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ABSTRACT 

Complementary mineralogical and geochemical datasets on fluvial, beach and dune samples 1 

collected along the Atlantic margin of subequatorial southwestern Africa are used to investigate the 2 

relationships between provenance and climatic controls on sediment composition and to test the 3 

reliability of different geochemical and mineralogical weathering proxies as climatic indicators. The 4 

studied N/S-trending coastal region is characterized by strong latitudinal and inland climatic 5 

gradients, and thus represents an excellent natural laboratory in which to study the effects of 6 

climatic-induced weathering on sediment composition. Although the mineralogy and geochemistry 7 

of suspended-load muds closely reflects the different weathering intensities over both latitudinal 8 

and inland climatic gradients, the composition of mud and sand samples are strongly affected by 9 

sediment provenance. Consequently, weathering parameters such as the αAlE values (estimating the 10 

degree of depletion in element E relative to the UCC standard), display complex patterns of 11 

variation especially for sand samples. By assuming a typical order of bulk-sediment mobility Na > 12 

Ca > Sr > Mg > K > Ba ≈ Rb, anomalously high or low αAl values placing a specific element off the 13 

expected mobility order are considered as an indicator of source-rock control on sediment 14 

composition. The composition of detritus recycled from Meso-Cenozoic strata reflects the 15 

cumulative effect of successive sediment cycles, with recycling processes affecting to a different 16 

extent the diverse weathering proxies. In particular, αAlNa appears to be more strongly affected by 17 

recycling in muds than in sands. Among all mineralogical and chemical parameters, those that 18 

correlate best with rainfall in the drainage areas are αAlNa for sands, αAlMg for muds and smectite 19 

content (only in areas of low rainfall). In the geological and geomorphological setting of SW Africa 20 
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these proxies turn out to be better climate estimators than the classical weathering indices CIA or 21 

WIP. This case study reminds us to carefully consider source-rock control and mixing with recycled 22 

detritus when drawing inferences on climatic conditions based on weathering indices. 23 

 24 

Keywords: Weathering geochemistry; Clay mineralogy; Arid tropical climate; Humid equatorial 
climate; Angolan passive margin 
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1. Introduction   26 

Classically used weathering indices depend strongly on source area geology (e.g., Gaillardet et al., 27 

1999; Borges et al., 2008; Dinis and Oliveira, 2016). So much that in geological active settings they 28 

may reflect the lithology of source rocks as much as the geochemical ratios for non-mobile 29 

elements usually regarded as provenance indicators (Garzanti and Resentini, 2016). Sorting 30 

processes (Garzanti et al., 2010), the presence of non-silicate carbonate (Buggle et al., 2011) and 31 

diverse diagenetic transformations (Fedo et al., 1995; Morton and Hallsworth, 2007) pose 32 

supplementary difficulties in the interpretation of sediment composition in terms of weathering 33 

intensity, to the extent that one may even conclude that the actual weathering stage can only be 34 

assessed safely in a regolith sequence from a comparison with the regolith’s parent rock. 35 

The Atlantic passive margin of southern Africa, oriented perpendicular to latitude-controlled 36 

climatic zonation and stretching from the Tropic of Capricorn to the equatorial zone (Fig. 1), is an 37 

exceptionally well suited natural laboratory in which to investigate the influence of climate and 38 

chemical weathering on sediment composition using multiple proxies.  Sediments generated in this 39 

area should reflect not only the latitudinal climatic gradient but also the marked inland climatic 40 

gradient between the dry coastal zone and wet hinterland highlands, as well as the physiography of 41 

river catchments and depositional areas. The Angolan continental margin shows laterally extensive 42 

tectonic units, including Archean to Mesoproterozoic basement rocks ranging in composition from 43 

predominantly felsic to subordinately mafic, Neoproterozoic mobile belts with diverse metamorphic 44 

grades and Meso-Cenozoic sedimentary successions with local intercalation of basaltic lavas, 45 

providing suitable conditions to investigate the effects of parent-rock lithology and recycling on 46 

modern sedimentary products. 47 

The present research is focused on geochemical and mineralogical weathering proxies for river 48 

sands, river muds and beach and aeolian sands collected in sub-equatorial southwestern Africa 49 

across ca. 15 degrees of latitude from Namibia to the Congo. The information on climatic 50 

conditions deduced from weathering proxies based on sediment chemical composition and clay 51 
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mineralogy are discussed taking systematically into account the rainfall in the source areas and the 52 

different proportions of diverse parent rocks in each drainage basin as quantified accurately with 53 

GIS tools. The principal aim of this article is to discuss and outline the potential and limitations of 54 

the use of mineralogical and geochemical parameters as climatic proxies in a well suited modern 55 

natural laboratory.  56 

 57 

2. Geology and Geomorphology 58 

2.1. Geological framework 59 

Basement rocks of the southwestern Africa continental margin include part of the Congo and 60 

Kalahari cratons together with several Neoproterozoic to Cambrian orogenic belts associated with 61 

their collision and consequent amalgamation of West Gondwana (Basei et al., 2008; Heilborn et al., 62 

2008; Vaughan and Pankhurst, 2008). The Congo Craton is welded at its southern tip to the 63 

Kalahari Craton by the Kaoko Belt, representing the northern coastal branch of the Damara Belt 64 

(Fig. 1E). In subequatorial western Africa, the Congo Craton is represented by the Angola Block 65

(de Waele et al., 2008), the core of which mostly consists of felsic Eburnean (2 Ga) plutonic and 66 

high-grade metamorphic rocks (Carvalho, 1984; Carvalho et al., 2000; Pereira et al., 2011). Close to 67 

its northeastern limit, Neoarchean granites, gneisses and migmatites occur together with mafic 68 

complexes, being this set of rocks collectively called Liberian-Limpopo massifs (Carvalho, 1984; 69 

Carvalho et al., 2000). The widest mafic intrusions are found in the Cunene Intrusive Complex at 70 

the southeastern limit of the Angola Block. The Kaoko Belt comprises a high-grade metamorphic 71 

basement covered by metasedimentary units and intruded by Pan-African igneous rocks (Miller, 72 

2008). The West Congo Belt comprises even older metasediments, together with both mafic and 73 

felsic volcanic and volcano-sedimentary units covered by diverse siliciclastic and carbonate 74 

formations constituting the West Congolian Group (Tack et al., 2001). Both Kaoko and West 75 

Congo belts display progressively increasing metamorphic grade from only mildly deformed 76 

Neoproterozoic foreland units in the east to high grade rocks in the west. 77 

Along the West African margin, the Precambrian to Paleozoic basement is covered by mostly upper 78 

Cretaceous to Cenozoic stratigraphic successions deposited during and after the late early 79 

Cretaceous opening of the central South Atlantic Ocean (Moulin et al., 2005; Aslanian et al., 2009; 80 

Chaboureau et al., 2013). These units accumulated in distinct depocenters (i.e., Congo, Cuanza, 81 

Benguela and Namibe basins; Fig. 1E), which recorded the northward progression of rifting and 82 

sea-floor spreading (Moulin et al., 2010; Chaboureau et al., 2013). The Atlantic margin to the north 83 

of the Walvis Ridge is mainly volcanic-poor (Contrucci et al., 2004) and characterized by thick 84 
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post-break-up evaporite units and major lower Cretaceous to Neogene siliciclastic strata (Séranne 85 

and Anka, 2005). Syn-rift late early Cretaceous mafic volcanism in southwest Africa is best 86 

represented by the Etendeka lavas (Renne et al., 1996), which are extensive south of the Walvis 87 

Ridge but represented locally also at lower latitudes (Marzoli et al., 1999). Mainly Cenozoic fluvial 88 

and aeolian sediments are found in the hinterland as part of the Mega-Kalahari sequence (Haddon 89 

and McCarthy, 2005). 90 

 91 

2.2. Climatic gradients  92 

Two major and broadly perpendicular climatic gradients can be recognized in the southeast Atlantic 93 

region between 5ºS and 20ºS. One is latitude-controlled and reflects the transition from hyperarid 94 

Namibia to hyperhumid Congo. The other reflects the rapid progressive increase in humidity 95 

landward, such that average annual rainfall ranges from < 100 mm in the coastal fringe to  1500 96 

mm in the sub-equatorial hinterland. The latitudinal gradient is particularly evident in the 97 

continental interior, where the isohyets trend approximately E-W (Fig. 1B). Unlike rainfall, average 98 

annual temperatures do not vary significantly throughout the territory, spanning from 21-27ºC in the 99 

sub-equatorial region north of 10ºS to 20-24ºC at higher latitudes (Diniz, 2006). The only 100 

exceptions are the most elevated highlands and the desert coastal zone, where average temperatures 101 

may be as low as 15ºC. 102 

The aridity of the southern region results from the influence of quasi-stationary anticyclonic 103 

conditions that characterize most austral Africa coupled with the Benguela upwelling system, which 104 

is responsible for low sea-surface temperatures and low-humidity southerly winds (Lancaster, 105 

2002). Equatorial and sub-equatorial areas are under the influence of the Walker upward air 106 

circulation (Hastenrath, 2012) and the warm Angola Current, which is considered the eastern 107 

section of the Guinea (or Angola) gyre (Gordon and Bosley, 1991; Wacongne and Piton, 1992). The 108 

Benguela Current flows northward from off the Cape of Good Hope along the east Atlantic edge 109 

equatorward as far as 20ºS, where it starts to converge with the warm southward-flowing Angola 110 

Current forming the Angola-Benguela Front (Meeuwis and Lutjeharms, 1990; Shannon and Nelson, 111 

1996; Kostianoy and Lutjeharms, 1999). 112 

In accordance to this atmospheric and oceanic circulation pattern, aridity becomes less severe north 113 

of the Angola-Benguela Front. Climate thus shifts from hot desert in coastal Namibia and southern 114 

Angola, to hot semi-arid in the coastal Benguela region, and finally to tropical savanna towards the 115 

border with the Democratic Republic of Congo. Inland, climate becomes humid subtropical or 116 

temperate-highland tropical with dry winters at higher elevation (Peel et al., 2007). Responding to 117 
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seasonal changes in radiation and atmospheric and oceanic circulation patterns, regional climate is 118 

characterized by alternating wet and dry seasons varying with latitude and distance from the 119 

coastline. The rainy season tends to coincide with the period of highest mean temperatures and, 120 

depending on the region, starts between September and November and lasts from 4 to 8 months 121 

until March to May, being longer inland, in particular at lower latitudes (Diniz, 2006). The months 122 

of higher rainfall are usually January and February, or March in the lower latitude coastal areas. 123 

Along the extremely arid southern coastal fringe, rainfall is so rare that no wet season really exists. 124 

 125 

3. Methods 126 

To investigate the effects of chemical weathering on sediment composition, in June 2015 we 127 

sampled, along the banks or on the dry bed of all major rivers in Angola, 23 freshly deposited muds 128 

considered as proxy for suspended load, and 24 sands considered as proxy for bedload. We also 129 

collected 38 beach sands and 2 Moçâmedes dune sands. Together with additional 19 river sands, 15 130 

beach sands and 5 Moçâmedes dune sands, some presented in previous works (Garzanti et al., 131

2014a, 2014b) , our set of 137 sediment samples covers the entire subequatorial Atlantic margin of 132 

Southern Africa (Fig. 1D). Detailed information on sampling sites is provided in Appendix Table 133 

A1. 134 

 135 

3.1. Clay minerals 136 

For 22 mud samples, the mineralogy of the <2 mm fraction separated by centrifuging was 137 

determined by X-ray powder-diffraction (XRD) on oriented mounts, using a Philips® PW 3710 138 

equipment with CuK radiation. Mineral proportions were evaluated semi-quantitatively using 139 

diagnostic XRD peak areas (Moore and Reynolds, 1997; Kahle et al., 2002), weighted by empirical 140 

factors (Schultz, 1964). The complete dataset is provided in Appendix Table A3.  141 

 142 

3.2. Geochemistry 143 

Split aliquots obtained by wet sieving of the <32 m fraction for 17 mud samples and of the 63-2000 144 

m fraction for 41 river, beach and aeolian-dune sand samples were analysed at ACME Laboratories 145 

(Vancouver). Major oxides and some minor elements were determined by ICP-AES and trace 146 

elements by ICP-MS, following a lithium metaborate/tetraborate fusion and nitric acid digestion. For 147 

further information on adopted procedures, geostandards used and precision see http://acmelab.com 148 

(group 4A-4B and code LF202). 149 
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To estimate weathering we used several chemical indices, including the CIA (Chemical Index of 150 

Alteration of Nesbitt and Young, 1982), CIX (Chemical Index of Alteration that does not consider 151 

CaO; Garzanti et al., 2014a) and the WIP (Weathering Index of Parker, 1970), calculated using 152 

molecular proportions of mobile alkali and alkaline earth metals corrected for Ca in apatite. No 153 

correction for Ca in carbonates was applied because carbonate grains are present only very locally 154 

and in minor amounts in Angolan sediments. Weathering intensities can also be calculated for each 155 

element mobilized during incongruent weathering of silicates by comparing its concentration to that 156 

of a non-mobile element in our samples and in the Upper Continental Crust standard (UCC; Rudnick 157 

and Gao, 2003; Hu and Gao 2008).  The ratio of a single mobile element (Mg, Ca, Na, Sr, K, Ba) to 158 

a non-mobile element with similar magmatic compatibility (Al, Ti, Sm, Nd, Th), called α value, was 159 

proposed originally by Gaillardet et al. (1999) to minimize uncertainties related to the assumed 160 

composition of crustal source rocks and to the effect of quartz dilution and thus partly also of grain 161 

size and recycling. The non-mobile elements Th, Nd, Sm, and Ti, however, are preferentially hosted 162 

in dense and ultradense minerals (e.g., monazite, allanite, titanite, ilmenite, rutile) that can be 163 

strongly concentrated by hydrodynamic processes. Consequently, α values are prone to yield very 164 

misleading results for samples strongly enriched in heavy minerals by hydraulic processes (Garzanti 165 

et al., 2009). Hydraulic-sorting bias can be reduced effectively by referring to a common non-mobile 166 

element such as Al, which is not hosted mainly in ultradense minerals. The αAl values for any 167 

element E, defined as αΑl
E = Al/Esample / Al/EUCC, proved to be much more consistent and reliable 168 

indicators of weathering (Garzanti et al., 2013a,b), and are thus recommended in any weathering 169 

studyFormulas for calculating weathering indices are given in Table 1. The complete geochemical 170 

dataset is provided in Appendix Table A2. 171 

 172 

4. Results 173 

4.1. Clay Mineralogy 174 

Clay-mineral assemblages in river muds from SW Africa contain variable proportions of kaolinite, 175 

which is usually the most common mineral, expansive clays (mainly smectite) and mica-illite (Fig. 176 

2). Rivers of southernmost Angola (Curoca and Bero, 15-16ºS) carry subequal amounts of kaolinite 177 

and expansive clays, with minor mica-illite. Kaolinite becomes prevalent northwards, where 178 

expansive clays tend to decrease. Mica-illite is particularly abundant in muds collected between 179 

14ºS and 12.3ºS. River muds sampled between 13ºS and 10.5ºS yield major amounts of kaolinite, 180 

subordinate mica-illite and no or limited amounts of expansive clays. Expansive clays become 181 

common again in muds collected between 10ºS and 8.6ºS. Finally, kaolinite dominates over mica-182 
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illite with minor or absent expansive clays in river muds of northern Angola (Dande to Congo) 183 

sampled north of 8.6°S.  184 

 185 

4.2. Geochemistry of river muds 186 

When compared to the UCC, river muds tend to be depleted in most alkali and alkaline-earth 187 

metals, and most strongly in Na (Fig. 3). Southern latitude samples (> 15ºS) are more depleted in 188 

Na in the hinterland than in coastal settings. Mid-latitude muds (10-15ºS) usually show lower Na 189 

depletion than the remaining samples. The other elements may show moderate enrichment or 190 

depletion relative to the UCC. Enrichment in rare earth and high field strength elements is marked 191 

in samples collected at intermediate latitudes  but not in those collected at higher latitude (> 15º S), 192 

which may even be depleted regardless to distance from the Atlantic coast. Non-mobile elements 193 

tend to be enriched more than mobile elements.  194 

 195 

4.3. Geochemistry of river, beach and aeolian sands  196 

Relative to the UCC standard, river sands are enriched in SiO2 and generally depleted in other 197 

oxides (Fig. 3). Depletion is particularly marked for MgO, CaO and Na2O, and tends to be higher at 198 

lower latitudes (< 10ºS). River sands at higher latitudes may be moderately enriched in K2O and 199 

TiO2. Ba, Zr, Hf and Cr may be also enriched locally relative to the UCC standard, whereas Rb, Sr, 200 

Eu, U, Nb, Ta, Co, Ni and Ga are generally notably depleted. River sands from low (< 10ºS), 201 

intermediate (10-15ºS) and high latitudes (> 15ºS) do not show major differences in the 202 

concentration of trace elements. 203 

Beach deposits from low latitudes (< 10ºS) are generally strongly to moderately depleted in Al2O3, 204 

Fe2O3, TiO2 and MnO, whereas those from higher latitudes display lower levels of depletion or 205 

show moderate enrichment in these oxides. Non-mobile elements (e.g., heavy REE, Sc, Y, Zr, and 206 

Cr) tend to show lower levels of depletion or moderate enrichment relative to the UCC, and their 207 

concentrations tend to be higher at lower latitudes.  208 

 209 

5. Weathering control on sediment composition 210 

5.1. Chemical evidence of weathering 211 

The mobility of alkali and alkaline-earth metals, classically used to evaluate the intensity of 212 

chemical weathering in source areas, is negligible in sediments of coastal Namibia (Garzanti et al., 213 

2014a) and very low even in river sands of southern and central Angola, where the CIA is 52±3 and 214 

most αAl values are close to 1. In contrast, notable element mobility is indicated in sands of northern 215 
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Angola (Mebridege, Luculu and Congo Rivers draining the M'banza Congo province), where the 216 

CIA increases to 72±12, αAlNa to 5±4 and other αAl values are 2-3. Okavango, Cuando and Zambezi 217 

sands generated in southeastern Angola yield comparable values of CIA (74±5) and αAlNa (4±1), 218 

and the other αAl values are ≤ 3 (Garzanti et al., 2014a). Geochemical information provided in 219 

Dupré et al. (1996) allowed us to calculate CIA values of 64±10 and αAl Na of 8±7 for bedload 220 

sands carried by the Congo River draining the wet equatorial region. North of the Congo River, 221 

close to the Equator, the CIA reaches 87±7 and αAlNa 8±6 in river sands; other αAl values are still 222 

2.  223 

Virtually negligible depletion in alkali and alkaline-earth elements was also found for river muds of 224 

Namibia, where the CIA is 52±6 and αAl values are close to 1 (Garzanti et al., 2014a). Instead, 225 

significant element mobility is indicated in muds carried by northern Angolan rivers draining into 226 

the Atlantic Ocean (CIA is 85±4; αAlNa is 12.6-37.1). Similar values were obtained for Okavango, 227 

Cuando and Zambezi muds (CIA is 81±2; αAlNa is 19.5±0.3) generated in southeastern Angola 228 

(Garzanti et al., 2014a). The classic grain-size control on composition (e.g., von Eynatten et al., 229 

2012, 2016) is clearly displayed by the consistently greater degree of element mobility shown by 230 

river muds relative to river sands at any latitude.  231 

In summary, chemical data on river sediments document notably increasing weathering effects at 232 

lower latitudes (Fig. 3). Additionally, stronger weathering characterize sediments carried by major 233 

rivers draining vast areas of the wet hinterland contrasting with sediments generated in larger 234 

proportions closer to the coastal zone. Beach and dune samples also reflect the effects of latitudinal 235 

and inland gradients (Fig. 3). 236 

 237 

5.2. Clay-mineral evidence of weathering  238 

The behaviour of chemical indices of weathering is paralleled by trends of variation in clay-mineral 239 

assemblages (Fig. 2). Kaolinite is more abundant in lower latitude river sediments, reflecting more 240 

advanced weathering intensity in the subequatorial belt. Apart from the influence of source area 241 

geology, which is discussed below, the increasing abundance of expansive clays south of the 242 

Catumbela mouth (13.5º S) reflects a notable decrease in weathering intensity. Illite formed during 243 

early stages of feldspar weathering tends to have Al in the octahedral positions, which is frequently 244 

identified in XRD analyses by a relatively high ratio between the intensities of 5 Ȧ and 10 Ȧ 245 

reflections (I5/I10; Esquevin, 1969), as found in river muds collected at both northern (< 10ºS) and 246 

southern (>14ºS) latitudes (Fig. 2). 247 
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 248 

5.3. Comparison of multiple datasets 249 

The part of the dataset that we used for statistical analysis comprises over 2,500 numerical values 250 

spanning 74 samples and two sediment types (sand and mud), characterized by 36 different 251 

compositional parameters including 9 major elements, 24 trace elements, and 3 clay minerals. Our 252 

aim is to use these data (1) to quantify the compositional similarities and differences between the 253 

samples and assess whether there is a geographic or climatic control on the sand and mud 254 

composition; (2) to compare the composition of sand and mud samples. These two aims are 255 

achieved by two statistical techniques: principal component analysis and 3-way multidimensional 256 

scaling. 257 

 258 

5.3.1 Principal Component Analysis (PCA)  259 

Figure 4 shows the results of a PCA of all the sand samples in the Angolan database, including 20 260 

river samples and 29 beach and dune samples. The river samples are further divided into a northern 261 

(blue), central (green) and southern (red) group, whereas the beach and dune samples are shown in 262 

grey. These 49 samples were compared using 26 compositional parameters: Si, Al, Fe, Mg, Ca, Na, 263 

K, Ti, P, Rb, Sr, Ba, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Th, U, Zr, Hf, Nb 264 

and Ga. Major element concentrations were converted from weight percentages of oxides to ppm 265 

units of the elemental form. The resulting values were subjected to a centred log-ratio 266 

transformation in order to free the compositional data from the unit sum constraint (Aitchison, 267 

1986).  268 

The results show a geographical dependence of the sand compositions, with the northern and 269 

southernmost river samples being separated into two distinctive compositional groups. It is 270 

important to note that the northern samples also plot close to the beach samples of similar latitude, 271 

indicating that those beach sands are locally derived. This local provenance contrasts starkly with 272 

the southern beach and dune samples, which bear little or no compositional resemblance to the 273 

southern rivers. The vector loadings of the first principal component are dominated by incompatible 274 

elements such as K and Rb, whereas the second principal component attaches stronger weight to 275 

compatible elements such as Mg and Ca.  276 

Because PCA requires that the number of input variables does not exceed the number of samples it 277 

was necessary to select a subset of the 26 elements for further analysis. We chose those elements 278 

exhibiting a large spread (high coefficient of variation) but no strong correlation with other. Based 279 
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on these criteria, the following variables were selected: Si, Al, Fe, Ca, Na, K, Ti, P, Rb, La, Ce, Eu, 280 

Th, U, Zr and Nb. The PCA map of the mud samples shows an even clearer latitudinal dependence 281 

of the chemical compositions than the sand (Fig. 4). The vector loadings of the principal 282 

components are dominated by Si, Al, Zr, Fe and Na, elements that are either enriched or depleted 283 

during chemical weathering. This naturally leads to the interpretation that the latitudinal 284 

dependence of the mud compositions is due to the differential weathering intensities over the strong 285 

climatological gradient (Fig. 1B), although a second order lithological effect cannot be ruled out 286 

either. 287 

 288 

5.3.2. 3-way multidimensional scaling (MDS) analysis of the river samples 289 

It would be useful to combine and compare the two sample sets  to find structure in three ‘levels’ 290 

worth of information, comparing multiple samples (1st level) using their composition (2nd level) in 291 

multiple sediment types (3rd level). ‘3-way multidimensional scaling’ is designed to deal precisely 292 

with this class of problem (Vermeesch and Garzanti, 2015). First, we construct a 3-dimensional data 293 

structure populated by the log-ratio distances between the 17 sampling sites that provided 5 294 

different proxies: the major (1st proxy) and trace (2nd proxy) element compositions of the sand 295 

fraction, the major (3rd proxy) and trace (4th proxy) element compositions of the mud fraction, and 296 

the clay mineralogy (5th proxy). The resulting 5x17x17 tensor is then fed into a 3-way MDS 297 

algorithm, which returns two pieces of graphical information (Fig. 5). The first piece is the ‘group 298 

configuration’. This is a map in which similar samples plot close together and dissimilar samples 299 

plot far apart.  The second piece of graphical output produced by 3-way MDS does not show the 300 

samples but the proxies. This scatter plot shows the ‘weights’ attached by each of these proxies to 301 

the horizontal and vertical dimension of the group configuration. 302 

For the Angolan dataset, the sand compositions attach a heavy weight (1.2) to the horizontal 303 

dimension and a lighter weight (0.8) to the vertical dimension. In contrast with the sand, the clay 304 

composition attaches more weight to the vertical dimension (1.6) than the horizontal dimension 305 

(0.4). The source weights attached to the mud compositions lie in between those of the sand and 306 

clay. This indicates that the mud composition is governed by both weathering intensity and 307 

lithology, with an emphasis on the former. In summary, the 3-way MDS configuration reveals a 308 

strong latitudinal dependence of sediment composition due to a combination of weathering and 309 

lithology. 310 

 311 

6. The influence of source-rock lithology 312 
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Values of αAlMg notably higher than αAlNa, αAlSr and αAlCa for river sands collected between 15ºS 313 

and 10ºS, and the opposite behavior of αAlK (Fig. 3), along with αAlBa and αAlRb, clearly indicate 314 

that sediment composition is largely determined by the lithology of source rocks. Rivers flowing in 315 

this latitudinal sector, contrary to regions in the north and south, drain mainly felsic igneous rocks 316 

and associated metamorphic units, explaining the scarcity of Mg in their sands. Instead, mafic rocks 317 

are widely exposed in the catchment of southern Angola rivers, namely the Cunene Intrusive 318 

Complex (occupying 4.4 %, 15.8 % and 12.8 % of the drainage areas of Cunene, Curoca and 319 

Giraul, respectively), and are also common in the Limpopo-Liberian at the northern edge of the 320 

Angola Block (Carvalho, 1984; Carvalho et al., 2000), being potential sources of material for part 321 

of the studied sediments.  322 

River sands between the Catumbela and Cuanza courses, yield higher αAlMg and αAlCa values when 323 

sourced almost exclusively by Precambrian felsic units (Balombo and Keve rivers), and lower 324 

values where significant proportions of the drainage areas extend through the Cuanza and Benguela 325 

sedimentary basins (Longa and Quicombo rivers), thus suggesting the presence of common Mg and 326 

Ca sources in the coastal region. Voluminous mafic units are found in the Cuanza Volcanic 327 

Seamount (Marzoli et al., 1999), which intercepts the continent some 100 km to the north of the 328 

Catumbela River outlet, and in smaller scattered outcrops farther to the north (Carvalho, 1980; 329 

Araújo and Perevalov, 1998). The incorporation of sediment sourced from these rocks and 330 

carbonate units exposed in sub-equatorial regions with higher rainfall contributes to explain 331 

occasional decreases in αAlMg and αAlCa (Fig. 3). In fact, sediments collected in rivers that drain 332 

wider areas of the Meso-Cenozoic basins tend to yield lower αAlMg and αAlCa values, and this 333 

relation is particularly clear at higher latitudes where weathering is less intense and sediment 334 

composition affected more by source rock lithology (Fig. 6).  335 

Clay mineral assemblages also reflect in part the lithology of source rocks. Smectite formation close 336 

to the coast was favored by the presence of basalts. Expansive clays were in fact generated by soil-337 

forming processes in floodplain deposits of the coastal Benguela region (Dinis et al., 2016) and 338 

smectite formation in Meso-Cenozoic basins is also reflected in the greater abundance of expansive 339 

clays in rivers draining wider areas within these sedimentary basins (Fig. 6). Mica-illite tends to be 340 

more abundant between 12º and 14ºS, where the I5/I10 ratio is lower, indicating more Fe-Mg and 341 

less Al in the octahedral position (Esquevin, 1969). Illite with low I5/I10 is also observed in the 342 

South Atlantic Ocean, where it is ascribed to the disintegration of biotite (Petschick et al., 1996). Its 343 

presence in West Angola sediments thus points to provenance from the biotite-rich granitoids and 344 

metamorphic rocks well represented south of the Cuanza course (Carvalho, 1980, 1984; Araújo and 345 

Perevalov, 1998; Carvalho et al., 2000; Pereira et al., 2011). 346 
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 347 

7. Recycling effect on weathering proxies 348 

The weathering indices characterizing a sedimentary unit may not refer to the last depositional cycle 349 

only, but they may be inherited through reworking of older sedimentary units. Sediments generated 350 

in large catchments generally include grains that passed through several exogenous cycles and their 351 

composition thus reflects such cumulative effect (Gaillardet et al., 1999). This is the case of the 352 

Congo the Cuanza and the Cunene rivers that drain the sedimentary units of the hinterland. Because 353 

of the strong northward longshore sediment transport, the same holds true for littoral dune and 354 

beach sands fed by these rivers. The incorporation of recycled grains and consequent effect on sand 355 

composition is particularly extensive for southern coastal deposits of the Moçamedes desert that 356 

include major amounts of sand supplied by the Orange River (Garzanti et al., 2014c, 2017).  357 

Recycling effects can be assessed by comparing chemical indices that are strongly controlled by 358 

quartz dilution, such as the WIP, versus the CIA or CIX, which are not affected (Garzanti et al., 359 

2013a). To avoid local anomalies caused potentially by the occurrence of carbonate grains, the CIX 360 

rather than the CIA will be used for this purpose (Fig. 7). Beach samples from different regions 361 

largely overlap in the CIX vs. WIP diagram. Varying proportions of recycled quartz is reflected by 362 

the higher scatter of WIP values in mid latitudes, with higher values (i.e. minor recycling) where 363 

Precambrian basement outcrops reach close to the coast. River sands of the upper Cunene as far 364 

downstream as Ruacana, and of the Cuanza and Bengo rivers also yield low WIP values, reflecting 365 

significant quartz dilution and sediment reworkingThe composition of river muds is less affected by 366 

quartz dilution, being plotted along a line parallel to UCC weathering trend. 367 

Th/Sc vs. Zr/Sc plots classically used to infer the nature of source rocks and recycling control on 368 

sediment composition (McLennan et al., 1993), with a third dimension added to represent 369 

geochemical weathering proxies (bubble size), provide further clues on the effect of sediment 370 

reworking on elements concentrations (Fig.8). River sands with a larger recycled component (i.e., 371 

spreading towards higher Th/Sc values) tend to show lower αAlMg and αAlCa, confirming a 372 

sediment contribution from the Cretaceous volcanic rocks of the Atlantic margin (Fig. 6), and 373 

higher CIX. The effects of reworking for mud samples are revealed by an increase in αAlNa. Lower 374 

Na depletion is in fact observed in muds from mid-latitude rivers (10-15ºS; Figs 4) draining almost 375 

exclusively basement rocks of the Angola Block. 376 

Because of the cumulative effect of successive sediment cycles, reworked sediments tend to yield 377 

compositional features indicative of stronger weathering intensity than first cycle deposits. 378 

Recycling affects differently different weathering proxies, and the same parameter may be 379 
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influenced to a different extent in sand and mud samples. The incorporation of sediments reworked 380 

from the Atlantic margin, in particular at higher latitude regions of lower humidity, has opposite 381 

effects on weathering proxies (e.g., increase in CIX and αAlNa, but decrease in kaolinite/smectite 382 

ratio, αAlMg and αAlCa).  383 

 384 

8. What weathering indices tell us about climate?  385 

Weathering indices in both river sands and muds carried to the western coast of southern Africa 386 

document that the mobility of chemical elements is markedly influenced by the strong latitude-387 

controlled climatic gradient, from hyperarid conditions in Namibia to hyperhumid conditions in 388 

Congo. This gradient is coupled with the E-W trend of increasing aridity from the wet mountainous 389 

hinterland to the coast (Fig. 1C). However, the relationship between weathering proxies and climate 390 

is not necessarily simple and straightforward. The climate data from Hijmans et al. (2005) were 391 

used here to compute rainfall in each river catchments and test the applicability of several 392 

geochemical and mineralogical weathering parameters as climate proxies (Fig. 9). 393 

The rather poor correlation between mean annual rainfall and weathering proxies shows that most 394 

parameters do not reflect faithfully local climatic conditions. Largely because of recycling effects 395 

and inheritance from past geological histories, the CIA, CIX and WIP indices in both river muds 396 

and sands are only partially useful to infer rainfall in the catchment area. Best correlated with 397 

rainfall are the αAlMg values in river muds. The Mg content in mafic-derived sediments is usually 398 

substantially higher than in felsic-derived sediments, but the divergence between these sediments 399 

tends to be attenuated in finer grain-sizes (von Eynatten et al., 2012, 2016), justifying the 400 

correlation with rainfall. However, as the αAlMg in muds is still influenced by parent-rock 401 

composition (Fig.8), the high values in Keve and Balombo muds, which would overestimate rainfall 402 

in the catchment area, reflects the abundance of felsic igneous rocks of the Angola Block and lack 403 

of Meso-Cenozoic basins in the catchment. Poorer positive correlations with rainfall are observed 404 

for αAlCa in muds and for αAlNa and αAlSr in sands. The correlations become slightly better if we 405 

exclude the samples collected in small rivers with lowest rainfall, where leaching of even the most 406 

mobile elements is limited. The absence of correlation of αAlNa for mud sediments with rainfall 407 

may be attributed to recycling effects, as Na content is most strongly influenced by its cumulative 408 

depletion during successive sedimentary cycles (Fig.8).  409 

Regarding clay-mineral assemblages, the amounts of expansive clays correlates negatively with 410 

rainfall, although the correlation is limited by the frequency of samples without these minerals 411 

(Fig.9). The relation is clearer for river sediments in arid regions at higher latitudes. Somewhat 412 
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poorer correlations with rainfall are obtained for kaolinite abundance and expansive clays/kaolinite 413 

ratio. Kaolinite formation is conditioned also by relief, being promoted in flat areas where 414 

weathering can evolve for long periods of time, and in sediments of southern Africa kaolinite may 415 

be inherited from old weathering profiles (Garzanti et al., 2014a), limiting the use of parameters that 416 

consider kaolinite content as climate proxies. The strong dependence of mica-illite proportions on 417 

source-rock lithology explains the lack of correlation with rainfall. 418 

The same patterns of correlations determined for coastal Angola may not be observed in other 419 

geological and/or geomorphological settings. In fact, the abundance of expansive clays and αAlMg 420 

in muds only work as reasonable climatic proxies because in the Angolan coastal region dry 421 

climatic conditions concur with the presence of basaltic rocks. Weathering proxies can be 422 

influenced by numerous environmental factors not considered in full in the present study, including 423 

relief, water table, vegetation, soil types and diverse biological effects.  Regardless of rainfall, it is 424 

expected that weathering progresses rapidly in the flat areas of the hinterland when the water table 425 

is close to the surface. On the other hand, expansive clays, typical of tropical vertisols regardless of 426 

the nature of parent rocks, can extend over humid equatorial regions wherever leaching is hampered 427 

by low topography and poor drainage conditions, and may form in swampy floodplains where 428 

climate is somewhat dryer. Finally, sediment may be sourced from distant regions, thus providing 429 

information contrasting with local climate.  430 

 431 

9. Conclusions 432 

 433 

River, beach and dune samples from the Atlantic margin of subequatorial southwestern Africa 434 

display different degrees of chemical weathering, reflecting both latitudinal and inland climatic 435 

gradients. Moreover, sediment composition is markedly affected by the lithology of parent rocks 436 

and by local mixing with recycled detritus, so that different weathering indices (e.g., CIA, CIX, 437 

WIP and αAlE values) do not invariably behave in accord. Extreme values of weathering indices 438 

characterize sediments carried by equatorial rivers in northernmost Angola and the Congo, whereas 439 

minimum values characterize sediments collected at higher latitudes in southern Angola and 440 

Namibia, in particular when generated in small catchments. The latitudinal weathering trend is 441 

clearer for river muds, because river sands are more markedly influenced by source-rock lithology. 442 

Kaolinite is largely derived from the wet Angola hinterland, whereas expansive clays are mainly 443 

sourced in dryer areas along the coast.  444 

Extracting climatic information from the different weathering indices is not straightforward. 445 

Estimators of the degree of depletion of some mobile elements (e.g., αAlNa for sand and αAlMg for 446 
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mud) and clay mineral assemblages provide more consistent clues than conventional indices such as 447 

the CIA and the WIP, but all of these proxies are affected by provenance and recycling as well. 448 

Provenance control is easily identified by the comparison between mineralogical and geochemical 449 

data, or among the apparent degree of depletion in different mobile elements. Assuming a typical 450 

order of bulk-sediment mobility Na > Ca > Sr > Mg > K > Ba ≈ Rb, anomalously high or low αAl 451 

values placing a specific element off the expected mobility order and contrasting behavior in αAl 452 

values point to dominantly felsic or mafic lithologies in the source areas. Isolating the effect of the 453 

last depositional cycle in recycled sediments is more complex. Recycling has locally a marked 454 

effect on weathering parameters, and may affect differently the same parameter in sand and mud 455 

samples. The Angolan case highlights the multiple control of latitudinal climatic zonation, 456 

longitudinal rainfall gradient and parent-rock lithology, which in a modern setting can be 457 

successfully detangled by the careful inspection of integrated mineralogical and geochemical 458 

datasets. 459 

 460 
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Fig. 1: Geology and geomorphology of tropical SW Africa. (A) Location of the study area in the 640 

SW Africa. (B) Rainfall (from Hijmans et al., 2005) and (C) soils types (from Food and Agriculture 641 

Organization, www.britannica.com/bps/media-view/19257/0/0/0) on tropical W Africa. (D) 642 

Topography and the catchments of the sampled rivers (E) schematic geological map (mainly from 643 

Araújo and Perevalov, 1998) of the studied region. Tectonic domains and stratigraphic assignments 644 

based on Carvalho et al. (2000), Heilborn et al. (2008) and Ernst et al. (2013). CB: Congo Basin; 645 

KB: Cuanza Basin; BB: Benguela Basin; KSM: Cuanza Seamount. Location of the studied samples 646 

is also shown; small white circles indicate complementary samples not considered for this research. 647 

 648 

 649 

Fig. 2: Spatial (latitudinal) variation of clay minerals abundances in river muds. Only sediments 650 

from the Atlantic margin are considered. 651 

 652 

 653 

Fig. 3: Spatial (latitudinal) variation of selected geochemical weathering indices in fluvial and 654 

coastal sediments. Only fluvial samples collected in the Atlantic margin are represented. 655 

 656 

 657 

Fig. 4: Principal Component Analysis (PCA) of the sediment compositions along the Angolan 658 

coast. Up: River, beach and aeolian sand samples. Down: mud samples. Left: the PCA scores 659 

(eigenvalues) of the samples, labeled with the sample latitudes for brevity. River samples are 660 

coloured blue (north), red (south) or green (intermediate latitudes). Beach and dune samples are 661 

coloured grey. Right: the loadings (eigenvectors) of the principal components. Long arrows mark 662 

elements which are most effective in explaining the spread of the data. Arrows pointing in the same 663 

direction mark covariant elements, while variables attached to arrows intersecting at right angles are 664 

mutually independent (Aitchison and Greenacre, 2002). 665 

 666 

 667 

Fig. 5: 3-way Multidimensional Scaling (MDS) analysis of the combined sand and mud 668 

compositions generated using Vermeesch et al. (2016)’s provenance package (version 1.5). Left: the 669 

‘group configuration’ represents a consensus view of the five different levels of comparison 670 

between the samples. Colours are identical to Figure 4, but labels mark the names of the rivers 671 

rather than their latitudes. Right: the ‘source weights’ of the five different levels of comparison, 672 

revealing that the horizontal and vertical dimensions of the group configuration are dominated by 673 
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the sand and clay compositions, respectively. This leads to the geological interpretation that vertical 674 

distances in the group configuration correspond to differences in weathering intensity, while 675 

horizontal distances are caused by differences in provenance. 676 

 677 

 678 

Fig. 6: Relation between the aerial proportion of the Meso-Cenozoic Atlantic basins in the 679 

catchment areas of the studied river samples and expansive clays abundance, αAlMg in river muds 680 

and αAlCa in river sands. 681 

 682 

 683 

Fig. 7: Binary scatters of CIX vs. WIP weathering indices. Cn: Kunene; Ln: Longa; Bg: Bengo; Cz: 684 

Cuanza; encircled samples were collected in coastal stretches with basement outcrops.  685 

 686 

 687 

Fig. 8: Plots of Th/Sc vs. Zr/Sc with weathering parameters represented as bubbles (bubble diameter 688 

proportional to the value of the weathering proxy). Values of CIX, αAlNa and αAlMg were 689 

previously normalized by scaling between 0.01 and 1.  690 

 691 

 692 

Fig. 9: Correlation coefficients of weathering parameters for fluvial sediments and the average 693 

annual rainfall in the corresponding catchment areas. Plots for the best correlations are shown 694 

below. Best correlations were determined for αAlNa in sands, αAlMg in muds and smectite content. 695 

Correlation smectite-rainfall is only valid for catchments with low rainfall (i.e., relatively small 696 

catchments and preferentially at higher latitudes). Relations with rainfall improve by excluding 697 

small and anomalously felsic catchments, for αAlMg, and low rainfall catchments, for αAlNa. GIS 698 

tools applied to the Hijmans et al. (2005) climate data (30 sec. spatial resolution) were used to 699 

calculate annual rainfall in each catchment area. Hinterland samples, which frequently comprise an 700 

extensive sedimentary cover in the catchment areas, are not represented. 701 

 702 
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Table 1: Weathering indices considered in this work 

Index  Formula  Reference 

CIA  Al2O3/(Al2O3+K2O+CaO+Na2O)*100  Nesbitt and Young (1982) 

CIX  Al2O3/(Al2O3+K2O+Na2O)*100  Garzanti et al. (2014a) 

WIP  (CaO*/0.7+2Na2O/0.35+2K2O/0.25+MgO/0.9)*100  Parker (1970) 

αAl
E  (Al/E)sample/(Al/E)UCC, being E a mobile element 

(Na, Ca, Sr, Mg, K, Ba or Rb) 
Garzanti et al. (2013a) 
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