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Pulse oximetry is routinely used for monitoring patients’ oxygen saturation levels with

little regard to the variability of this physiological variable. There are few published

studies on oxygen saturation variability (OSV), with none describing the variability and

its pattern in a healthy adult population. The aim of this study was to characterize

the pattern of OSV using several parameters; the regularity (sample entropy analysis),

the self-similarity [detrended fluctuation analysis (DFA)] and the complexity [multiscale

entropy (MSE) analysis]. Secondly, to determine if there were any changes that occur with

age. The study population consisted of 36 individuals. The “young” population consisted

of 20 individuals [Mean (±1 SD) age = 21.0 (±1.36 years)] and the “old” population

consisted of 16 individuals [Mean (±1 SD) age = 50.0 (±10.4 years)]. Through DFA

analysis, OSV was shown to exhibit fractal-like patterns. The sample entropy revealed

the variability to be more regular than heart rate variability and respiratory rate variability.

There was also a significant inverse correlation between mean oxygen saturation and

sample entropy in healthy individuals. Additionally, the MSE analysis described a complex

fluctuation pattern, which was reducedwith age (p< 0.05). These findings suggest partial

“uncoupling” of the cardio-respiratory control system that occurs with aging. Overall, this

study has characterized OSV using pre-existing tools. We have showed that entropy

analysis of pulse oximetry signals carries information about body oxygenation. This may

have the potential to be used in clinical practice to detect differences in diseased patient

subsets.

Keywords: entropy, fractal, multiscale entropy, oxygen saturation variability, pulse oximetry, SpO2

INTRODUCTION

Pulse oximetry is a technique used to measure oxygen saturation (SpO2) non-invasively. It is a
method commonly used clinically whether that be in intensive care, in surgery, or in some out-
patient clinics (Jubran, 2015). The use of pulse oximetry in these settings has helped reduce the
need for invasive arterial blood gases analysis and increase the detection of hypoxaemia (Jubran,
2015), as defined as an SpO2 value observed as <95% (Amoian et al., 2013).

It has become increasingly recognized for the use of variability analysis in oxygen saturation
to further gauge the regulation of blood oxygenation. However, the methods currently used are

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCL Discovery

https://core.ac.uk/display/111033466?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.frontiersin.org/Physiology
http://www.frontiersin.org/Physiology/editorialboard
http://www.frontiersin.org/Physiology/editorialboard
http://www.frontiersin.org/Physiology/editorialboard
http://www.frontiersin.org/Physiology/editorialboard
https://doi.org/10.3389/fphys.2017.00555
http://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2017.00555&domain=pdf&date_stamp=2017-08-02
http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive
https://creativecommons.org/licenses/by/4.0/
mailto:a.r.mani@ucl.ac.uk
https://doi.org/10.3389/fphys.2017.00555
http://journal.frontiersin.org/article/10.3389/fphys.2017.00555/abstract
http://loop.frontiersin.org/people/461762/overview
http://loop.frontiersin.org/people/442827/overview


Bhogal and Mani Oxygen Saturation Variability Analysis

not as robust as the methods described in other physiological
measurements such as heart rate variability (Garde et al., 2014).
The benefit of physiological variability analysis is that it can give
us useful information on the integrity of physiological control
system (Shirazi et al., 2013; Raoufy et al., 2017). SpO2 variability
analysis has the potential to be used for monitoring the integrity
of the cardiorespiratory control systemwhich is involved in tissue
oxygenation. Oxygen saturation variability (OSV) has also been
well-characterized in pre-term infants, where it was observed that
over the postnatal period there is a steady increase in OSV with
no change observed in the mean SpO2 value (Dipietro et al.,
1994). Moreover, OSV has been studied to be used diagnostically.
A more recent study (2016) conducted in a tertiary level hospital
in Bangladesh investigated whether implementing OSV in a
predictor tool could improve admission of critically ill young
children (Garde et al., 2016). They found that incorporating
methods that quantified OSV improved the sensitivity and
specificity of the tool for identifying these children (Garde et al.,
2016). In addition, OSV has been used in the diagnosis of
sleep disordered breathing whereby the SpO2 characterization
adequately described the SpO2 modulation in order to identify
those at risk of sleep disordered breathing (Garde et al., 2014).

The main issue with previous reports on OSV is the
characterization of “variability” and the lack of establishment of
a “normal variability” in a healthy population. Additionally, the
methods used to describe variability in these studies are primarily
linear (i.e., standard deviation, Delta 12 s, saturations>2%, etc..),
which to some extent miss out the pattern of SpO2 fluctuations
(Dipietro et al., 1994; Cox et al., 2011; De Jesus et al., 2011; De
Oliveira et al., 2012; Amoian et al., 2013; Garde et al., 2014, 2016;
Hoffman, 2016). Hence, the initial need for a study examining
healthy individuals in an adult population to characterize the
OSV with more sophisticated methods for variability analysis.
This can then allow the subsequent comparison with patient sub-
populations to garner insight into the disease pathophysiology.
The tools selected for this study will be measuring the regularity,
complexity, and self-similarity of the fluctuations, which have
been shown to better understand biological systems (Richman
and Moorman, 2000).

There exist indices that describe the pattern and complexity
of fluctuations in physiological time-series. For example, sample
entropy is a tool to describe regularity in time series and has
been well-established in the study of the cardiovascular system
dynamics (Richman and Moorman, 2000). Reduction in the
sample entropy of a time-series has been shown to reflect the
difference between normal and diseased participants, i.e., in
patients with sepsis (Ahmad et al., 2009; Gholami et al., 2012),
cirrhosis (Mani et al., 2009), and in obstructive sleep apnoea
(Al-Angari and Sahakian, 2007).

Multiscale Entropy (MSE) is an extension of sample entropy
and has been used as a tool to describe complexity in a time
series (Costa et al., 2002). Complexity in this context can be
defined as “meaningful structural richness” which incorporate
correlations over multiple scales (Costa et al., 2002). This is
achieved mathematically by creating several sub-time series from
the main series and calculating the sample entropy of each scaled
series (Costa et al., 2002). This can then be plotted to show these

cross-scale correlations (Costa et al., 2002). This can be applied
in a clinical setting to provide extra prognostic information
(Watanabe et al., 2015). MSE has been used to analyse many bio-
signals (Gao et al., 2015) such as EEG dynamics in Alzheimer’s
disease (Mizuno et al., 2010) and heart rate variability analysis
for predicting hospital mortality (Norris et al., 2008). Entropy
is linked to the concept of information content in a given time-
series (Mitchell, 2009). Thus, reduced entropy in a physiological
setting can be interpreted as reduced information processing
or less engagement the component of within a control system
(Pincus, 1994).

Many physiological readings exhibit a fractal-like dynamic.
Detrended fluctuation analysis (DFA) is a technique that
examines scaling and fractal-like behavior in fluctuating time-
series (Peng et al., 1995). The method entails measuring the
correlations in the series over several scales to determine if they
fit a fractal-like pattern. In this type of analysis when something
is fractal-like; it has self-similarity. Many physiological rhythms
shares this trait, as they gives rise to self-similar fluctuations over
different time scales (Goldberger and West, 1987).

The aim of this study is to establish how oxygen saturation
varies in a healthy population and what techniques are best
suited to quantifying this variability. Furthermore, we wanted
to analyse the regularity, complexity, and self-similarity of these
fluctuations using the aforementioned tools. Additionally, as
other physical parameters such as heart rate variability (Zhang,
2007) differ greatly with age, the study was also set up to
determine if there is a significant difference between a young and
old population.

MATERIALS AND METHODS

Study Population
This study was registered and approved by the UCL Ethics
committee (10525/001). The study population was made up
36 individuals, which was later split into two groups for
further analysis. The “young” population, defined as members
under the age of 35, consisted of 20 individuals [9 Men,
11 Women; Mean (±1 SD) age = 21.0 (±1.36 years)]. The
“old” population, defined as members aged 35 and over
consisted of 16 individuals [8 Men, 8 Women; Mean (±1
SD) age = 50.0 (±10.4 years)]. In order to establish a
healthy study population some exclusion criteria were set;
which covered Asthma, COPD, Sickle Cell Anaemia, and
Pulmonary Fibrosis. Additionally, the smoking status of the
participants was recorded for the possibility of retrospective
analysis.

Assessment of Oxygen Saturation
Variability
Data Collection
Each participant was connected to a pulse oximeter connected to
an AD convertor (ADInstrument Ltd, Australia). The recording
was initially completed over a 1 h period at a sampling
rate of 1 k/s as a pulse recording was also taken alongside.
However, the resolution was reduced to 1/s for the pulse
oximeter using standard desampling protocol (LabChart). The
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main reason for this is that pulse oximeter readings are not
sampled at such a high rate, and thus at that resolution, the
variability presented would not reflect true SpO2 variation.
The data for pulse oximetry was then extracted into an
ASCII file for analysis. Prior to analysis the data was visually
scanned for artifacts and the artifact was replaced by the
mean value of the entire data set using zero-line interpolation.
We chose this method as based on previous findings, it
was shown to be the most stable when compared to other
methods for artifact replacement (Wejer et al., 2014). As we
recorded data ourselves, the data was clean thus only a small
number of participants were affected by the noise reduction
methods. Recordings with more than 5% artifacts were excluded
from analysis. The data collected in this study is shared at
PhysioNet1.

Linear and Non-linear Analysis of OSV
The linear analysis was to first establish general tendencies
of the data set. The mean SpO2 and standard deviation were
calculated for all participants using an ad-hoc programme
in MATLAB (MathWorks, R2017a). Poincare’ plot analysis
was used to calculate short-term (SD1) and long-term (SD2)
variability. The Poincaré plot is a geometrical technique
that provides visualization of variability (Billman, 2011).
It is constructed by plotting each signal in a given time-
series as a function of the preceding signal (Hsu et al.,
2012). The shape of this plot gives information on how
the consequent signals are correlated within a time-series.
Therefore, it has been used as a method of distinguishing
short-term from long-term fluctuations (Mani et al.,
2009).

Detrended Fluctuation Analysis
This method quantifies fractal-like correlation properties on the
time series (Peng et al., 1995). In this method, the root mean
square of fluctuation is calculated in an integrated and detrended
dataset, specific to observation windows of particular sizes, and
then plotted against this window size on a log-log scale. If the
relationship is linear, then the data can be labeled as fractal-
like. Furthermore, the slope of this line (α) can be calculated
and used a tool for comparison. α = 0.5 indicates uncorrelated
random data. An α > 0.5 or ≤1.0 indicates long-range power-
law correlations. An α = 1 corresponds to 1/f dynamics. For
α > 1, correlations exist but cease to be of a power-law form
(Peng et al., 1995). Software shared at PhysioNet was used for
Detrended Fluctuation Analysis (DFA; Goldberger et al., 2000).

Sample Entropy
This index quantifies the degree of randomness vs. the degree of
regularity in a time series. It calculates that probability that an
event with window length, m, and degree of tolerance, r, will be
repeated at later time points (Richman and Moorman, 2000). A
low sample entropy is indicative of a regular time series, while a
high sample entropy indicates an irregular time series. For this
study, the sample entropy was calculated using MATLAB codes

1PhysioNet- https://physionet.org

FIGURE 1 | Sample SpO2 data collected over 1 h. The X axis is the

cumulative data points, and the Y axis is the oxygen saturation.

shared at PhysioNet (Goldberger et al., 2000) with m set at 2 and
r at 0.2 (Richman and Moorman, 2000).

Multiscale Entropy
Multiscale Entropy (MSE) looks at the sample entropy at
different scales to determine if there are any correlations. The
process creates “coarse-grained” time series which are produced
by averaging the time points within a given window of increasing
length, Ŵ (Costa et al., 2002). The sample entropy is then created
for each of these time series and then plotted against scale (with
window size of m and tolerance of r for the sample entropy; Costa
et al., 2002). A constant MSE graph reflects a complex time series
(e.g., 1/f dynamics), while should the values decrease as the scale
increases, then the complexity is low (e.g., uncorrelated random
noise; Costa et al., 2002). Little is known about the opposite
correlation. MSE was calculated using MATLAB codes shared
at PhysioNet (Goldberger et al., 2000; Richman and Moorman,
2000).

Statistical Analysis
Initially, sample size was calculated based on the calculated
differences from theMSE data in the pilot study run in December
20162. This value was calculated at 20 participants per group
to reach a significant difference in MSE between young and
old population (error type I = 0.05, power: 90%), however,
because statistical significance was reached at ∼18 participants
per group we stopped recruiting. For the comparison between
the two participant populations several statistical tests were used,
utilizing PRISM 7 and SPSS software. The two-tailed Student’s t-
test was used for testing the effect of age on the alpha value from
the DFA analysis, the sample entropy, the standard deviation, and
the mean SpO2. Lastly, a two-way ANOVA analysis was used to
test the effect of age on the MSE values.

2http://www.stat.ubc.ca/~rollin/stats/ssize/n1.html
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TABLE 1 | Linear and non-linear characteristics of SpO2 for the study population.

Mean SpO2 (%) Standard deviation of SpO2 (%) SD1 (%) SD2 (%) DFA (α1) DFA (α2) Sample entropy

97.7 ± 1.25 0.707 ± 0.247 0.500 ± 0.175 0.987 ± 0.351 1.30 ± 0.11 0.87 ± 0.10 0.89 ± 0.35

Data are expressed as means ± SD. SD1 is the short-term SpO2 variability, SD2 is the long-term variability. SpO2 values >95% is considered normal, DFA, Detrended fluctuation

analysis. Sample size = 36.

RESULTS

Participants
No participant recruited chose to withdraw from the study so all
participants were considered for analysis. However, upon partial
medical history, one participant was excluded from the study due
to categorization under the exclusion criteria.

The Pattern of Oxygen Saturation
Variability in the Participant Population
Variability Analysis
It is clear that over 1 h, the oxygen saturation readings
exhibit fluctuations (Figure 1). This variability is mixed with
desaturation events and saturation events. The descriptive
statistics presented in Table 1, show that the mean SpO2 for
the population studied is 97.7%. In regards to the variability,
the mean standard deviation for the pulse oximetry recording
was 0.707%, showing overall a small degree of variability. Using
Poincare’ plot, we can see that overall there was higher variability
across the line of identity (SD2 = 0.987 vs. SD1 = 0.500). This
indicates that the variability was predominantly made up of long-
term variations (SD2) rather than short term variations (SD1;
Figure 2). We also analyzed the relationship between mean SpO2

level and total variability (Figure 3), which showed that at higher
SpO2 levels there is less overall variability (r =−0.734, p < 0.01).

Detrended Fluctuation Analysis
Through DFA analysis it can be seen that OSV is fractal-like in
nature. The result of this analysis can be seen below (Figure 4).
Furthermore, the analysis revealed there to be a “crossover
phenomenon” something also seen in heart rate variability
analysis (Peng et al., 1995). Themean α1 score for the participants
analyzed is 1.30 (Table 1), and themean α2 score is 0.87 (Table 1).
The α1 is between pink noise (1/f dynamics) and Brownian
noise while the α2 is between white noise and pink noise. Thus,
this result shows that not only is SpO2 variability fractal in
nature, but the variation itself is complex in its constitution.
The relationship between the α values and mean SpO2 level was
tested, however, we found no statistically significant correlation
between the two.

Sample Entropy and Multiscale Entropy
The mean sample entropy using a window length (m) of
2 was 0.877. The relationship between Sample entropy and
the mean SpO2 level was also tested (Figure 5), and the
graph showed there was a strong linear relationship between
the two variables (r = −0.779, p < 0.01). Showing that
a high mean SpO2 level is indicative of a more regular
pattern of variability. The multiscale entropy (MSE) analysis

FIGURE 2 | Poincaré plot showing the correlation between consecutive SpO2

readings in a representative participant. SD1 and SD2 represent the length

and width of the plot across the line of identity.

revealed that the sample entropy increases as the scale increases
(Figure 6). There was also a significant inverse correlation
between the mean SpO2 level and the sum of the MSE values
(r =−0.66, p < 0.001). This indicates that high mean SpO2

is associated with decreased complexity of pulse oximetry
signals.

The Effect of Aging on the Variability of
Oxygen Saturation
Following on from the previous results, the effects of aging
on the OSV were studied. Statistically there was a significant
difference between the mean ages in both groups (p < 0.05)
allowing for the comparison of the raw data. Firstly, looking
at mean SpO2 and standard deviation of SpO2, there was no
significant difference between the two groups (Table 2). The
comparison of both α values (DFA) between the groups also
revealed no significant difference between the two participant
populations. The analysis also revealed that there is no
significant change in these parameters between genders (data not
shown).

The multiscale entropy analysis showed a significant [FAge
(1, 19) = 99.02; p < 0.0001, FScale (19, 19) = 65.44; p <

0.0001] reduction in the sample entropy values between both
age groups using a two-way ANOVA analysis (Figure 7). The
difference is more apparent at the higher scales showing that
the reduction in complexity seems to be made more apparent
when long-term variations are considered. This reduction in the
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FIGURE 3 | Graph showing the linear trend that exists between mean SpO2 level and total variability. Each point represents a participant in the study. “r” represent the

Pearson correlation coefficient.

FIGURE 4 | An example of DFA Analysis on SpO2 variability data showing the

linear trend when plotting (n) and F (n) on a log-log scale. The arrow indicates

the approximate point of the cross-over phenomenon.

MSE of OSV seems to be the most sensitive variable affected by
aging.

DISCUSSION

In the present study, we used non-linear dynamics to assess
the pattern of SpO2 variability. Our results showed for the first
time that SpO2 exhibited a fractal-like pattern of fluctuation as
assessed by DFA. We also showed that the entropy of SpO2 can

FIGURE 5 | Graph showing the linear relationship that exists between sample

entropy and the mean SpO2 level. The points are representative of the

participants in the study, and “r” is the calculated Pearson correlation

coefficient.

be easily calculated using both sample entropy and multiscale
entropy techniques.

The Overall Characteristics of OSV
From the raw data, it is clear that OSV is apparent in a healthy
population. However, the amount of overall variability changes
from person to person. When analysing the pattern of OSV, the
time series appears to be regular when compared with other
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FIGURE 6 | Multiscale entropy graph describing the overall complexity of the

whole study population. The error bars are calculated sample error of the

mean values.

physiological time series (Cuesta-Frau et al., 2009; Hautala et al.,
2010; Raoufy et al., 2016). The mean value of sample entropy of
R-R interval variability in 5-min recording of adults was close to
1 (Hautala et al., 2010). In respiratory rate variability, the sample
entropy of healthy adult men was closer to 1.8 (Raoufy et al.,
2016). Thus, from this study it seems that the regularity of OSV
(sample entropy= 0.877) is closer to that of heart rate variability
(HRV) data (Hautala et al., 2010).

Through Poincaré analysis, the variability was characterized
to be more long term rather than short term (SD2 > SD1). Both
DFA and MSE analysis uses scaling and it enables us to study
oxygen saturation dynamics from both long-term and short-
term views. DFA showed that the pattern of OSV is fractal-like.
However, the slope seems to show a crossover effect (α1 = 1.30, α2
= 0.87). On very short scales the fluctuation of SpO2 seem to be
very stable, thus the higher α1 value (Peng et al., 1995). While at
larger scales there is more fluctuation, reflecting a more complex
behavior. Noticeably though, the α of the SpO2 data is similar to
the data of heart rate variability in healthy individuals (Peng et al.,
1995).

Association between Mean Oxygen
Saturation Level and OSV Measurements
It has been reported in previous studies that OSV is inversely
related to the oxygen saturation level in preterm infants (Dipietro
et al., 1994). This was confirmed by our findings, where a strong
linear trend existed between the two variables in healthy adults
(r = −0.734). Essentially, at the higher oxygen saturation levels
there was less overall variability. This relationship was stronger
in the present study when compared with the results of the
aforementioned study (Dipietro et al., 1994). A possible reason
behind this is that DiPietro et al. were studying oxygen saturation
in preterm infants, whose health may be compromised. Thus,
this relationship could be an indication of health, whereby a
reduction in the phenomenon could indicate compromise of the

cardiorespiratory system. It could also show that the oxygenation
regulatory system is not mature enough in preterm infants.
Furthermore, the relationship between oxygen saturation and
sample entropy was stronger (r = −0.779), where there was an
increase in sample entropy at lower mean SpO2 levels. This could
reflect tighter system coupling when oxygen saturation is low.
According to Pincus (1994), enhanced coupling of signals within
a complex system increases the overall entropy. This essentially
means that a higher entropy indicates that all the components
of the system are connected and in communication (Pincus,
1994). In order to correct a lower mean oxygen saturation level
the system needs to be engaged. This is the advantage of using
entropy analysis rather than standard deviation in describing
physiological variability. The same inverse relationship was
also observed between mean SpO2 and MSE, showing that
entropy of pulse oximetry signals carries information about
mean oxygen saturation. Entropy analysis of physiological
signals has been extensively used in the last two decades.
Theoretical studies initially suggested that greater physiological
signal regularity indicated increased system isolation (Pincus,
1991, 1994). Thereafter, progress in computational techniques
for entropy estimation led to development of approximate
entropy, sample entropy and MSE. Application of these entropy
indexes in physiological time-series provided evidence for a link
between system connectivity and entropy in health and disease.
For instance, Gholami et al. (2012) reported that impaired
responsiveness of the cardiac pacemaker to cholinergic control
may present a decreased sample entropy of the heart rate
variability during systemic inflammation. A recent report has
also shown that sample entropy (as well as MSE) analysis of
body temperature time-series may represent the engagement
of thermoregulatory system during systemic illnesses such as
chronic liver failure (Garrido et al., 2017). A relationship between
mean SpO2 and entropy of the pulse oximetry signals is an
interesting finding that goes along with these lines of research.
However, details of the significance of this relationship, await
further investigations.

The Effect of Age on OSV
Previous studies have shown that there is a significant change in
MSE of heart rate variability with age (Angelini et al., 2007). This
is interpreted as a decrease in complexity that occurs with aging
(Shiogai et al., 2010). Our result shows a similar relationship
in SpO2 variability with the use of MSE analysis. The scaled
values for the young population was significantly higher than
that of the older population. The lower sample entropy values
at each scale does not only suggest reduced complexity, but
also might suggest increased system isolation, which may reflect
partial “uncoupling” of the control system (Buchman, 2002;
Gholami et al., 2012). Applying what Pincus stated (1994), a
reduced entropy may describe a reduction in the system coupling
and increase system isolation. Our result may be indicative of
the partial uncoupling of the systems involved in the cardio-
respiratory control through aging. Something that could explain
the drop in Po2 with aging (Pocock et al., 2013). There is a
benefit from using variability analysis in describing physiological
rhythms. There is a clear limitation in using reductionistic
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TABLE 2 | The effect of age on the measures of SpO2.

Average Age (years) Mean SpO2 (%) Standard Deviation of SpO2 (%) DFA (α1) DFA (α2) Sample entropy

Participants < 35 21.1 ± 1.4 98.02 ± 0.81 0.68 ± 0.22 1.28 ± 0.098 0.87 ± 0.11 0.86 ± 0.29

Participants > 35 49.9 ± 10.4 97.31 ± 1.59 0.75 ± 0.28 1.34 ± 0.11 0.88 ± 0.086 0.90 ± 0.42

p-value 0.000* 0.090 0.408 0.102 0.78 0.739

Values are displayed in the format of means ± SD. The P-values are calculated using the Student’s t-test and significance was set at p < 0.05. *Value <0.05 as tested by the

Mann–Whitney U-test.

FIGURE 7 | The graph is depicting the effect of aging on the complexity of the

oxygen saturation variability. The error bars are the standard error of the mean

at each scale, and each point is the mean value at that scale from all the

participants in the age group.

methods to describe physiological systems, as in order to achieve
meaningful results we need to disrupt the system (Shirazi
et al., 2013). Thus, what you study may not display features of
the original system, but rather a perturbed system (Altimiras,
1999). It is only through integrative approaches such as pattern
analysis that one can truly characterize the complexities of a
system (Altimiras, 1999), in this case the cardio-respiratory
control system. Our study indicates that pattern analysis of
SpO2 variability carries information on the integrity of body
oxygenation with potentials to be used in clinical practice. It may
also provide a tool to study dynamic interactions of organ systems
in the emerging field of network physiology (Bartsch et al., 2015).

Limitations of the Study and Future Work
A potential limitation of the study is that OSV is affected by
activity levels (Dipietro et al., 1994; Garde et al., 2014). During
the recording, all participants were sitting down, however, their
activities varied from reading to conversing. This may have
affected the amount of overall variability. However, as we also
used techniques less sensitive to change in activity (Hautala et al.,
2010) this effect was minimalized. A larger study is needed to
follow up on these results to ensure adequate coverage of a

healthy population. This would also be key in comparing the
effect of aging on OSV.

Future studies could look at linear and non-linear indices
of SpO2 variability and whether these indices can be assigned
clinical significance in the context of disease, as it has done in
other physiological variables (Peng et al., 1995; Ahmad et al.,
2009; Donaldson et al., 2012; Raoufy et al., 2016). Additionally,
novel techniques could be applied to the raw data of this
study population such as memory analysis (Shirazi et al., 2013).
This technique can further explain the controllability of oxygen
saturation and how past fluctuations impact future fluctuations.

CONCLUSION

The present study has established the pattern of OSV in a normal
healthy population. The total variability predominantly consists
of long term variations, and is dependent on themean SpO2 level.
The application of sample entropy analysis and MSE analysis
to the data has provided novel information about the regularity
and complexity of this variability. The fractal nature of OSV,
as provided through DFA analysis suggests that structurally,
physiological variables may all share this trait. Furthermore, by
investigating the effect of aging on OSV, we have garnered insight
into the control of oxygen saturation, and how this control
system is impaired with aging.
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(2014). Impact of the editing of patterns with abnormal rr-intervals on

the assessment of heart rate variability. Acta Phys. Polon. B 45, 2103–2121.

doi: 10.5506/APhysPolB.45.2103

Zhang, J. (2007). Effect of age and sex on heart rate variability in healthy subjects.

J. Manipulative Physiol. Ther. 30, 374–379. doi: 10.1016/j.jmpt.2007.04.001

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2017 Bhogal and Mani. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) or licensor are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Physiology | www.frontiersin.org 9 August 2017 | Volume 8 | Article 555

https://doi.org/10.1371/journal.pone.0072854
https://doi.org/10.1371/journal.pone.0137144
https://doi.org/10.5506/APhysPolB.45.2103
https://doi.org/10.1016/j.jmpt.2007.04.001
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive

	Pattern Analysis of Oxygen Saturation Variability in Healthy Individuals: Entropy of Pulse Oximetry Signals Carries Information about Mean Oxygen Saturation
	Introduction
	Materials and Methods
	Study Population
	Assessment of Oxygen Saturation Variability
	Data Collection
	Linear and Non-linear Analysis of OSV
	Detrended Fluctuation Analysis
	Sample Entropy
	Multiscale Entropy
	Statistical Analysis


	Results
	Participants
	The Pattern of Oxygen Saturation Variability in the Participant Population
	Variability Analysis
	Detrended Fluctuation Analysis
	Sample Entropy and Multiscale Entropy

	The Effect of Aging on the Variability of Oxygen Saturation

	Discussion
	The Overall Characteristics of OSV
	Association between Mean Oxygen Saturation Level and OSV Measurements
	The Effect of Age on OSV
	Limitations of the Study and Future Work

	Conclusion
	Author Contributions
	Funding
	Acknowledgments
	References


