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A B S T R A C T

Objectives: The etiology of the reduced marginal bone loss observed around platform-switched implant-abut-
ment connections is not clear but could be related to the release of variable amounts of corrosion products. The
present study evaluated the effect of different concentrations of metal ions released from different implant
abutment couples on osteoblastic cell viability, apoptosis and expression of genes related to bone resorption.
Methods: Osteoblastic cells were exposed to five conditions of culture media prepared containing metal ions
(titanium, aluminum, vanadium, cobalt, chromium and molybdenum) in different concentrations representing
the amounts released from platform-matched and platform-switched implant-abutment couples as a result of an
earlier accelerated corrosion experiment. Cell viability was evaluated over 21 days using the Alamar Blue assay.
Induction of apoptosis was measured after 24 h of exposure using flow cytometry. Expression of interleukin-6,
interleukin-8, cyclooxygenase-2, caspase-8, osteoprotegerin and receptor activator of nuclear factor kappa-B
ligand (RANKL) by osteoblastic cells were analysed after exposure for 1, 3 and 21 days using real-time quan-
titative polymerase chain reaction assay
Results: Metal ions in concentrations representing the platform-matched groups led to a reduction in cell via-
bility (P < 0.01) up to 7 days of exposure. Stimulated cells showed higher rates of early apoptosis (P < 0.01)
compared to non-treated cells. Metal ions up-regulated the expression of interleukin-6, interleukin-8, cycloox-
ygenase-2 and RANKL in a dose dependent manner after 1 day of exposure (P < 0.05). The up-regulation was
more pronounced in the groups containing the corrosion products of platform-matched implant-abutment
couples.
Conclusion: Osteoblastic cell viability, apoptosis, and regulation of bone resorbing mediators were significantly
altered in the presence of metal ions. The change in cytokine levels expressed was directly proportional to the
metal ion concentration.
Clinical significance: The observed biological responses to decreased amounts of metal ions released from plat-
form-switched implant-abutment couples compared to platform-matched couples may partly explain the positive
radiographic findings in respect to crestal bone level when utilising the “platform-switching” concept, which
highlights the possible role of corrosion products in the mediation of crestal bone loss around dental implants

1. Introduction

Dental implants have been widely used for the replacement of
missing teeth in fully and partially edentulous patients. According to
the American Academy of Implant Dentistry, 3 million people in the
United States have dental implants and that number is growing by
500,000 a year [1]. The use of endosseous dental implants was initiated
by the discovery that these implants could be anchored in the jawbone

with direct bone contact [2,3]. In 1991, Zarb and Albrektsson described
the osseointegration phenomena as “a process in which a clinically
asymptomatic rigid fixation of alloplastic material is achieved and
maintained in bone during functional loading” [4] For proper os-
seointegration, several factors must be controlled [5,6], including bio-
compatibility of the implant material, design and surface of the im-
plant, the condition of the tissues in the implant site, the surgical
techniques, and loading procedures [5]. Biocompatibility of an implant
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material is closely related to its susceptibility to corrosion [7]. There-
fore, titanium (Ti) has been the material of choice for dental implants
due to its superior corrosion resistance behaviour and desirable me-
chanical properties [8,9].

An important parameter in the long-term success of dental implants
is the stability of the peri-implant bone. Previous literature has showed
that alterations in the connection geometry of the dental implant-
abutment interface, such as platform-switching, may lead to a decrease
in peri-implant bone loss that occurs through time [10,11]. Platform-
switching is defined as a protocol that includes smaller diameter re-
storative components that have been placed onto larger diameter im-
plant restorative platforms – the outer edge of the implant-abutment
interface is horizontally repositioned inwardly and away from the outer
edge of the implant platform [10]. Nevertheless, the etiology for this
difference is still questioned. A recent study [12] demonstrated an in-
crease in the amount of metal ions released through accelerated cor-
rosion from platform-matched compared to platform-switched implant-
abutment couples.

The role of implant corrosion products in peri-prosthetic osteolysis
has been extensively demonstrated in the orthopedic literature [13,14].
This phenomenon may occur as corrosion and wear products can in-
fluence the metabolic pathways of various cells including macrophages,
lymphocytes, fibroblasts, osteoclasts, and osteoblasts [13,14]. Osteo-
blasts exposed to cobalt (Co) and chromium (Cr) ions undergo a dose
dependent reduction in proliferation [15]. Titanium (Ti) ions at con-
centrations of 10 ppm or higher for 24 h were found to be toxic [16].
Additional past studies have demonstrated that nontoxic concentrations
of metal ions influence the differentiation and function of osteoblastic
cells in vitro [17,18].

Metal ions/particles may also stimulate osteoblasts to produce pro-
inflammatory mediators that contribute to the overall inflammatory
process involved in peri-prosthetic osteolysis [13,19–25]. It has been
shown that cobalt ions stimulate increased prostaglandin E2 (PGE2)
secretion in primary human osteoblasts [26]. This was preceded by up-
regulated cyclooxygenase COX-1 and COX-2 gene expression
[19,26,27]. Secretion of interleukins 6 and 8 (IL-6 and IL-8) by osteo-
blasts in response to Ti and other experimentally derived wear parti-
cles/ions has also been previously reported [28–30]. Receptor activator
of nuclear factor kappa-B ligand (RANKL) is another important protein
in peri-prosthetic osteolysis and acts by stimulating osteoclastogenesis
[19]. Osteoprotegerin (OPG) is an inhibitor of RANKL. Mine et al. re-
vealed that Ti ions enhanced the expression of RANKL in osteoblast-like
cells, suggesting that Ti ions may have adverse effects on bone re-
modelling at the interface of dental implants and tissues [31].

Although several investigations have documented the potential
toxicity and the ability of metal ions/particles to stimulate cytokine
production in cultured cell systems [32–34], little is known regarding
cell apoptosis, or programmed cell death [35]. It has been suggested
that biocompatibility testing should include assessment of apoptosis
[36] which is featured by the stimulation of cysteine proteases called
caspases. An in vitro study [37] showed that Ti particles could induce
apoptosis in osteoblasts which may lead to suppressed bone formation.

Although the orthopedic literature is replete with studies regarding
the influence of corrosion products on the peri-prostheic tissues and
cells [13–37], the dental literature, however, contains little information
about the direct interaction between metal ions released from dental
implants and osteoblasts from peri-implant tissues. This interaction may
provide important insights into the pathogenesis of the observed mar-
ginal bone resorption around dental implants [38,39]. In highly cor-
rosive environments, such as the oral cavity, metals, including those of
the implant and abutment materials, are prone to degradation [40,41].
The combination of an acidic medium, due to inflammation, presence of
acidogenic bacteria, fluorides or food intake, and the micromotion,
resulting from occlusal forces, can lead to disruption of the oxide layer
protecting the titanium surface [12,40–43]. A recent study [12] de-
monstrated that Ti implants connected to platform-matched abutments

released significantly larger amounts of corrosion elements compared
to implants connected to platform-switched abutments, following an
accelerated corrosion process. The authors’ hypothesis was that this
difference in corrosion may be significant on a cell metabolic level in
order to change the peri-implant bone homeostasis [12].

The aim of the present study was to investigate the effect of such
differences in metal ion concentrations on cell viability, apoptosis, and
inflammatory gene expression of human osteoblastic cells cultured
within conditioned culture media containing the different concentra-
tions of metal ions obtained from the earlier study [12]. The null hy-
pothesis was that there would be no difference between groups re-
garding the aforementioned variables.

2. Materials and methods

2.1. Preparation of culture media containing metal ions

Five different conditions of culture media solutions were prepared
containing different levels of metal ions obtained from the respective 5
groups of a recent study [12] that evaluated the levels of metal ions
released from different implant abutment couples as a result of ac-
celerated corrosion [44]. The metal ions corresponded to the following
groups [12]: implants connected to platform-matched titanium
(Ti6Al4V) abutments (TM), implants connected to platform-switched
titanium (Ti6Al4V) abutments (TSW), implants connected to platform-
matched cobalt-chrome (CoCr) abutments (CM), implants connected to
platform-switched cobalt-chrome abutments (CSW) and unconnected
titanium implants (UI). The amount of mismatch was 0.5 mm between
the platform-switched and platform-matched abutments [12]. The
concentrations of the measured elements [12] which were used in this
study are presented in Table 1. To prepare culture medium containing
these concentrations, single element standard solutions for ICP-MS for
each measured element (titanium (Ti), vanadium (V), aluminum (Al),
cobalt (Co), chromium (Cr) and molybdenum (Mo)) were utilized
(TraceCERT®, Sigma-Aldrich Company Ltd.,Dorset, England). Each
single standard solution of each element was sterilized by passing
through 0.22 μm membrane filters (Millex, Merck Millipore Ltd., Ger-
many) before diluting in culture medium (Clonetics™ OGM™ BulletKit™,
Lonza, Walkersville, MD, USA). To reach the desired concentrations of
the test solutions, the single element standard solutions were diluted
with the serum-added culture medium, under pH monitoring, according
to the method described by Taira et al. [45]. No visual precipitation was
formed after adding the standard elements and the pH of the prepared
solutions was measured immediately after preparation. Metal ion-free
culture medium was used as a reference solution (REF) and served as
the control group.

Table 1
Levels of metal ions (ppb) present in treated culture media solutions12.

Test Groups Code Levels of Metal Ions (ppb)

Ti Al V Co Cr Mo Total

Unconnected implant UI 998 998
Connected platform matched

titanium alloy abutment
(6 mm)

TM 1250 67 60 1377

Connected platform switched
titanium alloy abutment
(5 mm)

TSW 1080 57 36 1137

Connected platform matched
cobalt-chrome abutment
(6 mm)

CM 678 219 27 10 934

Connected platform switched
cobalt-chrome abutment
(5 mm)

CSW 623 122 11 6 762
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2.2. Cells and cell cultures

Osteoblastic cells were purchased from Lonza (Clonetics™ Normal
Human Osteoblast Cell System, NHOst, Lonza, Walkersville, MD, USA).
Cells were cultured in monolayer in osteoblast basal medium (OBM™,

Clonetics™ OGM™ BulletKit™, Lonza, Walkersville, MD, USA) con-
taining 10% fetal bovine, 0.1% Gentamicin Sulfate/Amphotercin-B and
0.1% Ascorbic acid (OGM™ SingleQuot™, Lonza, Walkersville, MD,
USA) and incubated at 37 °C in a humidified atmosphere of 5% CO2 and
95% air. The culture medium was changed every two days. At 70–80%
confluency, adherent cells were detached using 0.25% trypsin/EDTA
solution (Trypsin EDTA, Gibco, Life Technologies, Thermo Fisher
Scientific, NY, USA). Osteoblastic cells of passages 4–6 were used for
the experiments. All experiments were performed three times.

2.3. Cell viability assay

For viability experiments, the osteoblastic cells were transferred to
24-well plates and were seeded in triplicate at a density of 3000 cells/
well. The cells were allowed to attach for 24 h, then the metal ion-free
medium was replaced by the respective metal ion-containing medium.
Cells incubated with metal ion-free medium served as test controls. The
cell viability assay was conducted at time points of 1, 4, 7, 10, 14 and
21 days. After 21 days, RNA was extracted for later gene expression
analysis. Cell viability at each time point was determined using Alamar
Blue™ (AB) bioassay (AbD Serotec, UK). Absorbance measurements
were performed at 560 nm and 590 nm using a microplate reader
(FLx800, BioTek Instruments Ltd, UK). Reduction of AB by cells was
calculated as the percentage reduction from the blue oxidized form of
AB to red reduced form according to the following equation:

=
−

−

×

Percentage reduction of alamarBlue
Fl of test agent Fl untreated control

Fl of reduced alamarBlue Fl untreated control
590 590

590 100% 590

100

Where: Untreated control is a cell-free culture media subjected to si-
milar incubation conditions as the test groups and control (REF)

Fl 590 = Fluorescent intensity at 590 nm emission (560 excitation)
The resultant AB reduction percentages represented the percentage

of cell viability and was used in statistics for viability comparison be-
tween test groups and the metal ion-free control (REF).

2.4. Flow cytometric analysis of early apoptosis

For apoptosis experiments, the cells were transferred to 24-well
plates and were seeded in triplicates at a density of 50 000 cells/well.
The cells were allowed to attach for 24 h, then the metal ion-free
medium was replaced by the respective metal ion-containing medium
for a period of 24 h. Cells incubated with metal ion-free medium served
as test controls. At the end of the 24 h exposure period, the cells were
collected by centrifugation and washed twice with phosphate buffer
solution (PBS, BioWhittaker, Lonza, Belgium). The cells were then re-
suspended in Annexin Binding Buffer and aliquots (5 μL) of
Phycoerythrin Annexin V and Propidium Iodide Staining Solution (FITC
Annexin V Apoptosis Detection Kit II, BD Pharmingen™, BD Bioscience,
UK) were added to each test tube following manufacturer instructions.
The samples were placed into a fluorescence activated cell sorting
(FACS) flow cytometer (EPICS XL®, Coulter Corporation, Florida, USA)
for analysis. A minimum of 10,000 events in the target area was re-
corded for each sample.

2.5. Gene expression analysis

RNA levels of IL-6, IL-8, COX-2, Caspase-8, OPG and RANKL ex-
pressed by osteoblastic cells were analysed after incubation with metal

ion-containing media for 24 h, 72 h and 21 days. Cells incubated with
metal ion-free medium served as test controls. Cells were seeded onto
24-well plates in triplicates at different densities based on the exposure
period to the metal ion-containing media. For the 24 h and 72 h ex-
posure periods, cells were seeded at a density of 50 000 cells/well or 25
000 cells/well respectively. For the 21-day exposure period, RNA was
extracted from the same cells that were initially seeded for the viability
assay after conducting the 21 day time point viability analysis.

2.5.1. RNA extraction
After each exposure period, culture medium was removed from the

wells, cells were washed twice with phosphate buffered saline solution
(PBS, BioWhittaker, Lonza, Belgium) and were immediately lysed using
the lysis buffer of an RNA extraction kit (RNeasy®Plus Mini Kit, QIAGEN
GmbH, Hilden, Germany). Total RNA was extracted according to the
protocol of the manufacturer. Quantity and purity of the RNA were
determined by 260/280 nm absorbance measurements using TECAN
plate reader (Infinite M200, TECAN, GmbH, Austria) The remaining
RNA was stored at −80° C until complementary DNA (cDNA) synthesis
was performed.

2.5.2. cDNA synthesis
RNA was reverse transcribed to cDNA using the High Capacity

cDNA Reverse Transcription Kit (Applied Biosystems™, Thermo Fisher
Scientific, NY, USA) according to the manufacturer instructions in a
final reaction volume of 20 μL. cDNA was synthesized with total RNA
(100 ng) and was amplified by polymerase chain reaction (PCR) in a
thermal cycler (PTC-100™ Programmable Thermal Controller, MJ
Research Inc., MA, USA). Thermal cycling conditions were as follows:
10 min at 25 °C, 120 min at 37 °C, 5 min at 85 °C after which tem-
perature gradually drops to 4 °C. The resulting cDNA was stored at
−20° C until further analysis.

2.5.3. Real-time quantitative polymerase chain reaction (RT-qPCR) assays
For RT-qPCR, 5 μL of the abovementioned diluted cDNA was added to

TaqMan Fast Universal PCRMaster Mix and TaqMan Gene Expression Assay
primer/probe mixes (TaqMan® Gene Expression Assays, Applied
Biosystems™, Thermo Fisher Scientific, NY, USA) according to the manu-
facturer’s instructions to achieve a final reaction volume of 25 μL. Gene
expression was measured using primer–probe sets specific for human
IL–6 (Hs00985639_m1), IL–8 (Hs00174103_m1), COX-2 (PTGS2)
(Hs00153133_m1), Caspase 8 (Hs01018151_m1), RANKL (TNFSF11)
(Hs00243522_m1), OPG (TNFRSF11B) (Hs00900358_m1) and glycer-
aldehyde 3-phosphate dehydrogenase (GAPDH) (Hs03929097_g1) by
means of RT-qPCR using 7300 Real Time PCR System (Applied
Biosystems™, Thermo Fisher Scientific, NY, USA). Gene specific primers and
the TaqMan qPCR mastermix for FAM™ reporter dye were purchased from
TaqMan® (TaqMan® Gene Expression Assays, Applied Biosystems™, Thermo
Fisher Scientific, NY, USA). Each cell sample was assayed for each gene a
minimum of three separate times in 96-well optical plates with primer
concentrations of 0.8 mM. The PCR protocol consisted of: initiation at 1
cycle at 50 °C for 2 min and 1 cycle at 95 °C for 10 min, followed by am-
plification for 40 cycles at 95 °C for 15 s and 60 °C for 1 min. Ct data were
collected via Sequence Detection Software 1.4 (7300 System SDS software
RQ Study Application, Applied Biosystems). Gene expression was normal-
ized to housekeeping gene (GAPDH) and expressed relative to the reference
control group (REF) for each incubation time using the 2−ΔΔCt method [46].
The ratio of RANKL/OPG was calculated by dividing the normalized fold
expression of both genes within the same sample. Since the experiment was
performed in triplicate and the PCR reactions were also performed in tri-
plicate, there were 54 data points collected

2.6. Statistical analysis

All data were expressed as mean and standard deviation. For via-
bility and apoptosis analysis, statistically significant differences were
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tested by univariate analysis of variance (ANOVA) using SPSS version
22.0 (IBM SPSS Statistics, IBM, Tokyo, Japan) (P < 0.05). For gene
expression analysis, statistically significant differences were tested by
multivariate repeated measures (ANOVA) statistical model where all 54
data points were used to fit this model. Comparisons were performed
between each test group and the control (REF) within each incubation
period and between the platform-matched groups and the platform-
switched groups within each abutment material and within each in-
cubation period. Levene’s test of homogeneity of variance was em-
ployed (α= 0.05), following the assumption of equal variances. When
equal variances were assumed (P > 0.05) the Bonferroni post hoc test
was used to analyze significant differences between test groups.
Whereas when equal variances were not assumed (P < 0.05) the
Dunnett’s T3 post hoc test was used to analyze significant differences
between the test groups. To confirm statistically significant differences
between the platform-matched groups and the platform-switched
groups within each abutment material, t-test for two independent
samples was used (P < 0.05).

3. Results

3.1. Effect of metal ions on cell viability

The percentages of reduction reaction from the blue oxidized form
of AB to red reduced form over the 21-day time period, which re-
presented the percentages of cell viability, are presented in Fig. 1. There
was statistically significant lower cell viability in the TM (P < 0.001),
TSW (P < 0.001) and CM (P < 0.01) groups compared to the control
(REF) after 24 h of exposure as well as on day 4 (P < 0.001) and day 7
(TM and TSW (P < 0.001), CM (P < 0.05)). The platform-matched
CoCr abutment group (CM) also showed lower cell viability compared
with the platform-switched group of the same material (CSW) on day 4
(P < 0.01). On day 10, the TM was the only group that showed less
cell viability when comparing with the control (P < 0.05). After
14 days of exposure, all test groups did not differ in their cell viability
from the control (P > 0.05). However, on day 21, the CM and CSW
groups had significant lower cell viability than the control
(P < 0.001).

3.2. Effect of metal ions on early apoptosis

All groups of osteoblastic cells exposed to metal ion-containing
media showed significantly higher percentage of apoptosis after 24 h
compared to the control (UI, TM, CM, and CSW (P < 0.001), TSW
(P < 0.005)) (Fig. 2). The percentage of apoptotic cells did not differ
significantly between the different ion concentration groups
(P > 0.05)

3.3. Effect of metal ions on gene expression

3.3.1. Interleukin-6 expression
Osteoblastic cells cultured with different metal ion types and con-

centrations released a higher amount of IL-6 compared to the non-sti-
mulated reference group (REF) (UI, TM, TSW and CM (P < 0.001),
CSW (P < 0.05)) (Fig. 3). This increase of IL-6 expression was directly
proportional to the concentration of metal ions after 1 day of exposure.
In particular, cells from the TM group increased the production of IL-6
by 3 fold in the first 24 h compared to the REF (P < 0.001) and the
increase was also significantly higher compared to the osteoblastic cells
of the TSW group (P < 0.001) (Fig. 3). Osteoblastic cells in the CM
group also showed statistically higher expression of IL-6 compared to
the CSW group after 24 h (P < 0.005). After 3 days of exposure, there
was a significant tendency for cells incubated with metal ions released
from implants connected to Ti alloy abutments (TM and TSW) to release
more IL-6 compared to the REF group (P < 0.001). Moreover, after
3 days, osteoblasts from the TM group demonstrated higher IL-6 ex-
pression compared to cells from the TSW group (P < 0.01) (Fig. 3). A
longer incubation time (21 days) caused higher IL-6 levels from osteo-
blastic cells in all experimental groups with an average expression 2-
fold higher than the REF group (P < 0.001). This increase of IL-6 was
already observed at the lowest metal ion concentration group (CSW)
after 21 days of incubation (Fig. 3). No statistical difference was ob-
served between CM and CSW groups for the 3 day and 21 day duration
of the experiment.

3.3.2. Interleukin-8 expression
In the first 24 h of exposure, IL-8 expression followed the same

pattern that was seen with IL-6 release in which osteoblastic cells

Fig. 1. Osteoblast reduction of Alamar Blue™ (%). Osteoblastic cells were treated with metal ion-containing culture media and the reduction in the Alamar Blue™ was measured over time
points of 1, 4, 7, 10, 14 and 21 days of exposure. The results were expressed as mean percentage reduction (%)± standard deviation n = 9 per group (*P ≤ 0.001, ***P < 0.01,
†P < 0.05, statistical differences with respect to the control REF,┌┐statistical difference between platform-matched and platform-switched within each material).
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Fig. 2. Percentage of osteoblast apoptosis. Osteoblastic cells were treated with metal ion-containing culture media and the percentage of apoptotic cells was measured after 24 h of
exposure. The results were expressed as mean percentage of apoptosis (%)± standard deviation n = 9 per group (*P ≤ 0.001, **P < 0.005, statistical differences with respect to the
control REF).

Fig. 3. Interleukin-6 expression by osteoblasts. Osteoblastic cells were treated with metal ion-containing culture media and the expression of IL-6 was measured over time points of 1, 3
and 21 days of exposure. The results were expressed as mean fold change ± standard deviation (n=3 independent samples x 3 repeats) (*P ≤ 0.001, **P < 0.005, ***P < 0.01,
†P < 0.05 statistical differences with respect to the control REF,┌┐statistical difference between platform-matched and platform-switched within each material).
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cultured with metal ions released a higher amount of IL-8 compared to
the non-stimulated REF cells (P < 0.05) (Fig. 4). This increase of IL-8
expression was again directly proportional to the concentration of
metal ions after 1 day of exposure. Cells in the TM group exhibited a
major increase in IL-8 expression (25-fold, P < 0.05) compared to cells
in the REF group, as well as compared to all other test groups including
the platform-switched titanium abutment group (TSW) (P < 0.05).
After 3 days of incubation, the TM and TSW groups continued to show
higher IL-8 release compared to the control group (P < 0.001). How-
ever, the initial elevated expression of IL-8 inverted to a decreased
expression after longer incubation (Fig. 4). This was significant for
osteoblastic cells in the CM (P < 0.005) and TSW groups (P < 0.05)
after 21 days compared to the reference (Fig. 4).

3.3.3. COX-2 expression
After 24 h of incubation, osteoblastic cells cultured with metal ions

showed significant increase in expression of COX-2 in all test groups,
except CSW (UI (P < 0.001), TM (P < 0.01), TSW and CM
(P < 0.05), compared to the reference (REF)(Fig. 5). Although cells in
the TM group showed the highest mean COX-2 expression among the
test groups (∼5 fold) it was not statistically significant from the TSW
(P > 0.05) after 1 day. Osteoblastic cells in the CM group expressed
statistically significant higher levels of COX-2 compared to cells of the
CSW group (P < 0.05). After 3 days of incubation, there was a sig-
nificant decrease in the expression of COX-2 in all test groups that re-
presented connected implant-abutment couples (TM and CM
(P < 0.01), TSW and CSW (P < 0.05)) (Fig. 5). Osteoblastic cells
treated with metal ions from TM group showed down-regulation of
COX-2 levels after 21 days of incubation (P < 0.05) compared to the
REF (Fig. 5) and compared to the platform-switched group of the same
material (TSW) (P < 0.05)

3.3.4. Caspase-8 expression
Caspase activity was not influenced by metal ions in the first 24 h of

exposure (P > 0.05) (Fig. 6). However, after 3 days of incubation,
there was a down regulation of Caspase-8 secretion from osteoblastic
cells treated with metal ions from the platform-matched CoCr abutment
group (CM) compared to the reference (P < 0.05) (Fig. 6). This de-
crease in Caspase-8 production was also evident in groups TM and CM
(P < 0.01) after longer incubation time (21 days) when compared to
the REF (Fig. 6)

3.3.5. RANKL and OPG expression
The expression of RANKL, OPG, and the ratio of RANKL/OPG are

presented in Fig. 7. RANKL expression was up-regulated in all test
groups after 24 h of incubation when compared to the REF (UI and CM
(P < 0.05) TM, TSW and CSW (P < 0.005)) (Fig. 7a) in a dose de-
pendent manner. On the other hand, OPG production was not influ-
enced in most experimental groups except for the TM group, where it
was down regulated (P < 0.001) compared to the REF in the first 24 h
of exposure (Fig. 7b) and compared to the platforms-witched titanium
abutment group (TSW) (P < 0.001).These variable expressions led to
high ratios of RANKL/OPG in all test groups after 24 h of incubation
compared to the REF (UI and CM (P < 0.001), TM and TSW
(P < 0.05) and CSW (P < 0.005)) (Fig. 7c) with the highest ratio
observed in the osteoblastic cells of the TM group (22-fold) which was
significantly higher compared to all the test groups including the
platform-switched titanium abutment group (TSW) (P < 0.001).
Moreover, the cell cultures of the CM group showed increased RANKL/
OPG ratio compared to cultures in the CSW group (P < 0.001). After
3 days of incubation, the RANKL expression significantly decreased in
the CM (P≤ 0.001) and CSW (P ≤ 0.05) (Fig. 7a) when compared to
the REF, while the TM group continued to show higher RANKL

Fig. 4. Interlukin-8 expression by osteoblasts. Osteoblastic cells were treated with metal ion-containing culture media and the expression of IL-8 was measured over time points of 1, 3
and 21 days of exposure. The results were expressed as mean fold change ± standard deviation (n = 3 independent samples x 3 repeats) (*P ≤ 0.001, **P < 0.005, †P < 0.05, statistical
differences with respect to the control REF,┌┐statistical difference between platform-matched and platform-switched within each material).
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production compared to the control and to the platform-switched tita-
nium abutment group (TSW) after 3 days of exposure (P < 0.05)
(Fig. 7a). After longer incubation time (21 days), the ratio RANKL/OPG
in almost all conditions (except for the UI and CSW) was significantly
lower than the REF (TM (P < 0.005), TSW and CM) (P < 0.001)
(Fig. 7c).

4. Discussion

The corrosion of implant materials in vivo is a type of material re-
sponse to the host physiological environment [47]. At the same time,
the host response towards implant materials or their corrosion products
is manifested through different forms or types of response, of which,
osseointegration is one type of a positive foreign body response to
dental implants [5]. Marginal bone loss around oral implants, on the
other hand, has been identified as a consequence of an aggravated
foreign body response inevitable when placing foreign materials in
bone [5]. The extent of foreign body response to the implant de-
gradation products depends on the type, size, morphology and con-
centration of such products [48]. The present study, evaluated different
biological responses of human osteoblastic cells to varying concentra-
tions of metal ions, representing the amounts released from platform-
matched and platform-switched implant abutment couples, as a result
of accelerated implant corrosion [12]. Although the concentrations
tested were not obtained from a clinical in situ study, they were phy-
siologically relevant to the findings of He et al. [49] who recently de-
monstrated that the average content of Ti in the jaw bones of implant
patients was 1940 μg/kg or ppb. Concentration of metal ions or parti-
cles has been reported to be directly proportional to the phagocytic
response up to a saturation level [50]. Sun et al. [51] showed that the
effects of metal ions (Ni, Co, Ti and V) on cell viability were a function

of their concentrations. Cell viability in the present study was also in-
fluenced by the high concentrations of the metal ions in the TM, TSW,
and CM groups, which caused a reduction in cell viability of osteo-
blastic cells exposed to these concentrations for up to one week of in-
cubation. High concentrations of metal ions representing the platform-
matched group TM continued to reduce cell viability for longer in-
cubation periods. However, Ti ions alone in the UI group, though high,
did not affect the cell viability. This finding is in agreement with several
studies that showed that Ti ions in the concentration range of 1 to
9 ppm had no significant effects on the viability of osteoclast-like cells,
osteoblast-like cells, epithelial-like cells or splenocytes [31,33].
Therefore, it could be suggested that the presence of a mixture of dif-
ferent types of metal ions and particles, as in the situation with tribo-
chemical corrosion processes of alloys in the oral cavity, may be more
cytotoxic to the cells in direct contact than exposure to a single type of
metal ion or particle. Metal ions and particles both play a role by
triggering different metabolic pathways [13,20]. Particulate wear
debris are a source of metal ions since they have large surface area and
they are prone to dissolution resulting in measurable increases different
ions [15,52]. Therefore the increased levels of metal ions may play a
role in the etiology of particle-induced osteolysis [52]. Haynes et al.
[53] demonstrated that there is a difference in cellular response to
different types of metal alloy wear particles that are of the same size.
The authors [53] found that CoCr particles were likely to be more toxic
than the Ti6Al4 V particles. Although the present study tested metals
ions rather than particles, the results revealed similar tendency for the
CoCr abutment groups (CM and CSW) being more cytotoxic after
21 days of incubation.

The current study found that the presence of metal ions in culture
media induced programmed cell death, apoptosis, in human osteo-
blastic cells. This finding is in agreement with the results of earlier

Fig. 5. COX-2 expression by osteoblasts. Osteoblastic cells were treated with metal ion-containing culture media and the expression of COX-2 was measured over time points of 1, 3 and
21 days of exposure. The results were expressed as mean fold change ± standard deviation (n = 3 independent samples x 3 repeats) (*P ≤ 0.001, ***P < 0.01, †P < 0.05, statistical
differences with respect to the control REF,┌┐statistical difference between platform-matched and platform-switched within each material).

G.O. Alrabeah et al. Journal of Dentistry xxx (xxxx) xxx–xxx

7



Fig. 6. Caspase-8 expression by osteoblasts. Osteoblastic cells were treated with metal ion-containing culture media and the expression of caspase-8 was measured over time points of 1, 3
and 21 days of exposure. The results were expressed as mean fold change ± standard deviation (n = 3 independent samples x 3 repeats) (***P < 0.01, †P < 0.05 statistical differences
with respect to the control REF).

Fig. 7. Expression of RANKL, OPG and RANKL/OPG ratio by osteoblasts. Osteoblastic cells were treated with metal ion-containing culture media and the expression of RANKL and OPG
was measured over time points of 1, 3 and 21 days of exposure. (A) RANKL expression by osteoblasts, (B) OPG expression by osteoblasts, and (C) ratio of RANKL expression to OPG
expression. The results were expressed as mean fold change ± standard deviation (n = 3 independent samples x 3 repeats) (*P ≤ 0.001, **P < 0.005, ***P < 0.01, †P < 0.05,
statistical differences with respect to the control REF,┌┐statistical difference between platform-matched and platform-switched within each material).
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studies, using different cell types [35,54] which demonstrated that the
exposure of macrophages to Co and Cr ions for a short period (24 h)
mostly stimulated apoptosis. Pioletti et al. [36] showed that implant
particles stimulated apoptosis, particularly in less mature osteoblasts.
The high susceptibility to apoptosis of the less mature osteoblast could
affect bone remodelling. If less mature osteoblasts undergo apoptosis in
vivo, the quantity of mature osteoblasts available to synthesize new
bone will also decrease, favoring the resorption process. Apoptosis is
featured by cell shrinkage, surface blebbing, chromatin concentration
and generation of apoptotic bodies [35]. However, microscopic eva-
luation was not performed in the present study. It would be interesting
to correlate the flow cytometry measurements with microscopic ana-
lysis in future studies. In order to confirm the occurrence of apoptosis in
the examined osteoblastic cells, the expression of caspase-8, a protein
involved in apoptosis signaling, was measured but no correlation was
found with the increase in the percentage of apoptotic cells. In contrast,
Pioletti et al. demonstrated increased caspase activity up to the last
exposure point of 72 h [36]. A possible explanation for this observed
difference in results may be that in the present study, caspase-8 was
evaluated while the previous study [36] had measured caspase-3. Both
caspases are important mediators in apoptosis, and further studies
should be performed in this area to clarify this discrepancy.

The results of this study also demonstrated that the presence of
metal ions in the culture media of human osteoblastic cells induced the
production of pro-inflammatory cytokines in a dose dependent manner.
IL-6 is an important marker for chronic inflammatory processes and is
assumed to cause osteoclast activation [29]. The results of this study
demonstrated that osteoblastic cells from the cultures representing the
platform-matched groups (TM) and (CM) demonstrated higher expres-
sion of IL-6 compared to cells in the platform-switched groups within
the same material respectively (TSW) and (CSW). Increased secretion of
IL-6 by stimulated osteoblastic cells in this study corroborates the
earlier findings of Vermes et al. [21] who confirmed that IL-6 is present
and continuously secreted by particle-stimulated cells in the peri-
prosthetic space, and that its long-term in vivo autocrine and paracrine
effects are critical in the pathogenesis of the peri-prosthetic osteolysis.
The expression of IL-8, which acts as potent chemo-attractant of neu-
trophils and macrophages, was also directly proportional to the con-
centration of metal ions and was most marked for the cells in the
platform-matched Ti6Al4 V abutment group (TM). However, the en-
hanced chemokine expression of IL-8 did not continue after longer in-
cubation times which may be due to the fact that IL-8 is usually ex-
pressed immediately, as early as 1 h after exposure to a stimuli [34] and
reaching maximal levels in 2 h of exposure [55] after which it starts to
decline [34]. Other investigators have also demonstrated this decline of
expression levels [29,34,56]. Up-regulation of IL-8 has been docu-
mented in vivo in patients with peri-implantitis [57]. Hence, by trig-
gering IL-8, osteoblastic cells may attract more inflammatory cell in-
filtrates and contribute to their migration into the peri-implant tissue
and thus enhancing the inflammatory reaction to dental implants and
their corrosion products [40].

To assess the stimulation of PGE2 production, we examined if this
occurs at a transcriptional level by using real time PCR to measure the
expression of COX-2 enzyme, a key enzyme involved in prostaglandin
synthesis [19]. The activation of COX-2 expression was associated with
higher concentrations of metal ions (> 765 ppb). The influence of
abutment mismatch was mostly evident within the CoCr abutment
groups. Queally et al. [26] also observed an increase in COX-2 secretion
from osteoblasts exposed to Co and Cr ions which suggested that the
cobalt ions increased PGE2 levels by inducing the COX enzyme at a
transcriptional level [19,26]. PGE2 has been reported to induce osteo-
lysis by stimulating osteoclasts, and increased osteoclast differentiation
[19,27]

Additionally, the enhancement of expression of RANKL by osteo-
blastic cells following metal ions stimulation was also detected in the
present study in a dose dependent manner. The RANKL/OPG ratio was
higher in cell cultures of the platform-matched titanium alloy group
(TM) compared to those in the platform-switched group (TSW). This
tendency was also observed in the CoCr abutment groups. The altera-
tion of the ratio of RANKL to OPG triggers the imbalance of bone me-
tabolism, an important causative factor of pathologic bone resorption
[31]. Therefore, the results of this study suggested that metal ions could
alter cellular components in osteoblastic cells regulating osteoclast
differentiation. Mine et al. [31] also demonstrated that Ti ions at 9 ppm
altered the expression of RANKL and OPG mRNAs in osteoblast-like
cells after 24 h of exposure [31,58]. However, the concentrations tested
in that study were far higher than the concentrations investigated in the
present study. Using more clinically relevant concentrations, which
were also close to the concentrations used in the present study, Zijlstra
et al. [59] recently showed that RANKL/OPG ratio was increased after
72 h of incubation of osteoblast cells with almost all Co and Cr con-
centrations tested (1–100 ppb) [59]. The observed elevation was also
dependent on the ion dosages of Co and Cr. The exact mechanism un-
derlying the down-regulated expression of RANKL and some other
genes tested in the present study after longer incubation periods with
metal ions is not clearly understood, however, one might suspect some
cellular stress due to continuous exposure to the Alamar Blue dye for
prolonged incubation periods [60]. Although the observed down reg-
ulation cannot be fully explained, it pointed out that metal ions altered
the function of stimulated osteoblastic cells at a transcriptional level
which could lead to changes in the normal fate of these cells and con-
sequently affecting their ability for bone formation.

Within the limitations of the present in vitro study, the results in-
dicated that cytokine and chemokine levels expressed by human os-
teoblastic cells were significantly altered in the presence of metal ions.
This change was directly proportional to the metal ion concentration.
Therefore, this study has demonstrated, for the first time, that the in-
creased levels of metal ions released from corrosion of platform-mat-
ched compared to platform-switched implant abutment couples [12]
resulted in an increase in the expression and secretion of cytokines and
chemokines related to bone resorption from human osteoblastic cells
mostly after 24 h of exposure to the metal ions. Changes in cytokine
levels have a crucial effect on immune and inflammatory responses
[33,61], and the outcome of bone loss may be attributable to the re-
lative imbalance of these cytokines. Therefore, these observed in vitro
results may be correlated to the in vivo positive radiographic findings
[10,11] in respect to crestal bone levels when utilising the “platform-
switching” concept, thereby, possibly providing a biologic plausibility
to the proposed theory of the role of corrosion products in the media-
tion of crestal bone loss around dental implants.

Further investigations are needed, especially trying to simulate
more closely the clinical situation where other modes of corrosion
might also take place including fretting corrosion in which metal par-
ticles are released. The results of this study might also provide further
insight into the possible role of corrosion products on the etiology of
bone loss around dental implants.
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