolved spectra as |pz| increases. Fig. 2(e)
depicts type B intra-cycle interference, using the orbits
indicated by the rectangles in Fig. 1. In this case, the real
parts of the ionization times move from two consecutive
field extrema towards different field crossings as |pz| in-
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FIG. 3: Momentum distributions computed with the SFA us-
ing the same field and atomic parameters as in Fig. 2, for two
cycles of the fundamental driving field. Panel (a) was con-
structed using orbits 1 and 2 for pz > 0 and symmetrization
with regard to the origin, which allows for type A and B intra-
cycle interference occurring twice and once, respectively. This
implies choosing the times t11, t21 and t12 for pz > 0 and sym-
metrizing with regard to pz = 0. Physically, this symmetriza-
tion entails shifting the unit cells in half a cycle for pz < 0. In
panel (b), we allow for types A and B intra-cycle interference
to occur once and twice, respectively. This can be achieved
by shifting the times used in panel (a) by half a cycle, i.e.,
employing t21, t12 and t22 for pz > 0 and symmetrizing with
regard to pz = 0. In panel (c) we consider two consecutive
orbits 1 and only one orbit 2 over 2.5 cycles, which gives an
equal number of times for type A or B interference occurring.
In all three plots intercycle interference rings appear. This is
because more than one cycle is considered, which introduces
interference between consecutive orbits 1 and 2.

creases. Thus, ∆S increases and the fringes become finer.
If one follows a specific pair of solutions from negative
to positive pz relaxing the above constraints upon ∆t,
this results in the momentum distribution presented in
Fig. 2(f). The smooth decrease in ∆S leads to a gradual
transition from finer to thicker interference fringes.

A real pulse is however composed of at least a few
cycles, so that all types of interference will be present.
Fig. 3 provides three examples of angle-resolved photo-
electron distributions computed over two cycles of the
fundamental driving field. Overall, we see the intercy-
cle interference rings in the momentum maps, but the
shapes of the intra-cycle fringes are determined by the
dominant events. In Figs. 3(a) and (b), we construct the
patterns such that type A or type B intracycle interfer-
ence prevails, respectively. For that reason, in Fig. 3(a)
the outward curves at either side of pz = 0 dominate,
while in Fig. 3(b) the intra-cycle fringes become finer
and turn inward near pz = 0. In Fig. 3(c) both types
of interference are included on equal footing. This leads
to straight vertical lines at either side of pz = 0 as the

curvatures of the types A and B interference outweigh
each other. A long enough pulse leads to approximately
symmetric distributions. However, exact symmetry only
occurs for an infinitely long, monochromatic wave.

B. Coulomb-corrected approach

1. Quantum Orbits

In the following we will have a closer look at the orbits
that exist in the CQSFA. In Coulomb corrected models
of ATI there are four types of orbits for any given mo-
menta. Their standard characterization is based on the
tunnel exit z0 and the initial transverse momenta p0x

with regard to the final parallel and transverse momenta
pfz and pfx, respectively [37]. For orbit 1, z0 and the
electron’s final momentum pfz point in the same direc-
tion, i.e., z0pfz > 0, and its initial and final transverse
momenta have the same sign, i.e., p0xpfx > 0. Orbits 2
and 3 have their tunnel exit on the opposite side, so that
z0pfx < 0. Orbit 2 has its initial transverse momentum in
the same direction as the final momentum (p0xpfx > 0),
while for orbit 3 these momentum components point in
opposite directions (p0xpfx < 0). Finally, orbit 4 has its
tunnel exit on the same side as pfz, but the initial and
final transverse momenta are in opposite directions, i.e.,
p0xpfx < 0. The transition amplitude related to orbit 4
is small, hence we will not consider it any further [27].
This characterization differs from that employed in Sec.
II A, as the solutions tec associated with each orbit are
not kept continuous for all momenta. Keeping tec contin-
uous would change the behavior of the orbits according
to this classification, which we would like to avoid.

One of the main differences between the SFA and
CQSFA is that momenta do not remain constant in the
latter. Hence, one can no longer assume that two or-
bits with the same initial momenta will interfere, as they
may reach the detector with different final momenta.
The ionization times, like in the SFA, can be explicitly
parametrized in terms of the initial momenta. This leads
to an orbit-dependent version of Eq. (40), with the SFA
momentum p replaced by the initial CQSFA momentum
p0. For pfz > 0, the times t1c associated with orbit 1 are

given by Eq. (46), with p replaced by p
(1)
0 , while those

related to orbits 2 and 3 are given by Eq. (47), with p re-

placed by p
(2)
0 or p

(3)
0 , respectively. Differences between

the times t2c and t3c for orbit 2 and 3 come from the fact
that they have different initial momenta. For pfz < 0,
the situation reverses, i.e., t1c is given by Eq. (47) and
the remaining times by Eq. (46).

In Fig. 4(a), we display the real parts of the ionization
times as functions of the electron’s final momentum pfz
parallel to the laser-field polarization, which are associ-
ated to the classical trajectories of an electron in the field.
We can see from Fig. 4(a) that the real part of the time
of ionization for the CQSFA is quite similar to the SFA
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FIG. 4: In panels (a) and (b), we plot the real and imaginary part of the ionization times obtained for the CQSFA orbits
1, 2 and 3, as functions of the final momentum component pfz parallel to the laser-field polarization, compared with their
SFA counterpart (black and gray lines in the figure) Panels (c) and (d) show the initial perpendicular and parallel momentum
components p0x and p0z for the CQSFA orbits 1 to 3, respectively, as functions of the final parallel momentum pfz. In panels
(a) to (d), the final perpendicular momentum was chosen as pfx = 0.25 a.u.. Panel (e) presents the initial perpendicular

momentum p0x as a function of the final perpendicular momenta p
(i)
fx, i = 1, 2, 3, for a fixed value of pfz = 0.25 a.u.. For

reference, from panels (c) to (e) the SFA solution is provided as the black dotted-dashed line. Panel (f) shows orbit 3
for two values of the initial perpendicular momentum. For a final momentum (pfx, pfz) = (1.082 a.u., 0.668 a.u.) and an
initial momentum of (p0x, p0z) = (−0.043 a.u., 0.563 a.u.) (solid orange line), the electron deflected by the potential, while for
(pfx, pfz) = (1.144 a.u., 0.672 a.u.) and an initial momentum of (p0x, p0z) = (−0.041 a.u., 2.713 a.u.) (dashed blue line), the
electron undergoes a hard collision with the core. The black circle in the figure marks the region for which the collision occurs.
The field and atomic parameters are the same as in Figs. 2 and 3.

but is shifted down. Physically, this can be understood
as follows: For orbit 1, the electron is decelerated by the
Coulomb potential, so that it will need a higher momen-
tum p0 to escape and reach the detector with a specific
momentum pf . This means that the driving field must
compensate the above-mentioned deceleration and that
the electron’s release time t1c must move away from the
field extremum towards the crossing. In contrast, for or-
bits 2 and 3 the binding potential accelerates the electron
and it must acquire less energy from the field to achieve a
final momentum pf . Thus, the electron is released with
a lower momentum and its release times must approach
the previous field extremum. As |pfz| increases, all three
times tend to their SFA counterparts, but reach this limit
in different ways. The time t1c tends monotonically to-
wards the SFA value, while the ionization times t2c and
t3c first deviate from their SFA counterparts. This is
because an electron along orbit 1 may escape with van-
ishing transverse momentum p0x = 0, while for orbits 2
and 3 this would either trap the electron or lead to a hard
rescattering with the core in case the p0z is low.

In Fig. 4(b), we show the imaginary parts Im[tec], with
e = 1, 2, 3, of these solutions. An overall feature is that
they are no longer identical, so that Eq. (42) breaks

down for intra-cycle events. This is expected, as Im[tec]
is roughly related to the width of the effective poten-
tial barrier through which the electron tunnels [54]. The
Coulomb potential will make this barrier different for or-
bits 1, 2 and 3, while in the SFA it is determined solely
by the field. Qualitatively, Im[t1c] behaves in the same
way for the SFA and CQSFA, with a clear minimum at
pfz = 0. This is not surprising, as the topology of or-
bit 1 is similar in both cases. In contrast, for orbit 2,
Im[t2c] exhibits a maximum at pfz = 0 and two sym-
metric minima at non-vanishing momenta. This effect is
quite robust, and contributes to the appearance of side
lobes in the PADs. For orbit 3, Im[t3c] is much flatter
and smaller than for the other two orbits, which indicates
a high escape probability over a large momentum range.
This is consistent with the electron being accelerated for
a longer time, in comparison to orbit 2. Similarly to what
occurs for orbit 2, Im[t3c] exhibits a local maximum for
pfz = 0 and two symmetric minima at pfz 6= 0. There
is however a sharp increase in Im[t] for higher parallel
momenta, as hard collisions with the core start to take
place [see Fig. 4(f)]. This regime is outside the scope of
this work, and will not be addressed here.

In Fig. 4(c), we plot the initial parallel momenta as
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FIG. 5: Single-orbit angle-resolved probability distributions
plotted in arbitrary units and computed for the same field
and atomic parameters as in the previous figures. The left,
middle and right columns correspond to orbit 1, 2 and 3,
respectively. The upper and panels have been computed using
solely the actions, while in the lower panels we have included
the prefactors. The upper panels have been multiplied by 103

in order to facilitate a comparison with the lower ones.

functions of the final perpendicular momentum. For or-
bit 1, if the electron escapes along the polarization axis,
it will need an initial momentum corresponding to the
classical escape velocity

√
2C/|z0|, determined by set-

ting |V (z0)| = v2
0z/2. For non-vanishing transverse mo-

mentum, analytical estimates for the escape velocity are
non-trivial. Still, the figure clearly shows a monotonic

decrease in p
(1)
0z . Orbits 2 and 3, on the other hand, need

a much lower momentum to escape and reach the de-
tector along the polarization axis. Thus, p0z eventually
increases with final transverse momentum.

Similar features are observed in Fig. 4(d), where p
(e)
0z ,

e = 1, 2, 3 are displayed as functions of pfz. Importantly,
orbit 1 never crosses the pfz axis. This is because the
electron starts with the atomic potential directly behind
it. Hence, it must have a large enough initial parallel
velocity to be able to escape. Furthermore, for orbits
2 and 3, the SFA solution p0z = pfz is approached from
below, while for orbit 1 it is approached from above. This
is a consequence of the electron being accelerated by the
potential along the two former orbits, and decelerated
along the latter. The acceleration is more significant for
orbit 3, in agreement with the previous plots. The critical
behavior of this orbit is also shown in Fig. 4(e) in which
p0x is plotted as function of its final value pfx. For orbits
1 and 2, the SFA value is reached when the momentum
increases, but this does not happen for orbit 3.

2. Single-cycle distributions and side lobes

In Fig. 5, we plot the PADs computed using single or-
bits. In the upper panels we consider only the influence of
the action, while in the lower panels we include the whole

prefacor, given by the stability factor mulitplied by C(ts)
in Eq. (27). Overall, we see the presence of sidelobes for
the contributions of orbits 1 and 2. They mainly stem
from the imaginary part of the action [Figs. 5(a) and (b)]
but are enhanced by the prefactors [Figs. 5(d) and (e)].
Furthermore, in Fig. 5(c), one can see that the contribu-
tions of orbit 3 decay more slowly than those of the two
other orbits. Around 1.2 a.u. there is a sharp decay in
probability, as above a certain energy an electron leav-
ing along orbit 3 starts to backscatter. This prominence
is however obfuscated by the influence of the prefactor,
which causes a huge suppression of the probability den-
sity away from the pfz axis [Figs. 5(f)]. This led to us
neglecting this orbit in previous work [26].

In the CQSFA, the imaginary part of the action reads

SIm(t′,p,r)=

(
Ip+Up+

1

2
p2

0

)
t′i+

2p0z

√
Upcos(ωt′r)sinh(ωt′i)

ω

+
Upcos(2ωt′r)sinh(2ωt′i)

2ω
−
∫ t′r

t′
Im[V (r0(τ))]dτ.

(50)

Eq. (50) is plotted in Fig. 6(a), for orbits 1, 2 and 3. In
general, its behavior mirrors that observed for the imagi-
nary parts of the ionization times. This includes it being
much smaller and flatter for orbit 3 and the local minima
outside the origin for orbit 2.

The mirroring behavior can be seen from Eq. (50) if
one applies the low-frequency approximation [36]. This
gives sinh(ωt′i) ' ωt′i and sinh(2ωt′i) ' 2ωt′i, which is the
dominant term. Within the same approximation, the in-
tegral over V (r0(τ)) leads to an algebraic term, which
may be viewed as a modified prefactor and whose influ-
ence is secondary as far as the sidelobes are concerned. It
does however play an important role in the overall shape
of the distributions. The explicit derivation of this term
is presented in Appendix B.

In Fig. 6(b), we plot the action SIm(t2c,p, r) associated
with orbit 2, including or not the integral over V (r0(τ))
in the low-frequency approximation. In all cases, the
two minima are present. Examples of single-orbit PADs
computed analytically are provided in Figs. 6(c) and
(d). Both figures show clear side lobes and resemble
the single-orbit distribution in Fig. 5(b), which has been
computed numerically. However, inclusion of the integral
over the binding potential in the low-frequency approxi-
mation renders the numerical and analytical single-orbit
distributions strikingly similar. This similarity includes
the broader shape and secondary peaks.

3. Intercycle interference

In the following, we will show that the expression for
intercycle interference remains the same for the CQSFA,
provided the field is monochromatic. Using Eq. (42) and
the field periodicity, the CQSFA action difference may be
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FIG. 6: Panel (a) shows the imaginary parts of the actions Si

(i=1,2,3) associated to the orbits 1, 2 and 3 of the CQSFA,
as functions of the final parallel momentum, computed di-
rectly from Eq. (50) for perpendicular momentum pfx = 0.05
a.u.. For comparison, the SFA counterpart has been included.
Panel (b) displays the approximate expressions obtained for
orbit 2, as functions of the final parallel momentum, for the
same perpendicular momentum as panel (a). The dotted line,
labelled 2b, corresponds to the single-orbit action without
the integral over the binding potential, and the dashed lines,
labelled 2a, include this integral in the long-wavelength ap-
proximation. The solid line gives the numerical expression for
Eq. (50). Panels (c) and (d) illustrate the PADs computed
for orbit 2 without the prefactors, with and without the in-
tegral over V (r0(τ)) in the long-wavelength approximation,
respectively. The atomic and field parameters are the same
as in the previous figures.

written as

∆Sinter = ∆S
(SFA)
inter + ∆Scc′ , (51)

where the first term refers to Eq. (44) with p replaced
by pf , and ∆Scc′ are Coulomb corrections related to an
event of the type e occurring in cycles c and c′, so that the
ionization times satisfy t′c′ = t′c + 2πnc/ω. The indices e
are dropped as the condition refers to the same type of
orbit. This action difference reads

∆Scc′ = ∆SVT
+ ∆SVC

+ ∆Sp, (52)

where ∆SVT
and ∆SVC

are the phase differences caused
by the potential during tunnelling and continuum propa-
gation, respectively, and ∆Sp is related to the change in
momentum during the electron propagation. Explicitly,

∆SVT
=

∫ t′
c′r

t′
c′

V (rc′0(τ))dτ −
∫ t′cr

t′c

V (rc0(τ))dτ, (53)

where the subscripts r indicate the real parts of t′c and
t′c′ and r0c(τ) is given by Eq. (18) with the lower bound
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FIG. 7: Photoelectron angular distributions computed in the
CQSFA for times within a single cycle of the laser field and
the same parameters as in the previous figures neglecting the
prefactors. The upper and bottom row includes orbits 1 and
2, and orbits 1 and 3 as interfering trajectories, respectively.
Panels (a) and (d) show type A intra-cycle interference, panels
(b), and (e) present type B intra-cycle interference and panels
(c), and (f) exhibit both types of interference, obtained in a
similar way as in Fig. 2 by not imposing temporal constraints
upon the interfering solutions. The panels have been plotted
in a logarithmic scale.

replaced by t′c. For a monochromatic field, rc′0(τ) =
rc0(τ− 2πn

ω ). This may be used to show that the first and
the second integrals cancel out, so that Eq. (53) vanishes.

The action difference

∆SVC
= −2

∫ t

t′
c′r

V (rc′(τ))dτ + 2

∫ t

t′cr

V (rc(τ))dτ (54)

is handled in a similar way, using rc′(τ) = rc(τ − 2πn
ω ).

This gives

∆SVC
= 2

∫ t

t−2π/ω

V (rc(τ))dτ, (55)

which vanishes in the limit of t → ∞. The same proce-
dure, together with the mapping pc′(τ) = pc(τ − 2πn

ω ),
can also be used to show that

∆Sp = −1

2

∫ t

t′
c′r

PPPc′(τ) · (PPPc′(τ) + 2pf + 2A(τ))dτ

+
1

2

∫ t

t′cr

PPPc(τ) · (PPPc(τ) + 2pf + 2A(τ))dτ (56)

vanishes in this limit. Hence, the Coulomb potential has
no effect on the ATI rings.

4. Intracycle interference

Figs. 7 and 8 exemplify the types of interference that
occur in the CQSFA, with and without the full prefac-
tor, respectively. The left, middle and right panels in
both figures refer to type A, type B and type A and B
intracycle interference, respectively, computed in a simi-
lar fashion as for the SFA [right column in Fig. 2]. The
patterns obtained are more complex than those in the
SFA, as there are three interfering types of orbits. Fur-
thermore, since the imaginary parts Im[tec] differ for each
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FIG. 8: Photoelectron angular distributions computed in the
CQSFA for times within a single cycle of the laser field and
the same parameters as in the previous figures including the
prefactors. The upper and bottom row includes orbits 1 and
2, and orbits 1 and 3 as interfering trajectories, respectively.
Panels (a) and (d) show type A intra-cycle interference, panels
(b), and (e) present type B intra-cycle interference and panels
(c), and (f) exhibit both types of interference, obtained in a
similar way as in Fig. 2 by not imposing temporal constraints
upon the interfering solutions. The panels have been plotted
in a logarithmic scale.
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FIG. 9: Photoelectron angular distributions computed in the
CQSFA using orbits 2 and 3 for the same parameters as in
Figs. 7 and 8 without and with prefactor [panels (a) and (b),
respectively]. The panels have been plotted in a logarithmic
scale.

type of orbit, the fringes may become blurred in specific
momentum regions.

If only orbits 1 and 2 are taken [upper panels of Figs. 7
and 8], the fringes are sharp and the fringe spacing is
similar to that observed in the SFA. This is expected,
as Im[t1c] and Im[t2c] are comparable and Re[t1c] and
Re[t2c] follow the SFA solutions closely. The shapes of
the distributions, however, are different. Specifically, for
type A intra-cycle interference, instead of the nearly ver-
tical fringes in Fig. 2(b), we see a fan-shaped structure
spreading from the origin (pfz, pfx) = (0, 0) [Figs. 7(a)
and 8(a)]. This structure is well known, both theoret-
ically and experimentally. Type B interference, shown
in Figs. 7(b) and 8(b), exhibits sharp, nearly vertical
fringes, which resemble those observed for the SFA but
also become distorted for low momentum regions. If both
types of interference are considered, once more the fringes
become increasingly thicker as the momenta move from
the negative to the positive pfz region. The presence
of the prefactor enhances the side lobes, but does not
change these features.

The interference between orbits 1 and 3, shown in the
lower panels of Figs. 7 and 8, behaves in a different way.
First, the shapes of the fringes do not resemble the finger-
shaped strucures or those from the SFA and the side
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FIG. 10: Panel (a) shows the real part of the action for all
CQSFA orbits, together with their SFA counterparts, plotted
as functions of the final momentum pfz, computed for per-
pendicular final momentum of pfx = 0.25 a.u. As in Fig. 1,
type A and B intra-cycle interference is indicated by circles
and squares, respectively. Panel (b) displays the real part of
the action differences ∆S12 and ∆S13, together with its SFA
counterpart, as functions of the deflection angle θ and energy
0.1 a.u.. The remaining parameters are the same as in the
previous figures.

lobes are absent. Second, if the prefactors are absent
[Fig. 7], they are only sharp near the pfz axis and up
to pfx ' 0.5. For higher perpendicular momenta, the
fringes are blurred and the PADs acquire the shape of
the single-orbit distribution in Fig. 5(c). This is due to
the high probability of an electron leaving along orbit
3. In Fig. 8, however, one can see that the prefactor
outweighs this high probability and suppresses the con-
tribution of orbit 3 away from the pfz axis. If the intra-
cycle interference between orbits 2 and 3 is considered
(Fig. 9), we observe a set of prominent, almost horizon-
tal fringes diverging from a spider-like structure near the
origin. A similar structure has been observed in [58] using
the QMTC method. The prefacor restricts the relevance
of this structure to a relatively narrow momentum range
close to the pfz axis. One should note that, since these
specific orbits leave in the same half cycle, the classifica-
tion in A and B type interference is not applicable.

The real parts of the actions are displayed in Fig. 10(a)
for the three CQSFA orbits as functions of pfz. The fig-
ure shows a similar behavior as for the SFA, with type
A and B interference corresponding to thicker and finer
fringes, respectively. One should note that type A inter-
ference is more sensitive to the Coulomb potential, and
that, for large positive momentum, the action related to
orbit 3 tends to that related orbit 1. This leads to very
thick fringes in this momentum region. The real parts
of ∆Sij , plotted in Fig. 10 as a function of the deflec-
tion angle, confirm the above-mentioned trends. First,
the action difference ∆S12 between orbit 1 and 2 tends
to the SFA for perpendicular photoelectron emission, but
deviates from it for other angles. This causes the verti-
cal structures in the SFA to be distorted into a fan. In
contrast, the difference ∆S13 agrees with its SFA coun-
terpart at the polarization axis, but increases with the
scattering angle. This leads to the convergent fringes
seen in Fig. 7(d) and 8(d). In all cases, there is a de-
crease in ∆Sij as the polarization axis is approached,
which manifests itself as thicker interference fringes.
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FIG. 11: Photoelectron angular distributions computed in
the CQSFA (first and second row) and with the TDSE (third
row) for comparison. Calculated over one, two and four cy-
cles [left, middle and right panels, respectively]. The CQSFA
was calculated using orbits 1, 2 and 3 without symmetriz-
ing with respect to the origin. The first and second panels
have been computed without and with prefactors, respec-
tively. The TDSE was calculated using the freely available
software qprop [55], where a window operator was used to
compute the PADs. We considered a trapezoidal pulse with
a half-cycle ramp on and off and, from left to right, one, two
and four cycles of constant amplitude. The remaining field
and atomic parameters are the same as in the previous fig-
ures. The panels have been plotted in a logarithmic scale.

If all orbits are considered (Fig. 11), a more complex
pattern arises and several types of fringes are superim-
posed. In Figs. 11(a) and (d), computed within a cycle
of the driving field, we see type B and type A intra-cycle
interference for negative and positive parallel momentum
pfz, respectively. Particular visible are the nearly hori-
zontal fringes caused by the interference of type 2 and 3
trajectories, and the structures related to the interference
of orbits 1 and 2. This holds both in the presence and in
the absence of prefactors, whose main effect is to intro-
duce a bias towards the pfz axis. Traces of the patterns
caused by the interference of type 1 and 3 trajectories
can also be identified, but they are much less prominent.
This is possibly caused by their contrast being poorer
than that of the other patterns [see Figs. 7(f) and 8(f)].

If more cycles are included [middle and right columns
of Fig. 11], there will be circular inter-cycle fringes dic-
tated by Eq. (33), which tend towards a Dirac delta comb
as the number of cycles increase. In addition, intra-cycle
fringes may be either washed out or reinforced. For in-
stance, the convergent structure due to the interference of
orbits 1 and 3 is no longer visible, and the nearly horizon-
tal fringes related to the interference of orbits 2 and 3 is
weakened. In contrast, the fan-shaped structure from the
interference of orbits 1 and 2, and the spider-like struc-
ture near the origin from the interference of orbits 2 and
3 are very clear, and even seem to reinforce each other.
The patterns become increasingly symmetric as more cy-
cles are included in the computation. This can be seen
by comparing Figs. 11(b) and (c), which has been com-
puted for two cycles, with Figs. 11(e) and (f), for which
four cycles have been incorporated.

When comparing the full CQSFA results with the
TDSE [bottom row of Fig. 11] we find good qualita-
tive agreement for near-threshold and intermediate ener-
gies. For instance, the CQSFA reproduces the fan-shaped
structure very well. Comparing panels (f) and (i), one
can see that the inner ring at around 0.3 a.u. has the
same number of fringes in both the CQSFA and TDSE.
The subsequent rings further out also match and display
very similar structure, although the TDSE fringes are
slightly more blurred. This good agreement is expected
as there are no hard collisions or irregular behavior for
the orbits leading to this pattern.

The spider-like patterns from the CQSFA and the
TDSE also match for lower values of pfz. In fact, by
comparing Figs. 11(d) and (g) one can see that, for
pzf = −0.5 the maxima both occur at pfx = 0, 0.25, and
0.4 a.u.. However, for |pzf | > 0.8 a.u. the TDSE fringes
bend upwards while the CQSFA fringes bend slightly
down. Physically, this behavior can be understood as fol-
lows. The spider-like structure is due to the interference
between orbits 2 and 3. Orbit 3 is a forward scattered or-
bit that may interact strongly with the core. For higher
pzf the closest approach of orbit 3 gets smaller, hence
there is a larger interaction with the core. Given that
the momentum is fixed for the tunnel trajectory, the full
effect of the atomic potential is not accounted for and
this may be at the root of the discrepancy. In studies us-
ing much lower frequencies [15, 29, 56], the bending does
not occur and the agreement with the CQSFA improves
markedly. This may be due to the tunnel exit being fur-
ther away and the electron being affected less strongly
by the core.

Additionally, soft recolliding orbits such as orbit 3 lead
to branch cuts in the corresponding transition amplitude
[57], which may also contribute to the above-mentioned
discrepancies. We have verified that these branch cuts
also occur in the high-energy regime, for which hard col-
lisions occur. They seem to be the cause of the cut-
off region in the CQSFA, which does not occur in the
TDSE. In [57], it was shown that a correct treatment of
these branch cuts is essential for modelling the low en-
ergy softly recolliding orbits that are responsible for the
low-energy structure (LES) and very low-energy struc-
ture (VLES). This is beyond the scope of this work and
hence the region |pf | < 0.1 a.u. has been left out of the
CQSFA results. In the TDSE results, a low-energy ring
at around 0.1 a.u. can be seen, which can be associated
with the VLES.

Finally, in Fig. 11(i) some faint V-shaped structures
can be made out above pfx = 0.5, which are not visible
in the CQSFA. Previously, these fringes have been asso-
ciated with interference between trajectories that may be
similar to orbits 3 and 4 [10]. This suggests that orbit 4
may have some role to play in the high-energy domain,
even if it is less significant than the other orbits. Some
features in the TDSE such as the VLES are strongly de-
pendent on the pulse envelope used. However, the fea-
tures we focus on, namely the fan-shaped and spider-like
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fringes, do not change significantly with the pulse enve-
lope.

IV. CONCLUSIONS

Using the Coulomb quantum-orbit strong-field approx-
imation (CQSFA) [27], we have isolated many types of in-
terference patterns and other qualitative features present
in ATI momentum distributions. Apart from the widely
studied near-threshold fan-shaped structure, the inter-
cycle ATI interference rings and the ATI side lobes, these
features include many types of intra-cycle interference
that have been overlooked in the literature. We provide
direct evidence of how these patterns form, and show that
they may be viewed as holographic type structures aris-
ing from different types of interfering trajectories. We
follow the notation in [26, 27, 36, 37], which classifies the
trajectories that reach the detector directly as type 1 or-
bits, and those that leave from the opposite side and are
deflected by the core as type 2 and 3 orbits. Previously
overlooked holographic patterns that have been studied
in this work include finer structures that arise from the
intra-cycle interference of events separated by more than
half a cycle, and a converging structure caused by the
interference of type 1 and 3 trajectories. Within many
field cycles, some of these structures may be weakened,
washed out or reinforced.

We have found that orbit 3 is pivotal for many ATI
features and have provided a systematic analysis of its
effects. In previous studies [26, 36] this orbit has been
neglected, possibly because the corresponding prefactor
strongly reduces the overall signal. Our studies show
that, outside the pfz axis, this counteracts the fact that
ionization probability along this orbit is quite high. How-
ever, two peaks remain located on the pfz axis which
contribute to the sidelobes identified in [15]. Interfer-
ence between orbits 2 and 3 produces a spider-like pat-
tern, which can be seen superimposed on the finger-like
interference pattern that occurs due to interference be-
tween orbits 1 and 2. The same spider-like pattern is
seen in [58, 59], in which the quantum-trajectory Monte
Carlo (QTMC) model is applied to mid-IR fields, and
experimentally in [32, 56], and it is attributed to these
forward scattered trajectories. The on-axis contribution
of orbit 3 to the overall PADs improves the agreement
with the time-dependent Schrödinger equation (TDSE)
[26, 32, 36] and with experiments [13, 14, 35, 56], and can
be seen in Coulomb-corrected computations in which or-
bit 3 has been included implicitly [52, 59]. It is also worth
noting that classical soft forward-scattered trajectories
associated with the LES [6] are the same type of trajec-
tories as orbit 3. This correspondence is possible because
we are solving Newton’s equations of motion for the con-
tinuum. Hence, all our orbits in the continuum have
direct classical counterparts. Thus, classical or quasi-
classical methods may be built from the CQSFA by per-
forming incoherent sums over trajectories, neglecting or

approximating prefactors, and ignoring sub-barrier cor-
rections. For other types of trajectories see our previous
publications [60–63]

We also derive conditions for interference patterns,
which are kept as general as possible with regard to the
number of field cycles and events per cycle, and provide
an analytic expression determining the overall shapes of
the distributions. Using properties related to the field
being monochromatic, we show analytically that the in-
tercycle interference condition is the same for both the
SFA and CQSFA. The shape of the distributions and
other features will however be affected by the Coulomb
potential. We also provide a more rigorous discussion
of the sidelobes than what currently exists in the litera-
ture, and show that they are mainly determined by the
behavior of orbits 2 and 3. In particular, the imaginary
part of the action mirrors the behavior of those of the
ionization times t2c and t3c, which exhibit minima for
non-vanishing parallel momenta. This is both verified
numerically and analytically using the long-wavelength
approximation. The sub-barrier integral over the bind-
ing potential is also computed analytically, and is shown
to exert a strong influence on the shapes of the PADs.

Furthermore, we make a detailed assessment of intra-
cycle interference, and the quantum-orbit analysis in this
work strongly suggests that the conditions derived in [36]
are only valid for high momenta and orbits 1 and 2. This
is because, in [36], the imaginary parts of the times re-
lated to orbits 1 and 2 are set to be equal and their
momenta at the tunnel exit is chosen to be equal to their
final momenta. These assumptions hold in the SFA and
are good approximations for high momenta, as fast elec-
trons are less influenced by the Coulomb potential. This
is consistent with our analysis, which shows that the ini-

tial momenta p
(1)
0 , p

(2)
a and the ionization times t1c and

t2c tend to their SFA counterparts in this regime. For
momenta close to the threshold, however, these assump-
tions no longer hold. Additionally, one should be care-
ful considering interference between orbit 1 and 2 when
px0 = 0, as orbit 2 cannot have zero initial perpendicu-
lar momenta or it will undergo a hard collision with the
parent ion. For orbit 3, the conditions in [36] are not
applicable in any momentum range, as it behaves in a
very different way. Apart from having a much larger tun-
nel probability throughout, which implies a much smaller
Im[t3c], it does not tend to the SFA as the momentum in-
creases. Luckily, the prefactor suppresses this orbit over
a wide range of scattering angles. However, this is not
the case near the field-polarization axis.

This analysis is greatly facilitated by how the CQSFA
is implemented. While our method is similar to other ap-
proaches such as the trajectory-based Coulomb-corrected
strong-field approximation (TCSFA) [36, 37] and the
QMTC model [52, 58, 59], there are some key differ-
ences. The TCSFA and the QMTC method solve the
forward problem. Since it is not known what the final
momentum will be given a particular starting momen-
tum, one must use larger initial momentum regions in
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order to sample the final momentum region of interest.
Thus, many trajectories, typically 108 − 109, with dif-
ferent initial momenta must be run before each bin is
sufficiently populated and interference patterns can be
resolved. Furthermore, a uniform spread of initial mo-
menta may undersample specific types of trajectories.
This is particularly true for type 3 orbits, whose initial
momenta are strongly bunched close to the parallel mo-
mentum axis. In contrast, the CQSFA solves the inverse
problem, so that for each point in final momentum there
are three well defined orbits and we only need to calculate
as many points as the resolution dictates.

In addition, the TCSFA has caustics that are made
worse both by including sub-barrier Coulomb corrections
and when orbit 3 or 4 are included, and which make the
interference patterns less clear [36]. This could be due to
orbit 3 becoming more chaotic for low momenta, which
may be problematic if a forward mapping is performed.
The CQSFA does not suffer from this despite considering
sub-barrier Coulomb corrections and orbit 3. The QTMC
methods do not contain caustics but are less general as
they either disregard sub-barrier corrections [52] or they
use quasi-static tunnelling rates [58, 59], which will not
be valid for higher frequencies [26].

In the CQSFA, the momentum is approximated to be
constant in the sub-barrier part of the contour, as orig-
inally done in [36, 37]. One of the main issues with
this region is that one must integrate the potential up
to its singularity. In practice, one must determine a
lower bound for which there are no qualitative changes
in the PADs. However, this introduces some ambiguity
so that no quantitative statements can be made about
total ionization rates. Furthermore, the tunnel trajec-
tory end point is fixed by the tunnel exit derived in [51],
which takes a perturbative approach. Improvements to
this contour have been reported in [57] in the context of
low-energy structures.

A direct comparison with the TDSE shows that our ap-
proach works best for near-threshold and moderate pho-
toelectron energies. Discrepancies have been observed
for very low and very high energies, and may be due to
the following issues. First, there exist branch cuts asso-
ciated with orbit 3. In the low and high energy regimes
these branch cuts are related to soft and hard recollisions,
respectively. This means that either a better contour
must be chosen, or analytic continuations to the tran-
sition amplitude must be made. Second, by inserting a
closure relation in the ATI transition amplitude, we have
eliminated the contributions from excited bound states in
Eq. (12). These contributions may play a role for very low
energy, by providing additional pathways for the electron
to reach the continuum. Finally, the assumption that
the under-the-barrier momentum is constant may break
down in cases for which there is substantial acceleration
such as along orbit 3.

Nonetheless, the CQSFA can qualitatively reproduce
many features in the ATI momentum distribution, in-
cluding the number of nodes on each ATI ring. In [36] it

is stated how sub-barrier corrections rectify the number
of nodes on the second ring but those on the first remain
incorrect. This is attributed to the tunnel contour ap-
proximation being insufficient. However, we do obtain
the correct number of fringes using the same approxima-
tion. It is more likely that this discrepancy is due the
ṗ · r term used in our expression, which is absent in [36].
In previous publications, we have found this term to be
important for a good agreement with the TDSE [26, 27].
Similar results have also been reported in [52].

Given that the CQSFA has very low computational
demands, it can be extended to more complex systems
such as multi-electron targets. Possibilities for extending
this method for a multi-electron system include effective
potentials, imposing a spatial boundary inside which the
multi-electron dynamics are incorporated and the field is
treated approximately, such as in the analytical R-Marix
Theory (ARM) [50], and perturbative multielectron ex-
pansions around the one-electron CQSFA [64–66]. If the
present formulation is considered, a method of extending
an effective potential to the complex plane would be nec-
essary for computing the tunnel trajectory. Given that
this extension would only be required along the path of
the tunnel trajectory and the other dynamics may con-
sidered as real, this should not be a difficult task.
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Appendix A: Generalized interference conditions

In this appendix we derive Eqs. (32) and (33) from
Eq. (30). First, Eq. (30) is rewritten as

Ω(pf ) =

∣∣∣∣∣
ne∑
e=1

Nc−1∑
c=0

exp[iSec]

∣∣∣∣∣
2

(A1)

=

∣∣∣∣∣
ne∑
e=1

exp[iSe0]

Nc−1∑
c=0

exp[i(Sec − Se0)]

∣∣∣∣∣
2

. (A2)

From Eq. (31) we can calculate Sec−Se0, which reads as

Sec − Se0 =
2πic

ω

(
Ip + Up +

1

2
p2
f

)
︸ ︷︷ ︸

α

. (A3)

The fact that we can pull out a factor Se0 and the re-
maining sum over c is not dependent on e means that we
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can factorise the two sums. This gives

Ω(pf ) =

∣∣∣∣∣
ne∑
e=1

exp[iSe0]

∣∣∣∣∣
2

︸ ︷︷ ︸
Ωne

∣∣∣∣∣
Nc−1∑
c=0

exp

[
2πiαc

ω

]∣∣∣∣∣
2

︸ ︷︷ ︸
ΩNc

, (A4)

from which we can infer Eq. (32), namely

Ω(pf ) = Ωne(pf )ΩNc(pf ). (A5)

We can further simplify ΩNc
(pf ), so that

ΩNc
(pf ) =

∣∣∣∣∣∣
exp

[
2πiα(Nc−1)

ω

]
− 1

exp
[

2πiα
ω

]
− 1

∣∣∣∣∣∣
2

=
cos
[

2πiNc

ω α
]
− 1

cos
[

2πi
ω α

]
− 1

, (A6)

which leads to Eq. (33).

Appendix B: Coulomb correction for tunnel
prefactor

In this appendix, we compute the integral over the
binding potential for the imaginary part of the CQSFA
action related to tunnel ionization, Eq. (50), in the long
wavelength approximation. This integral is important in
determining the shapes of single-orbit distributions, and
influences their sidelobes. The tunnel trajectory can be

written explicitly as

r0(τ) = ipe0(τi − t′i) + i

∫ τi

t′i

A(tr + iτ ′i)dτ
′
i (B1)

Using the long wavelength approximation and expand-
ing around the imaginary component, the above-stated
expression is approximated by

r0(τ) = (τi − t′i)
[
i(p0 + A(t′r))−

1

2
Ȧ(t′r)(τi + t′i)

]
,

(B2)
where τi = Im[τ ]. This expression can be used to com-
pute the indefinite integral

∫
V (r0(τ))dτ=

iC√
−p2

0x+χ2

(
ln(τi−t′i)

−ln

(
2[χη(τi)−p2

0x]+2
√
−p2

0x+η(τi)2

√
−p2

0x+χ2

))
(B3)

where

χ = i(p0x +A(t′r))− t′iȦ(t′r) and (B4)

η(τi) = i(p0z +A(t′r))−
1

2
(t′i + τi)Ȧ(t′r). (B5)

We are however interested in the definite integral from
t′ to t′r. Care must be taken with the lower bound as
it will lead to a divergence. For that reason, we take it
as t′ − i∆τi, where ∆τi is chosen to be arbitrarily small.
This gives

IVT
=

∫ t′r

t′−i∆τi
V (r0(τ))dτ = i ln


 t′i

(
χη(t′i −∆τi)− p2

0x +
√
−p2

0x + η(t
′
i −∆τi)2

√
−p2

0x + χ2
)

∆τi

(
χη(0)− p2

0x +
√
−p2

0x + η(0)2
√
−p2

0x + χ2
)

C/
√
−p2

0x+χ2
 ,
(B6)

so that exp[−iIVT
] will be a power of C/

√
−p2

0x + χ2

and ∆τ
−C/
√
−p2

0x+χ2

i will contribute as an orbit inde-
pendent overall factor multiplying the whole transition
amplitude. There is also some freedom on how to ap-

proach this limit, and a convenient parametrization, such

as ∆τi ∼ δC/
√
−p2

0x+χ2
, may be employed. Eq. (B6)

agrees with numerical computations, in which ∆τi is set
to be small.
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