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Abstract

NMR spin-lattice (T1) and spin-spin (T2) relaxation times and their inter-relation possess information on fluid behaviour in porous
media. To elicit this information we utilise the pseudo 2-D relaxation model (P2DRM), which deduces the T1–T2 functional
relationship from independent 1-D T1 and T2 measurements. Through model simulations we show empirically that the P2DRM
accurately estimates T1–T2 relationships even when the marginal distributions of the true joint T1–T2 distribution are unknown or
cannot be modeled. Estimates of the T1:T2 ratio for fluid interacting with pore surfaces remain robust when the P2DRM is applied
to simulations of rapidly acquired data. Therefore, the P2DRM can be useful in situations where experimental time is limited.
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1. Introduction

Nuclear Magnetic Resonance (NMR) relaxation measure-
ments provide a non-invasive means of studying fluid-saturated
porous media. Heterogeneity of porous materials leads to distri-
butions of spin-lattice (T1) and spin-spin (T2) relaxation times
arising from the fluid within [1]. Since T1 and T2 are func-
tions of the same material properties, e.g., surface-to-volume
ratio [2], these quantities have a functional relationship [3]. The
T1–T2 relationship provides information about surface interac-
tions [4], which is unobtainable from a 1-D distribution alone.
Venkataramanan et al. developed an efficient algorithm [5] for
estimating a joint T1–T2 (probability) distribution from T1–T2
correlation experiment [6] data [3]. The T1–T2 distributions of
porous media systems (e.g. fluid-saturated sandstones and car-
bonates [3]) confirm [7] that the observed relaxation rates often
follow the Brownstein-Tarr [2] equations for the fast-diffusion
limit, i.e., a sum of surface (ρ1 or ρ2) and bulk contributions,
with the sum controlled by the surface-to-volume ratio:

1
T1,2

=
1

T1,2 bulk
+ ρ1,2

S
V
. (1)

From this pair a T1–T2 relationship can be described by a single
monotonic equation [8]

1
T1

= K +
ε

T2
(2)
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where K = 1/T1 bulk − ε/T2 bulk and ε = ρ1/ρ2. If the T1–T2
relationship of a system follows Eq. (2) then it is obtainable
from 1-D measurements. This was inferred as early as 1993
when Kleinberg et al. obtained single values of the T1:T2 ratio
of rock cores by applying a cross-correlation function to the 1-
D T1 and T2 distributions [9]. We developed the pseudo 2-D
relaxation model (P2DRM): a method for obtaining T1–T2 dis-
tribution functions from 1-D T1 and T2 measurements [8]. The
mathematical framework of relating distributions in this way
was published by Röding et al. and is not specific to NMR [10].
The P2DRM is a 2-step parametric model fitting routine of in-
dependent 1-D T1 and T2 measurements. Parameter estimates
from the T2 data fit in the first step are used to constrain the T1
data fit in the second step, making it possible to estimate the
T1–T2 relationship without a 2-D data set. The utility of im-
posing constraints in multiple data fitting steps was also shown
by Benjamini and Basser [11], who found that constraining the
distribution fit of 2-D relaxation and diffusion data by the esti-
mated marginal distributions from fits to 1-D data led to a sig-
nificant reduction in the amount of data required for a stable
fit. In the P2DRM, utilizing Eq. (2) as prior knowledge allows
for the parameters K and ε to be fit directly in the second step.
A pseudo 2-D T1–T2 distribution results from mapping the in-
dependent 1-D probability distributions to 2-D space using the
assumed T1–T2 relationship.

In our previous publication [8], when tested on simulated
data for fluid in rock, the pseudo 2-D distributions estimated by
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the P2DRM were consistent with the known joint T1–T2 dis-
tribution. However, in that case, the parametric models which
the P2DRM used were good choices in that they were capa-
ble of describing the known joint T1–T2 distribution. Though
we gave physical justification for the parametric model sets
used, in practice one does not have prior knowledge of the ap-
propriate model. The first point of this publication is to test
whether the P2DRM can accurately estimate the T1–T2 rela-
tionship when the parametric model sets are incapable of de-
scribing the marginal distributions of the true joint T1–T2 dis-
tribution. Utilizing a rapid T1 measurement along with the Carr-
Purcell-Meiboom-Gill (CPMG) T2 measurement potentially of-
fers a means of estimating the T1–T2 relationship in situations
where experimental time is limited such as for investigation of
time-sensitive processes. The second point of this publication
is to test the capability of the P2DRM to utilize rapidly acquired
data in estimating the T1–T2 relationship.

The theory section includes equations for using lognormal
or inverse-gamma distributions and their associated T1 distri-
butions as components in distribution models. Model sets are
physically motivated and defined. The equations are repro-
duced from our previous publication [8] (and its corrigendum
[12]). The methods section explains the data simulation and the
fitting routine. Simulations give us access to the known joint
T1–T2 distribution and allow us to test the limits of the P2DRM.
The results and discussion section compares the pseudo 2-D
distributions estimated by the P2DRM to the known joint T1–
T2 distribution. We test the accuracy and precision by obtaining
parameter estimates from 100 data simulations and fits.

2. Theory

The CPMG sequence [13, 14] measures the distribution of T2
relaxation times, f (T2), by acquiring the signal from the center
of each echo in a train of 180◦ RF pulses. The signal, I(t2), as a
function of the acquisition time, t2, is related to f (T2) by

I(t2) = I0

∫ ∞

0
f (T2) exp(−t2/T2) dT2, (3)

where I0 is the signal intensity at t2 = 0. A class of rapid T1
measurements built off the Look-Locker method [15] uses a se-
ries of short tip-angle RF pulses to linearly sample signal at tens
to hundreds of points in the time domain with a single scan. In
a double-shot implementation by Chandrasekera et al. [16], the
signal from the FID following the nth RF pulse of angle θ is

I{(n−1)τ1} = M0 sin θ(cos θ)n−1
∫ ∞

0
f (T1)(exp(−(n−1)τ1/T1))dT1

(4)
where τ1 is the time between RF pulses, the acquisition time is
t1 = (n − 1)τ1, and M0 is the initial magnetization. The signal
intensity at t1 = 0 is I0 = M0 sin θ.

A numerical inverse Laplace transform method is used to
obtain f (T2) or f (T1). The result is a non-unique estimate of
the actual relaxation time distribution and is dependent on the
choice of model [17, 18]. Parametric models are based on phys-
ically motivated information and use a pre-defined number of

components involving a commensurate number of pre-defined
functions [18, 19, 20]. The P2DRM uses parametric models to
allow for the utilization of Eq. (2) as prior knowledge. More
specifically, for a given parametric distribution component of
the f (T2) model, Eq. (2) can be used in a change-of-variables
to define the parametric form of the component as a function of
T1. First, for the lognormal distribution of T2,

PlogN(T2) =
1

σT2
√

2π
exp

(
−

1
2σ2 (ln T2 − µ)2

)
, (5)

a change-of-variables using Eq. (2) results in

PBT logN(T1) =
1

(1 − KT1)(σT1
√

2π)

× exp
(
−

1
2σ2 (ln ε + ln T1 − ln(1 − KT1) − µ)2

)
. (6)

The subscript BT refers to Brownstein-Tarr. The parameters
µ and σ control the shape of Eq. (5) and K and ε control the
transformation of Eq. (5) to Eq. (6).

Second, for the inverse-gamma distribution of T2,

PΓ−1 (T2) =
βα

Γ(α)
T−α−1

2 exp
(
−
β

T2

)
, (7)

a change-of-variables using Eq. (2) results in

PBT Γ−1 (T1) =
ε

(1 − KT1)2

βα

Γ(α)

(
εT1

1 − KT1

)−α−1

× exp
(
−
β(1 − KT1)

εT1

)
, (8)

with parameters α and β equal to their value in Eq. (7) and again
the only free parameters are K and ε.

Model sets must include a T2 distribution model, f (T2), and
an associated T1 distribution model, f (T1). Model sets can uti-
lize any combination of component functions, including delta
functions so long as the two associated P(T2) and P(T1) func-
tions come as pairs in attempting to represent the same pop-
ulation of spins. We use two model sets, ‘model set A’ and
‘model set B’ which each include a distribution plus delta func-
tion. Model set A incorporates PlogN(T2) and PBT logN(T1) as
the distributed component. The distributed component in model
set B is represented by PΓ−1 (T2) and PBT Γ−1 (T1). The fact that
T1 ≥ T2 is utilized to constrain the delta function. We have
found model sets with a distributed component plus a delta
function component to be more robust than model sets with a
single distributed component and more stable than model sets
with two distributed components. Inclusion of a delta function
is physically motivated by the fact that as pore size increases,
the Brownstein-Tarr fast diffusion limit will no longer apply and
a significant portion of fluid in the interior of the pore can be
described as having relaxation times equal to bulk values. Non-
parametric, uniform-penalty inversions (UPEN) of relaxation
experiments performed on porous media systems often show a
sharp peak near the bulk relaxation time with a broad shoulder
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extending to short relaxation times [21], perhaps indicating that
such a physical motivation is well-founded.

The pseudo 2-D T1–T2 distribution exists along the T1–T2
relationship described by Eq. (2) and the estimated values of
K and ε. Due to the probability distribution being infinitely
thin in all directions other than along the T1–T2 relationship,
the function for the pseudo 2-D T1–T2 distribution is related to
the 1-D marginal T1 or T2 distribution by a line integral. When
parameterized by T2, the resulting function is

Pc(T2) =
P(T2)√

1 + ε2

(ε+KT2)4

(9)

where P(T2) is the 1-D marginal T2 distribution, either
PlogN(T2) or PΓ−1 (T2). The subscript c refers to Pc(T2) being
a distribution along a curve in T1–T2 space.

3. Methods

Paramagnetic species along pore walls determine surface re-
laxivities [1, 7]. Foley et al. measured T1 and T2 of water in
packed calcium silicate powders synthesized with known con-
centrations of iron paramagnetic ions [22]. The iron concentra-
tion had a stronger effect on ρ2 than ρ1,

ρ1 = 4.05 µm/s + (0.000819 µm/s/ppm)[Fe]ppm, (10a)
ρ2 = 3.96 µm/s + (0.00227 µm/s/ppm)[Fe]ppm, (10b)

and therefore a distribution of iron concentrations can lead to
a distribution of T1–T2 relationships. We simulated data sets
by randomly sampling a large number of discrete radii and iron
concentration values from a prescribed pore size and iron dis-
tribution, assigning T1 and T2 values to each radii and iron con-
centration pair using Eqs. (10) and Eqs. (1) and modeling signal
relaxation as a sum of contributions from all radii and iron con-
centration pairs. The known joint T1–T2 distribution is a 2-D
histogram from the discrete T1 and T2 values. The prescribed
pore radii distribution was a sum of two lognormal distributions
(the first with w = 0.8, mean = 27 µm, and standard devia-
tion (std) = 36 µm, the second with mean = 380 µm and std
= 200 µm), which creates a bimodal T1–T2 distribution. The
prescribed paramagnetic iron distribution was lognormal with
mean = 3.6 × 104 ppm and std = 4.8 × 104 ppm, similar to
concentrations found in many sandstones and carbonates [22].
Through Eqs. (10) the iron distribution corresponded to a ρ2/ρ1
distribution with mean = 2.37 and std = 0.28. Bulk relaxation
times were T1 bulk = T2 bulk = 2 s. Discrete relaxation time val-
ues found using Eqs. (1) were used in Eqs. (3) and (4) to sim-
ulate CPMG data (with 4000 echoes and a 400 µs echo time)
and rapid T1 data (with 100 RF pulses of θ = 5◦ and τ1 = 30
ms). The signal to noise ratio (SNR = I0/σnoise) was set to
340 for the T2 data and 34 for the T1 data by adding zero mean
Gaussian noise.

The parametric distribution model sets A and B were em-
ployed in Eqs. (3) and (4) for a 2-step fitting of the 1-D data sets.
The estimated values of K and ε complete the T1–T2 relation-
ship described by Eq. (1). The pseudo 2-D T1–T2 distribution

was determined from the results and Eq. (9). A least-squares
fitting routine was implemented in MATLAB R2015a (Math-
works, Natick, USA) and was made available as supplementary
material to ref. [8].

4. Results and discussion

The fits of distribution model sets A and B to simulated T2
and T1 relaxation data and the residuals of the fits are shown in
Fig. 1. The factor (cos θ)n−1 seen in Eq. (4) was divided from
the T1 signal intensity.
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Figure 1: Results from using the P2DRM model sets A (red dotted line) and B
(green solid line) to fit the simulated 1-D CPMG T2 data (a) and rapid T1 data
(b), showing signal intensity (black circles), fits, and residuals.

The pseudo 2-D distributions estimated by the P2DRM are
compared to the known joint 2-D distribution in Fig. 2. Both
model sets estimated essentially the same T1–T2 relationship
and both trace the known T1–T2 relationship. The delta func-
tions are near the bulk relaxation limit, though inconsistent with
one another and at T1 values below the known T1–T2 relation-
ship. The inability of the model sets to describe the marginal
distributions of the known joint T1–T2 distribution results in
the distributed components being shifted to shorter relaxation
times. Even so, the models still show good agreement with
the known T1–T2 relationship. With respect to fitting 1-D data,
we have found parametric distribution models which under-fit
the data, e.g., using a single distributed component to model
the decay from a multimodal distribution, are still capable of
estimating the means, 〈T2〉 or 〈T1〉. We can extend this to the
P2DRM because obtaining the T1–T2 relationship in essence in-
volves estimating the conditional 〈T1〉 given a value of T2 (this
is what the P2DRM T1–T2 relationship curve describes). For
these reasons, P2DRM estimations of T1–T2 relationships are
robust with respect to model assumptions.
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Figure 2: Results of the pseudo 2-D T1–T2 distributions from using P2DRM
model sets A, based on the lognormal, (red dotted line) and B, based on the
inverse-gamma, (green solid line) to fit the 1-D data sets compared to the known
joint T1–T2 distribution (blue intensity map) highlighting (a) the T1–T2 rela-
tionships and (b) intensity of the distributions. The maximum intensities of the
P2DRM distribution components are scaled by their weights.

Information about surface interactions can be gleaned from
the ratio T1:T2 for fluid interacting with surfaces and ε−1 is
therefore the key parameter for the P2DRM to obtain. From
fitting 100 data sets simulated with unique instances of random
noise, estimates of ε−1 for model set A (mean=2.54, std=0.43)
and model set B (mean=2.41, std=0.43) were not significantly
different from the known mean of the distribution of ρ2/ρ1 =

2.37. Data with this SNR could be acquired in a timescale of
minutes, versus a timescale of hours for the T1–T2 correlation
experiment. Therefore, the P2DRM should indeed be useful in
situations where experimental time is limited.
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[19] M. Röding, D. Bernin, J. Jonasson, A. Särkkä, D. Topgaard, M. Rudemo,
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