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Abstract 

Optimal decision-making mandates organisms learn the relevant features of choice 

options. Likewise, knowing how much effort we should expend can assume paramount 

importance. A mesolimbic network supports reward learning but it is unclear whether other 

choice features, such as effort learning, rely on this same network. Using computational fMRI, 

we show parallel encoding of effort and reward prediction errors (PEs) within distinct brain 

regions, with effort PEs expressed in dorsomedial prefrontal cortex and reward PEs in ventral 

striatum respectively. We show a common mesencephalic origin for these signals evident in 

overlapping, but spatially dissociable, dopaminergic midbrain regions expressing both types of 

PE. During action anticipation reward and effort expectations were integrated in ventral 

striatum consistent with a computation of an overall net-benefit of a stimulus.  Thus, we show 

that motivationally relevant stimulus features are learned in parallel dopaminergic pathways, 

with formation of an integrated utility signal at choice.  
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Significance Statement 

Learning about multiple features of a choice option is crucial for optimal decision 

making. How such multi-attribute learning is realized remains unclear. Using functional MRI, 

we show the brain exploits separate mesolimbic and mesocortical networks to simultaneously 

learn about reward and effort attributes. We show a double-dissociation, evident in the 

expression of effort learning signals in dorsomedial prefrontal and reward learning in ventral 
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striatal areas with this dissociation being spatially mirrored in dopaminergic midbrain. At the 

time of choice these segregated signals are integrated in the ventral striatum. These findings 

highlight how the brain parses parallel learning demands. 
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Introduction 

Organisms need to make energy-efficient decisions in order to maximize benefits and 

minimize costs, a trade-off exemplified in effort expenditure (1–3). A key example is during 

foraging, where an overestimation of effort can lead to inaction and starvation (4), whereas  

underestimation of effort can result in persistent failure as exemplified in the myth of Sisyphus 

(5).  

In a naturalistic environment, we often simultaneously learn about success in expending 

sufficient effort into an action as well as the reward we obtain from this same action. The 

reward outcomes that signal success and failure of an action are usually clear, though the effort 

necessary to attain success is often less transparent. Only by repeatedly experiencing success 

and failure it is possible to acquire an estimate of an optimal level of effort needed to succeed, 

without unnecessary waste of energy. This type of learning is important in contexts as diverse 

as foraging, hunting and harvesting (6–8). Hull in his ‘law of less work’ proposed that 

organisms ‘gradually learn’ how to minimize effort expenditure (9). Surprisingly, we know 

little regarding the neurocognitive mechanisms that guide this form of simultaneous learning 

about reward and effort. 

A mesolimbic dopamine system encodes a teaching signal tethered to prediction of 

reward outcomes (10, 11). These reward prediction errors (PEs) arise from dopaminergic 

neurons in substantia nigra and ventral tegmental area (SN/VTA) and are broadcast to ventral 

striatum (VS) to mediate reward-related adaptation and learning (12, 13). Dopamine is also 

thought to provide a motivational signal (14–18), while dopaminergic deficits in rodents impair 

how effort and reward are arbitrated (1, 4, 19). The dorsomedial prefrontal cortex (dmPFC, 

spanning pre-supplementary motor area [pre-SMA] and dorsal anterior cingulate cortex 

[dACC]) is a candidate substrate for effort learning. For example, selective lesioning of this 

region engender a preference for low effort choices (15, 20–23), while receiving effort 
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feedback elicit responses in this same region (24, 25). The importance of dopamine to effort 

learning is also hinted at in disorders with putative aberrant dopamine function, such as 

schizophrenia (26), where a symptom profile (‘negative symptoms’) often includes a lack of 

effort expenditure and apathy (27–30).   

A dopaminergic involvement in effort arbitration (14, 15, 17, 19, 30) suggests that effort 

learning might proceed by exploiting the similar mesolimbic mechanisms as in reward learning, 

and this would predict effort PE signals in SN/VTA and VS. Alternatively, based on a possible 

role for dorsomedial prefrontal cortex, effort and reward learning signals might be encoded in 

two segregated (dopaminergic) systems, with reward learning relying on PEs within 

mesolimbic SN/VTA and VS and effort learning relying on PEs in mesocortical SN/VTA 

projecting to  dmPFC.  A final possibility is that during simultaneous learning, the brain might 

express a unified net benefit signal, integrated over reward and effort, and update this signal 

via a ‘utility’ PE alone.  

To test these predictions we developed a paradigm wherein subjects learnt simultaneous 

reward and effort contingencies in an ecologically realistic manner, whilst also acquiring 

human functional magnetic resonance imaging (fMRI). We reveal a double-dissociation within 

mesolimbic and mesocortical networks in relation to reward and effort learning. These 

segregated teaching signals, with an origin in spatially dissociable regions of dopaminergic 

midbrain, were integrated in VS during action preparation consistent with a unitary net benefit 

signal.   
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Results 

Effort and reward learning  

Our behavioral task required 29 male subjects to learn simultaneously about, and adapt 

to, changing effort demands as well as changing reward magnitudes (Fig. 1A and Supplemental 

Information). On every trial, subjects saw one of two stimuli, where each stimulus was 

associated with a specific reward magnitude (1 to 7 points, 50% reward probability across 

entire task) and a required effort threshold (% of individual maximal force, determined during 

practice). These parameters were initially unknown to the subject and drifted over time, such 

that reward and effort magnitudes changed independently. After an effort execution phase the 

associated reward magnitude of the stimulus was shown together with categorical feedback as 

to whether the subject had exceeded a necessary effort threshold, where the latter was required 

to successfully reap the reward. Importantly, subjects were not informed explicitly about the 

height of the effort threshold, but only received feedback as to the success (or not) of their 

effort expenditure. On every trial, subjects received information about both effort and reward, 

and thus learned simultaneously about both reward magnitude and a required effort threshold, 

through a process of trial-and-error (Fig. 1B). 

To assess learning we performed a multiple regression analysis (Fig. 1C) that predicted 

exerted effort on every trial. A significant effect of previous effort (t(28)=15.96, p<.001) 

indicated subjects were not exerting effort randomly but approximated the effort expended with 

previous experience of the same stimulus, as expected from a learning process. Subjects 

increased their effort for higher rewards (t(28)=4.97, p<.001), consistent with a motivation to 

expend greater energy on high value choices. Lastly, subjects exerted more effort following 

trials where they failed to exceed an effort threshold (t(28)=10.75, p<.001), consistent with 

adaptation of effort to a required threshold. Subsequent analysis showed that subjects not only 

increased effort expenditure after missing an effort threshold (Fig. 1D, t(28)=17.08, p<.001), 
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but also lessened their effort after successfully surpassing an effort threshold (t(28)=-17.15, 

p<.001), in accordance with the predictions of Hull’s law (9). Thus, these analyses combined 

reveal subjects were able to simultaneously learn about both rewards and effort requirements. 

 

 
 
Figure 1. Effort learning task and behavior. (A) Each stimulus is associated with a changing reward 

magnitude and effort threshold. After seeing a stimulus, subjects exert effort using a custom-made, MR-

compatible, pneumatic hand-gripper. Following a ramp-up phase (blue frame), subjects continuously 

exert a constant force to exceed an effort threshold (red frame phase). The duration of force exertion 

was kept constant across all trials to obviate temporal discounting that could confound effort execution 

(14). If successful, subjects received points that were revealed during feedback (here: 4 points). If a 

subject exerts too little effort (i.e. does not exceed the effort threshold), a cross is superimposed over 

number of (potential) points indicating they will receive no points on that trial, but still allows subjects 

to learn about the potential reward associated with a given stimulus. (B) Effort and reward trajectories 

and actual choice behavior of an exemplar subject. Both effort threshold (light blue line) and reward 

magnitude (red points) change across time. Rewards were delivered probabilistically, yielding no 

reward (bottom: grey crosses) on half the trials, independent of whether subjects exceeded a required 

effort threshold (‘0’ presented on screen). The exemplar subject can be seen to adapt their behavior 

(blue diamonds) to a changing effort threshold. Model predictions (pink, depicting maximal subjective 

net benefit) closely follow subject’s behavior. As predicted by our computational model, this subject 

modulates their effort expenditure based on potential reward. In low effort trials, the subject exerts 

substantially more effort in high-reward trials (e.g. left side) compared to similar situations in low-

reward trials (e.g. right side). (C) Group analysis of 29 male subjects shows that the exerted effort is 

predicted by factors of previous effort, failure to exceed the threshold on previous trial, and reward 

magnitude, demonstrating that subjects successfully learned about reward and effort requirements. (D) 

If subjects fail to exceed an effort threshold they, on average, exert more force in a subsequent trial 

(orange). Following successful trials, subjects reduce the exerted force and adapt their behavior by 

minimizing effort (green). (bar plots: mean±1SEM.) *** p<.001; a.u. arbitrary units. 
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A computational framework for effort and reward learning 

To probe deeper how precisely subjects learn about reward and effort, we developed a 

computational reinforcement learning model that predicts effort exerted at every trial, and 

compared this model with alternative formulations (see Fig. S1, Supplemental Information for 

detailed model descriptions). Our core model had three distinct components: reward learning, 

effort learning, and reward-effort arbitration (i.e. effort-discounting) that were used to predict 

effort execution at each trial. To capture reward learning we included a Rescorla-Wagner like 

model (31), where reward magnitude learning occurred via a reward prediction error (PE). Note 

our definition of reward PE deviates from standard notation (10, 11, 32), dictated in part by our 

design. First, our reward learning algorithm does not track actual rewarded points. Because 

subjects learned about reward magnitude even if they failed to surpass an effort threshold, and 

thus not harvest any points (as hypothetical rewards were visible behind a superimposed cross), 

the algorithm tracks the magnitude of potential reward. This implementation aligns with 

findings that dopamine encodes a prospective (hypothetical) prediction error signal (33, 34). 

Second, we employed a probabilistic reward schedule, similar to that used in previous studies 

of reward learning (35–37). Subjects received 0 points in 50% of the trials (fixed for entire 

experiment), which in turn did not influence a change in reward magnitude. Using model 

comparison (all model fits are shown in Fig. S2) we found that a model incorporating learning 

from these 0-outcome trials outperformed a more optimal model that exclusively learned from 

actual reward magnitudes. This is in line with classical reinforcement learning approaches (31, 

32), wherein reward expectation manifests as a weighted history of all experienced rewards.  

To learn about effort, we adapted an iterative logistic regression approach (38), where 

subjects are assumed to learn about effort threshold based upon a PE. We implemented this 

approach because subjects did not receive explicit information about the exact height of the 

effort threshold and instead had to infer it based on their success-history. Here, we define an 
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effort PE as a difference between a subjects’ belief in succeeding, given the executed effort, 

and their actual success in surpassing an effort threshold. This effort PE updates a belief about 

the height of the effort threshold and thus the belief of succeeding given a certain effort. Note 

this does not describe a simple motor or force PE signal given that a force PE would be evident 

during force execution, in order to signal a deviation between a currently executed and an 

expected force. Moreover, in our task effort PEs are realized at outcome presentation in the 

absence of motor execution, signaling a deviation from a hidden effort threshold. Finally, as 

we are not interested in a subjective, embodied, experience of ongoing force execution we 

visualized the executed effort by means of a thermometer, an approach used in previous studies 

(39, 40). 

The two independent learning modules, involving effort or reward, are combined at 

decision time to form an integrated net utility of the stimulus at hand. Previous studies indicate 

this reward-effort arbitration follows a quadratic or sigmoidal, rather than a hyperbolic, 

discount function (39–41). As in these prior studies, we also found a sigmoidal discounting 

function best described this arbitration (Fig. S2)  (39, 40). Furthermore, it was better explained 

if reward magnitude modulated not only the height of this function, but also its indifference 

point. A sigmoidal form predicts that the utility of a choice will decrease as the associated effort 

increases. Our model predicts utility is little affected in low effort conditions (cf. Fig. 1B, 6). 

Moreover, the impact of effort is modulated by reward such that in high reward conditions 

subjects are more likely to exert greater effort to ensure they surpass an effort threshold (cf. 

Fig. S1). 

To assess whether subjects learned using a PE-like teaching signal, we compared our 

PE-based learning model to alternative formulations (Fig. S2). A first comparison revealed the 

PE-learning model outperformed non-learning models where reward or effort was fixed rather 

than dynamically adapted, supporting the idea that subjects simultaneously learned about, and 
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adjusted, their behavior to both features. We also found that the effort PE model outperformed 

a heuristic model that only adjusted its expectation based on success, but did not scale the 

magnitude of adjustment using an effort PE, in line with a previous study showing a PE-like 

learning of effort (24). In addition, we compared the model to an optimal reward learning 

model, which tracks the previous reward magnitude and ignores the probabilistic null 

outcomes, revealing that a PE-based reward learning outperformed this optimal model.  

Finally, because our model was optimized to predict executed effort, we examined 

whether model-driven PEs also predicted an observed trial-by-trial change in effort. Using 

multiple regression we found that model-derived PEs indeed have behavioral relevance, and 

both effort (t(28)=13.50, p<.001) and reward PEs (t(28)=2.10, p=.045) significantly predict 

effort adaptation. This provides model validity consistent with subjects learning about effort 

and reward using PE-like signals. 

 

Distinct striatal and cortical representations of reward and effort prediction errors 

Using fMRI we tested whether model-derived effort and reward PEs are subserved by 

similar or distinct neural circuitry. We analyzed effort and reward PEs during feedback 

presentation by entering both in the same regression model (non-orthogonalized; correlation 

between regressors: r=.056±.074; Fig. S4). Bilateral VS responded significantly to reward PEs 

(p<.05, whole-brain FWE correction; Table S1 for all activations), but not to effort PEs (Fig. 

2A-C). In contrast, dmPFC (peaking in pre-SMA extending into dACC) responded to effort 

PEs (p<.05, whole-brain FWE correction, Fig. 2D-F, Table S1), but not to reward PEs (Fig. 

2F). In relation to dmPFC, activity increased if an effort threshold was higher than expected 

and was attenuated if it was lower than expected, suggestive of an invigorating function for 

future action. This finding is also in keeping with previous work on effort outcome (24, 25), 

and a significant influence of dmPFC activity on subsequent change in effort execution (effect 
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size: 0.04±0.07; t(27)=2.82, p=.009) supports its behavioral relevance in this task, and is 

consistent with updating a subject’s expectation about future effort requirements (33). 

Interestingly, the dmPFC area processing effort PE peaks anterior to pre-SMA, and lies anterior 

to where anticipatory effort signals are found in SMA (Fig. S7), suggesting a spatial distinction 

between effort anticipation and evaluation.  

Neither VS nor dmPFC showed a significant interaction effect between effort and 

reward PEs (dmPFC: effect size= -.32±3.77; t(27)=-.45, p=.657; VS: effect size=-.41±1.59; 

t(27)=-1.36, p=.185). Post-hoc analysis confirmed that both components of a prediction error, 

expectation and outcome, were represented in these two regions (Fig. 2B&E), consistent with 

a full PE encoding rather than simply indexing an error signal (cf. 42). The absence of any 

effect of probabilistic 0 outcomes in dmPFC, further supports the idea that this region tracks 

an effort PE, rather than a general negative feedback signal (effect size: .01±.18; t(27)=.21, 

p=.832). No effects were found for negative-going (inverse) PEs in either reward or effort 

conditions (e.g. increasing activation for decreasing reward PEs; Table S1). To examine the 

robustness of this double-dissociation, we sampled activity from independently derived 

regions-of-interest (ROIs; VS derived from www.neurosynth.org, dmPFC from 25) and, again, 

found a significant double-dissociation in both VS (Fig. S5A) and dmPFC (Fig. S5B). 

Moreover, this double-dissociation was also evident in a whole brain comparison between 

effort and reward PEs (Fig. S5C; dmPFC: MNI: -14 -9 69, t=6.05, p<.001 cluster-extent FWE, 

height-threshold p=.001; VS: MNI: 15 9 -6, t=6.73, p<.001 cluster-extent FWE).  
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Figure 2. Separate reward and effort PEs in striatum and cortex. (A) Reward PEs encoded in the 

bilateral ventral striatum (p<.05, whole-brain height-FWE correction). (B) Analysis of VS shows an 

encoding of a full reward PE, reflecting both expectation (t(27)=-2.44, p=.021) and outcome 

components (t(27)=6.68, p<.001). (C) VS response at outcome showed a significantly increased 

response to reward PEs relative to effort PEs (t(27)=5.80, p<.001), with no evidence for an effect of 

effort PE (t(27)=-.60, p=.554).  (D) Effort PEs encoding in dorsomedial prefrontal cortex (p<.05, whole-

brain height-FWE correction). This PE includes components reflecting effort expectation (t(27)=2.28, 

p=.030) and outcome (t(27)=-4.59, p<.001; i.e. whether or not threshold was surpassed) (E). Activity 

in dmPFC increased when an effort threshold is higher than expected and decreased when it is lower 

than expected. (F) dmPFC showed no encoding of a reward PE (t(27)=.37, p=.714), and effort PEs were 

significantly greater than reward PEs in this region (t(27)=4.87, p<.001). The findings are consistent 

with effort and reward PEs being processed in segregated brain regions. (bar and line plots: mean effect 

size for regressor ±1SEM.) * p<.05, *** p<.001, n.s. p>.10 

 

Additionally, we controlled for unsigned (i.e., salience) effort and reward PE signals by 

including them as additional regressors in the same fMRI model (correlation matrix shown in 

Fig. S4), as these signals are suggested to be represented in the dmPFC (e.g., 43). Interestingly, 

when analyzing the unsigned salience PEs, we found that both effort and reward salience PEs 

elicit responses in regions typical for a salience network (44), and a conjunction analysis across 

the two salience PEs showed common activation in left anterior insula and intraparietal sulcus 

(Fig. S3). 

 

Simultaneous representations of effort and reward PEs in the dopaminergic midbrain 

We next asked whether an effort PE in dmPFC reflects an influence from a mesocortical 

input originating within SN/VTA. Dopaminergic cell populations occupy midbrain structures, 
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substantia nigra and ventral tegmental area (SN/VTA), and project to a range of cortical and 

subcortical brain regions (45–47). Dopamine neurons in SN/VTA encode reward PEs (11, 48) 

that are broadcast to VS (12). Similar neuronal populations have been found to encode 

information about effort and reward (49, 50). Using an anatomically defined mask of SN/VTA, 

we found that at the time of feedback this region encodes both reward and effort PEs (Fig. 3, 

p<.05, small-volume FWE correction for SN/VTA, Table S1), consistent with a common 

dopaminergic midbrain origin for striatal and cortical PE representations. 

 

 

Figure 3. Dopaminergic midbrain encodes reward and effort PEs at outcome. Analysis of the 

SN/VTA revealed a significant reward (A) and effort (B) PE signal (p<.05, small-volume height-FWE 

correction for anatomically defined SN/VTA). Grey lines depict boundaries of anatomical SN/VTA 

mask. A simultaneous encoding of both PEs (C; mean activity in anatomical SN/VTA: reward PE: 

t(27)=5.26, p<.001, effort PE: t(27)=2.90, p=.007) suggests a common origin of the dissociable (sub-) 

cortical representations. Activation increase signals the outcome was better than expected for reward 

PEs, but indicates an increased effort threshold for effort PEs. (bar and line plots: mean effect size for 

regressor ±1SEM.) ** p<.01, *** p<.001. 

 

Ascending mesolimbic and mesocortical connections encode PEs 

PEs in both dopaminergic midbrain and (sub-)cortical regions suggest that SN/VTA 

express effort and reward learning signals which are then broadcast to VS and dmPFC. 

However, there are also important descending connections from dmPFC and VS to SN/VTA 

(51, 52), providing a potential source of top-down influence on midbrain. To resolve 

directionality of influence we used a directionally sensitive analysis of effective connectivity. 

This analysis compares different biophysically-plausible generative models and from this 
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determines the model with the best-fitting neural dynamics (dynamic causal modelling (DCM; 

53); Materials and Methods). We found strong evidence in favor of a model where effort and 

reward PEs provide a driving influence on ascending compared to descending or mixed 

connections (Bayesian random-effects model selection: expected posterior probability=.55, 

exceedance probability=.976, Bayesian omnibus risk=2.83e-4), a finding consistent with PEs 

computed within SN/VTA being broadcast to their distinct striatal and cortical targets.  

 

A spatial dissociation of effort and reward PEs in SN/VTA 

A functional double-dissociation between VS and dmPFC, but a simultaneous 

representation of both PEs in dopaminergic midbrain, raises a question as to whether effort and 

reward PEs are spatially dissociable within the SN/VTA. Evidence in rodents and non-human 

primates point to SN/VTA containing dissociable dopaminergic populations projecting to 

distinct areas of cortex and striatum (45–47, 54, 55). Specifically, mesolimbic projections to 

striatum are located in medial parts of the SN/VTA, whereas mesocortical projections to 

prefrontal areas originate from more lateral subregions (46, 47, 56). However, there is 

considerable spatial overlap between these neural populations (46, 47) as well as striking 

topographic differences between species, which cloud a full understanding of human SN/VTA 

topographical organization (45, 46). 

 A recent human structural study (57) segregated SN/VTA into ventrolateral and 

dorsomedial SN/VTA subregions. This motivated us to examine whether SN/VTA effort and 

reward PEs are dissociable along these axes (Fig. 4A). Using unsmoothed data, we tested how 

well activity in each SN/VTA voxel is predicted by either effort or reward PEs (Materials and 

Methods). The location of each voxel along the ventral-dorsal and medial-lateral axis was then 

used to predict the t-value difference between effort and reward PEs. A significance related to 

both spatial gradients (Fig. 4B, S6; ventral-dorsal gradient: β=-.151, 95% confidence intervals 
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C.I.=-0.281--0.022, p=.016; medial-lateral gradient β=.469, 95% C.I.=.336-.602, p<.001) 

provided evidence that dorsomedial SN/VTA is more strongly affiliated to reward PE 

encoding, whereas the ventrolateral SN/VTA was more affiliated to effort PE encoding. We 

also examined whether this dissociation reflected different projection pathways using 

functional connectivity measures of SN/VTA with VS and dmPFC. Analyzing trial-by-trial 

BOLD-coupling (after regressing out the task-related effort and reward PE effects) we 

replicated these spatial gradients, with dorsomedial and ventrolateral SN/VTA more strongly 

coupled to VS and dmPFC respectively (Fig. 4B; ventral-dorsal: β=-.220, 95% C.I.=-.373--

.067, p=.002; medial-lateral; β=.466, 95% C.I.=.310-.622, p<.001). Similar results were 

obtained when using effect sizes rather than t-values, and when computing gradients on a 

single-subject level in a summary statistics approach. 

To explore further the spatial relationship between SN/VTA, dmPFC and VS, we 

investigated structural associations between these areas. We used structural co-variance 

analysis (58), which investigates how gray matter (GM) densities co-vary between brain 

regions, and has been shown sensitive to identify anatomically and functionally relevant 

networks (59). Specifically, we asked how well gray matter (GM) density in each SN/VTA 

voxel is predicted by dmPFC and VS GM (regions defined by their functional activations), and 

their spatial distribution between subjects. Importantly, this analysis is entirely independent 

from our previous analyses as it investigates individual GM differences, as opposed to trial-by-

trial functional task associations. Note there was no association between BOLD response and 

GM (dmPFC: r=.155, p=.430; VS: r=.100, p=.612; SN/VTA effort PEs: r=.067, p=.737; reward 

PEs: r=.079, p=.690). We found both spatial gradients were significant (Fig. 4C, ventral-dorsal 

gradient β=-.012, 95% C.I.=-.018--.006, p<.001; medial-lateral; β=.007, 95% C.I.=.002-.013, 

p=.007), suggesting that SN/VTA GM was more strongly associated with dmPFC GM in 
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ventrolateral, and with VS GM in dorsomedial areas, thus confirming the findings of our 

previous analyses.  

 

 
Figure 4. SN/VTA spatial expression mirrors cortical and striatal organization. Effort and reward PEs 

in the SN/VTA follow a spatial distribution along a ventral-dorsal (green color gradients) and a medial-

lateral (violet color gradients) gradient respectively (A, B). Multiple regression analysis revealed that 

ventral (green bars) and lateral (violet bars) voxels of the SN/VTA are representing effort PE more 

strongly, relative to reward PEs. Effect maps (left) show that dorsomedial voxels preferentially encode 

reward PEs (red colors), whereas ventrolateral voxels more strongly encode effort prediction errors 

(blue colors; also see Fig. S6). A functional connectivity analysis (B, small bar plot) revealed SN/VTA 

expressed spatially distinct functional connectivity patterns: ventral and lateral voxels are more likely 

to co-activate with dmPFC, whereas dorsal and medial SN/VTA voxels are more likely to co-active 

with VS activity. (C) Gray matter (GM) analysis replicates functional findings in revealing that gray 

matter in ventro-lateral SN/VTA covaried with dmPFC GM density, whereas dorso-medial SN/VTA 

GM was associated with VS GM density. Our findings of consistent spatial gradients within the 

SN/VTA thus suggest distinct mesolimbic and mesocortical pathways that can be analyzed along 

ventral-dorsal and medial-lateral axes in humans. (bar graphs: effect size±95% C.I.). * p<.05, ** p<.01, 

***p<.001. 
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Apathy is predicted by prefrontal, but not striatal function 

Several psychiatric disorders, including schizophrenia, express effort-related deficits 

(e.g., 28–30). A long-standing hypothesis assumes an imbalance between striatal and cortical 

dopamine (26, 60, 61), involving excess dopamine release in striatal (62, 63) but deficient 

dopamine release in cortical areas (64). While the former is linked to positive symptoms, such 

as hallucinations, the latter is considered relevant to negative symptoms, such as apathy (26, 

28, 29). Given the striatal-cortical double-dissociation, we examined whether apathy scores in 

our subjects, as assessed using the apathy evaluation score (AES; 65), were better predicted by 

dmPFC or VS activation. We ran a 5-fold cross-validated prediction of AES total score using 

either mean functional responses in dmPFC or VS (using same functional ROIs as above), 

utilizing effort and reward PE responses in both regions (correlation between predictors: 

dmPFC: r=.149, p=.458; VS: r=.144, p=.473). We found that dmPFC activations were highly 

predictive of apathy scores (Fig. 5A, p<.001, using permutation tests, see Materials and 

Methods). Interestingly, the effect sizes for both, reward (.573±.050) and effort (.351±.059) 

prediction errors in the dmPFC showed a positive association with apathy, meaning that the 

bigger a prediction error in the dmPFC, the more apathetic a person was. Activity in the VS 

did not predict apathy (Fig. 5B, p=.796). This was also reflected by a finding that extending a 

dmPFC-prediction model with VS activation did not improve apathy prediction (p=.394). 

There was no association between dmPFC (r=-.225, p=.258) or VS (r=.142, p=.481) GM and 

apathy. Furthermore, we found no link between overt behavioral variables and apathy (money 

earned: r=-.02, p=.927; mean exerted effort: r=.00, p=.99; standard deviation exerted effort: 

r=-.24, p=.235; N trials not succeeding effort threshold: r=-.13, p=.525). These findings suggest 

self-reported apathy was specifically related to PE processing in dmPFC.  Intriguingly, finding 

an effect of dmPFC reward PEs on apathy in the absence of a reward PE signal in this area at 

a group level (Fig. 2F) suggests an interpretation that apathy might be related to an 
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impoverished functional segregation between mesolimbic and mesocortical pathways. Indeed, 

we find a significant effect of reward PEs only in more apathetic subjects (median split 

analysis: low apathy group: effect size: -1.23±3.43; t(13)=-1.35, p=.201; high apathy group: 

2.37±2.83; t(12)=3.02, p=.011) supporting this notion.  

 

 
Figure 5. Apathy related to cortical, but not striatal function. (A) Prediction error signals in the 

dmPFC significantly predicted apathy scores as assessed using an apathy self-report questionnaire 

(AES total score). (B) PE signals in VS were not predictive of apathy. 

 

VS encodes subjective net benefit  

During anticipation it is suggested VS encodes an overall net benefit or integrated utility 

signal, incorporating both effort and reward (2, 66).  We examined whether VS activity during 

cue presentation tracked both reward and effort expectation. Using a region-of-interest analysis 

(bilateral VS extracted from reward PE contrast), we found a significant reward expectation 

effect (Fig. 6, t(27)=2.23, p=.035), but no effect of effort expectation (t(27)=.72, p=.476) at 

stimulus presentation. These findings accord with predictions of our model, where subjective 

value increases as a direct function of reward, but where subjective value does not decrease 

linearly with increasing effort (Fig. 6, left panel). Instead, the sigmoidal function of our reward-

effort arbitration model suggests that effort influences subjective value through an interaction 

with reward. This predicts is that during low effort trials reward has little impact on subjective 

value, whereas for high effort the differences between low and high reward trials will engender 
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significant change in subjective value. We formally tested this by examining the interaction 

between effort and reward, and found a significant effect (Fig. 6, t(27)=2.94, p=.007). A post-

hoc median-split analysis confirmed the model’s prediction evident in a significant effect of 

reward in high (t(27)=3.28, p=.003), but not in low effort trials (t(27)=.61, p=.547). 

 
Figure 6. Unified and distinct representations of effort and reward during anticipation. Ventral striatum 

encoded a subjective value signal in accord with predictions of our computational model (left panel). A 

main effect of expected reward (middle panel) reflected an increase in subjective value with higher 

reward. The reward x effort interaction (middle panel) and the subsequent median-split analysis (right 

panel) shows a difference between high and low rewards is more pronounced during high-effort trials, 

as predicted by our model (blue arrows in left panel). A similar interaction effect was found when using 

a literature-based VS ROI (reward x effort expectation: t(27)=-2.28 p=.016; high - low reward in high 

effort: t(27)=2.51, p=.018; high - low reward in low effort: t(27)=-.41, p=.684). (bar and line plots: 

mean effect size for regressor ±1SEM.) * p<.05, ** p<.01, n.s. p>.10 
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Discussion 

Tracking multiple aspects of a choice option, such as reward and effort, is critical for 

efficient decision making and demands simultaneous learning of these choice attributes. Here 

we show that the brain exploits distinct mesolimbic and mesocortical pathways to learn these 

choice features in parallel with a reward PE in VS and effort PE represented in dmPFC. 

Critically, we demonstrate that both types of PE at outcome satisfy requirements for a full PE, 

representing both an effect of expectation and outcome (cf. 42) and thus extend previous single-

attribute learning studies for reward PE (e.g., 12, 36, 42) and effort outcomes (24, 25). 

Our study is the first to show a functional double-dissociation between VS and dmPFC, 

highlighting their preferential processing of reward and effort PE respectively. This functional 

and anatomical segregation provides an architecture that can enable the brain to learn about 

multiple decision choice features simultaneously, specifically predictions of effort and reward. 

Although dopaminergic activity cannot be assessed directly using fMRI, both effort and reward 

PEs were evident in segregated regions of dopaminergic rich midbrain, and where an effective 

connectivity analysis indicated a directional influence from SN/VTA towards subcortical 

(reward PE) and cortical (effort PE) targets via ascending mesolimbic and mesocortical 

pathways respectively. 

Dopaminergic midbrain is thought to comprise several distinct dopaminergic 

populations that have dissociable functions (54, 56, 67, 68). Here, we demonstrate a 

segregation between effort and reward learning within SN/VTA across the domains of task 

activation, functional connectivity and gray matter density. In SN/VTA a dorso-medial 

encoding of reward PEs, and a ventro-lateral encoding of effort PEs, extends on previous 

studies on SN/VTA subregions (56, 57, 67, 68) by demonstrating this segregation has 

functional implications that are exploited during multi-attribute learning. In contrast to 

previous studies on SN/VTA substructures (56, 67–69) we performed whole-brain imaging, 
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which allowed us to investigate the precise interactions between the dopaminergic midbrain 

and striatal/cortical areas. However, this required a slightly lower spatial SN/VTA resolution 

than previous studies (56, 67–69) restricting our analyses to spatial gradients across the entire 

SN/VTA rather than subregion analyses. We speculate the dorsomedial region showing reward 

PE activity is likely to correspond to a dorsal tier of dopamine neurons known to form 

mesolimbic connections projecting to VS regions (55) (see Fig S6). By contrast the 

ventrolateral region expressing effort PE activation is likely to be related to ventral tier 

dopamine neurons (46, 55) that form a mesocortical network targeting dmPFC and surrounding 

areas (46, 47).  

Our computational model showed learning about choice features exploits PE-like 

learning signals, and in so doing extends on previous models by integrating reward and effort 

learning (cf. 24, 70) with effort-discounting (39–41). The effort PE encoded in dmPFC can be 

seen as representing an adjustment in belief about the height of a required effort threshold. It 

is interesting to speculate about the functional meaning of this PE signal, such as whether this 

is more likely to signal motivation or the costs of a stimulus. Our findings that effort PEs have 

an invigorating function favor the former notion, though we acknowledge we cannot say 

whether effort PEs would also promote avoidance if our task design included an explicit option 

to default. External support for an invigorating function comes from related work on dopamine 

showing that it broadcasts a motivational signal (16, 71) that in turn influences vigor (72–74). 

Interestingly, direct phenomenological support for such a motivational signal comes from 

observations in human subjects undergoing electrical stimulation of cingulate cortex, who 

report a motivational urge and a determination to overcome effort (75).  

VS is suggested to encode net benefit or integrated utility of a choice option (1, 30), in 

simple terms the value of a choice integrated over benefits (rewards) and costs (effort). The 

interaction between effort and reward expectations we observe in VS during anticipation is 
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consistent with encoding of an integrated net benefit signal, but in our case this occurs 

exclusively during anticipation. In accordance with our model reward magnitude is less 

important in low effort trials but assumes particular importance during high effort trials. 

However, the absent reward effect in low effort trials contrasts with studies that find reward-

related signals in the VS during cue presentation, but in the latter there is no effort requirement 

(e.g. 76). This deviation from previous findings might reflect that subjects in our task need to 

execute effort prior to obtaining a reward. Nevertheless, the convergence of our model 

predictions and the interaction effect seen in VS support the notion that a net benefit signal is 

formed at the time of action anticipation, when an overall stimulus value is important in 

preparing an appropriate motor output.  

Effortful decision making assumes considerable interest in the context of pathologies 

such as schizophrenia, and may provide for a quantitative metric of negative symptoms (28). 

An association between impaired effort arbitration and negative symptoms in patients with 

schizophrenia (e.g. 29) supports this conjecture, though it is unknown whether such an 

impairment is tied to a prefrontal or striatal impairment. Within our volunteer sample apathy 

was related to aberrant expression of learning signals in dmPFC, but not in VS. This suggest 

negative symptoms may be linked to a breakdown in a functional segregation between 

mesolimbic and mesocortical pathways, and this idea accords with evidence of apathetic 

behavior following seen following ACC lesioning (23).  

We used a naturalistic task reflecting the fact that in many environments effort 

requirements are rarely explicit and are usually acquired by trial and error, while reward 

magnitudes are often explicitly learned. Although this entails a difference in how feedback is 

presented, we consider it unlikely to influence neural processes, given that previous studies 

with balanced designs showed activations in remarkably similar regions to ours (e.g., 24, 25) 

and because prediction error signals are generally insensitive to outcome modality 



  23 

(primary/secondary reinforcer, magnitude/probabilistic feedback, learning/no learning) (e.g., 

12, 36, 70, 77). Moreover, the specificity of the signals in VS and dmPFC for either reward or 

effort, including a modulation by expectation, favors a view that the pattern of responses 

observed in these regions reflect specific prediction error signals as opposed to simple feedback 

signals.  

It is interesting to conjecture whether a spatial dissociation that we observe for 

simultaneous learning of reward and effort also holds if subjects learn choice-features at 

different times, or learn about choice features other than reward and effort. Our finding of a 

mesolimbic network encoding reward PEs during simultaneous learning accords with results 

from simple reward-alone learning (e.g., 12). This, together with a known involvement of 

dmPFC in effort-related processes (24, 25, 40), renders it likely that the same pathways are 

exploited in unidimensional learning contexts. However, it remains unknown whether the same 

spatial segregation is needed to learn about multiple forms of reward that are associated with 

VS activity (e.g., monetary, social). 

In summary, we show that simultaneous learning about effort and reward involves 

dissociable mesolimbic and mesocortical pathways, with VS encoding a reward learning signal 

and dmPFC encoding an effort learning signal. Our data indicate these PE signals arise within 

SN/VTA where an overlapping, but segregated, topological organization reflects distinct neural 

populations projecting to cortical and striatal regions respectively. An integration of these 

segregated signals occurs in VS in line with an overall net benefit signal of an anticipated 

action.  
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Materials and Methods 

Subjects 

Twenty-nine healthy, right-handed, male, human volunteers (age: 24.1y±4.5, range: 18-

35y) were recruited from local volunteer pools to take part in this experiment. All subjects were 

familiarized with the hand grippers and the task before entering the scanner (Supplementary 

Information). Subjects were paid on an hourly basis plus a performance-dependent 

reimbursement. We focused on male subjects because we wanted to minimize potential 

confounds which we observed in a pilot study, for example fatigue in high force exertion trials. 

One subject was excluded from fMRI analysis due to equipment failure during scanning. The 

study was approved by the UCL research ethics committee and all subjects gave written 

informed consent. 

 

Task 

The goal of this study was to investigate how humans simultaneously learn about 

reward and effort in an ecologically realistic manner. In the task (Fig. 1A), subjects were 

presented with one of two stimuli (duration 1000ms). The stimuli (pseudo-randomized, no 

more than 3 presentations of one stimulus in a row) were indicative of a potential reward (1 to 

7 points, 50% reward probability) and an effort threshold that needed to be surpassed (range of 

effort threshold between 40% and 90% maximal force) in order to harvest a reward. Both points 

and effort thresholds slowly changed over time in a Gaussian random-walk-like manner (Fig. 

1B), whereas the reward outcome probability remained stationary across the entire experiment, 

and subjects were informed about this beforehand. These trajectories were constructed so that 

reward and effort were de-correlated, and indeed the realized correlation between effort and 

reward prediction errors were minimal. Moreover, independent trajectories for effort and 

reward allowed us to cover a wide range of effort and reward expectation combinations 
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enabling us to comprehensibly assess a reward-effort arbitration function. Thus, to master the 

task, subjects had to simultaneously learn both reward and effort thresholds. After a jittered 

fixation cross (mean 4000ms, uniformly distributed between 2000 and 6000ms), subjects had 

to squeeze a force-gripper with their right hand for 5000ms. During the first 1000ms, the 

subjects increased their force to the desired level (as indicated by a horizontal thermometer; 

blue frame phase). During the last 4000ms, subjects maintained a constant force (red frame 

phase) and released as soon as the thermometer disappeared from the screen. After another 

jittered fixation cross (mean 4000ms, 2000-6000ms), subjects received feedback whether and 

how many points they received for this trial (duration 1000ms). If the exerted effort was above 

the effort threshold, subjects received the points that were on display. If the subjects’ effort did 

not exceed the threshold, a cross appeared above the number on display, which indicated that 

the subject did not receive any points for that trial. More details about the task are provided in 

the Supplementary Information. 

 

Behavioral analysis 

To assess the factors that influence effort execution (Fig. 1C), we used multiple 

regression to predict the exerted effort at each trial. As predictors, we entered the exerted effort 

as well as the number of points (displayed during feedback) on the previous trial, and whether 

the force threshold was successfully surpassed on the previous trial. Please note that the 

previous trial was determined as the last trial that the same stimulus was presented. The 

regression weights of the normalized predictors were obtained for each individual and then 

tested for consistency across subjects using t-tests. To test how subjects changed their effort 

level based on whether they surpassed the threshold or not (‘success’), we analyzed the change 

in effort conditioned on their success. For each subject, we calculated the average change in 
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effort for success and non-success trials and then tested consistency using t-tests across all 

subjects (Fig. 1D). 

 

Computational Modelling 

We developed novel computational reinforcement learning models (32) to formalize 

the processes underlying effort and reward learning in this task. All models were fitted to 

individual subject’s behavior (executed effort at each trial) and a model comparison using BIC 

was performed to select the best-fitting model (Fig. S2). The preferred model was then used 

for the fMRI analysis. The models and model comparison are detailed in the Supplemental 

Information.  

  

fMRI data acquisition and preprocessing 

MRI was acquired using a Siemens Trio 3T scanner, equipped with a 32-channel head-

coil. We used an EPI-sequence that was optimized for minimal signal-dropout in striatal, 

medial prefrontal and brain-stem regions (78). Each volume was formed of 40 slices with 3mm 

isotropic voxels (TR=2.8s, TE=30ms, slice tilt: -30° (T>C)). A total of 1252 scans were 

acquired across all four sessions. The first 6 scans of each session were discarded to account 

for T1 saturation effects. Additionally, field maps (3mm isotropic, whole-brain) were acquired 

to correct the EPIs for field strength inhomogeneity. 

All functional and structural MRI analyses were performed using SPM12 

(http://www.fil.ion.ucl.ac.uk). The EPIs were first realigned and unwarped using the field 

maps. EPIs were then co-registered to the subject-specific anatomical images and normalized 

using DARTEL-generated (79) flow-fields, which resulted in a final voxel resolution of 1.5mm 

(standard size for DARTEL normalization). For the main analysis, the normalized EPIs were 

smoothed with a 6mm FWHM-kernel to satisfy the smoothness assumptions of the statistical 
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correction algorithms. For the gradient-analysis of the SN/VTA (‘unsmoothed analysis’), we 

used a small smoothing kernel of 1mm to preserve more of the voxel-specific signals. We 

applied this very small smoothing kernel rather than no kernel to prevent aliasing artefacts that 

naturally arise from the DARTEL-normalization procedure. 

 

 

fMRI data analysis 

The main goal of the fMRI analysis was to determine the brain regions that track reward 

and effort prediction errors (PEs). To this end, we used the winning computational model and 

extracted the model predictions for each trial. To derive the model predictions, we used the 

average parameter estimates across all subjects, similar to previous studies (43, 80–84). This 

ensures more regularized predictions and does not introduce subject-specific biases. At the time 

of feedback, we entered four parametric modulators: effort PEs, reward PEs, absolute effort 

PEs, absolute reward PEs. For all analyses, we normalized the parametric modulators 

beforehand and disabled the orthogonalization procedure in SPM (correlation between 

regressors shown in Fig. S4). This means that all parametric modulators compete for variance 

and we thus only report effects that are uniquely attributable to the given regressor. The sign 

of the PE regressors was set so that positive reward PEs means that a reward is better than 

expected, and for effort PEs a positive PE means that the threshold is higher than expected 

(more effort is needed). The task sequences were designed so as to minimize a correlation 

between effort and reward PEs, as well as between expectation and outcome signals within a 

PE (effort PE: r=.087±.105; reward PE: r=-.002±0.109), and thus to maximize sensitivity or 

our analyses. To control for other events of the task, we added the following regressors as 

nuisance covariates: stimulus presentation with parametric modulators for expected reward, 

expected effort, expected reward*effort interaction, stimulus identifier. To control for any 
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movement-related artefacts, we also modelled the force execution period (block duration: 

5000ms) with executed effort as parametric modulator. Moreover, we regressed out movements 

using the realignment parameters, as well as pulsatile and breathing artefacts (85–88). Each 

run was modelled as a separate session to account for offset differences in signal intensity. 

On the second level, we used the standard summary statistics approach in SPM (89) 

and computed the consistency across all subjects. We used whole-brain family-wise error 

correction p<.05 to correct for multiple comparisons (if not stated otherwise) using settings that 

do not show any biases in discovering false positives (90, 91). We examined the effect of each 

regressor-of-interest (effort, reward PE) using a one-sample t-test to assess the regions in which 

there was a representation of the regressor. Subsequent analyses (Fig 2B-C, E-F) were 

performed on the peak voxel in the given area. Prediction errors were compared using paired 

t-tests. To assess the effect of effort and reward PEs on the SN/VTA, we used the same GLM 

applying small-volume FWE-correction (uncorrected threshold p<.001) based on our 

anatomical SN/VTA mask (see below), similar to previous studies (e.g. 92, 93).  

For the analysis of the cue phase, we extracted responses of a VS-ROI and then assessed 

the impact of our model-derived predictors expected effort, expected reward, and their 

interaction.  

 

Effective connectivity analysis 

To assess whether PE signals are more likely to be projected from SN/VTA to (sub-) 

cortical areas or vice versa, we ran an effective connectivity analysis using dynamical causal 

modelling (DCM; 53). DCM allows the experimenter to specify, estimate and compare 

biophysically plausible models of spatiotemporally distributed brain networks. In the case of 

fMRI, generative models are specified which describe how neuronal circuitry causes the BOLD 

response which in turn elicits the measured fMRI time series. Bayesian model selection (94) is 
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used to determine which of the competing models best explains the data (in terms of balancing 

accuracy and complexity), drawing upon the slow emergent dynamics which result from the 

interaction of fast neuronal interactions (referred to as the slaving principle; 89). 

We compared several models, all consisting of three regions: SN/VTA (using the 

anatomical ROI), VS, and dmPFC (using the functional contrasts for ROI definition). As fixed 

inputs, we used the onset of feedback as a stimulating effect on all three nodes. We assumed 

bidirectional connections between SN/VTA and dmPFC/VS regions, reflecting the well-known 

bidirectional communication. The models differed in how PEs influenced these connections. 

Based on the assumption that PEs are computed in the originating brain structure and influence 

the downstream brain region, we tested whether PEs modulated the connections originating 

from SN/VTA, or targeting it. This same approach (PEs affecting modulation of intrinsic 

connections) was used in previous studies investigating the effects of PEs on effective 

connectivity (e.g., 96, 97). We compared 6 models in total. In the winning ascending model, 

reward and effort PEs (each only modulating the connection to its (sub-) cortical target region) 

modulated the ascending connections (e.g. reward PEs modulated connectivity from SN/VTA 

to VS). In the descending model, PEs modulated the descending connections from VS and 

dmPFC to SN/VTA. Additional models tested whether only having one ascending modulation 

(either effort or reward PEs), or having one ascending and one descending modulation, fitted 

the data better. DCMs were fitted for each subject and run separately and Bayesian random-

effects comparison (94) was used for model comparison.  

 

fMRI analysis of SN/VTA gradients 

For the analysis of the SN/VTA gradients with the unsmoothed data, the model was 

identical to the one above, with the exception that the feedback on each trial was modelled as 

a separate regressor. This allowed us to obtain an estimate of the BOLD response, separately 
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for each trial (necessary for functional connectivity analysis) in keeping with the same main 

effects as in normal mass-univariate analyses (cf. 37). These responses were then used to 

perform our gradient analyses.  

We performed two SN/VTA gradient analyses with the functional data. For the PE 

analysis, we used the model-derived PEs (as described above) to predict the effects of effort 

and reward PEs on each voxel of our anatomically-defined SN/VTA mask. We then calculated 

t-tests for each voxel on the second level, using the beta coefficients of all subjects. As we were 

interested whether there is a spatial dissociation/gradient between the two PE types, we then 

calculated the difference of the absolute t-values between the two prediction errors, for each 

voxel separately. This metric allows us to measure whether a voxel was more predictive of 

effort or reward PEs. To ensure that we only use voxels that have some response to the PEs, 

we discarded voxel that has an absolute t-value <1 for both prediction errors. We used the 

absolute of the t-values for our contrast to account for potential negative encoding.  

To calculate the gradients, we used a multiple regression approach to predict the t-value 

differences (e.g., effort - reward PE). As predictors, we used the voxel location in a ventral-

dorsal gradient and a voxel location in a medial-lateral gradient. Both gradients entered the 

regression, together with a nuisance intercept. This analysis resulted in a beta weight for each 

of the gradients which indicates whether the effect of the prediction errors follows a spatial 

gradient or not. We obtained the 95%-confidence intervals (95% C.I.) of the beta weights and 

calculated the statistical significance using permutation tests (10 000 iterations; randomly 

permuting the spatial coordinates of each voxel). 

For the second, functional connectivity analysis, we used the very same pipeline. 

However, instead of using model-derived prediction errors, we now used the BOLD-response 

for every trial from the dmPFC and bilateral VS (mean activation across entire ROI). The ROIs 

were determined based on task main effect (dmPFC based on effort PEs, VS based on reward 
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PEs, both thresholded at pFWE<.05). To ensure this analysis did not reflect the task effects, we 

regressed out the task effect (reward / effort PEs) prior to the main analysis.  

We found similar effect when using beta weights (which do not take measurement 

uncertainty into account) instead of t-values, and also if we include all voxels, irrespective of 

whether they respond to any of the PEs. Similar results were also obtained when using a 

summary statistics approach, in which spatial gradients were obtained for each single subject.  

 

Predicting apathy through BOLD responses 

To assess whether self-reported apathy – a potential reflection of non-clinical negative 

symptoms (27) – was related to neural responses in our task, we tested whether we can predict 

apathy by using task-related activation. Apathy was assessed using a self-report version of the 

apathy evaluation scale (AES; 65) (missing data from one subject). We used the total scores as 

a dependent variable in a 5-fold cross-validated regression (cf. 84, 98). To assess whether 

apathy was more closely linked to dmPFC or VS activation, we used the activation in the given 

ROI (using mean activation at p<.05 FWE-ROI, same as in previous analyses), including both 

effort and reward prediction error signals at the time of outcome. To assess prediction accuracy, 

we then calculated the L2-norm between predicted and true apathy scores across all subjects 

(cf. 98). To establish a statistical null-distribution, we ran permutation tests by randomly 

shuffling the PE responses. To assess whether the VS predictors improved a dmPFC prediction, 

we compared the predictive performance of the dmPFC model to an extended model with VS 

activations as additional predictors. Permutation tests (by permuting the additional regressors) 

were again used to assess significance between the dmPFC and the full model. 

 

sMRI data acquisition and analysis 
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Structural images were acquired using quantitative multi-parameter maps (MPMs) in 

an 3D multi-echo fast low angle shot (FLASH) sequence with a resolution of 1mm isotropic 

voxels (99). Magnetic transfer (MT) images were used for gray matter quantification, as they 

are particularly sensitive for subcortical regions (100). In total, 3 different FLASH sequences 

were acquired with different weightings: predominantly MT (TR/α = 23.7 ms/6°; off-resonance 

Gaussian MT pulse of 4 ms duration preceded excitation, 2 kHz frequency offset, 220° nominal 

flip angle), proton density (PD; 23.7 ms/6°), and T1-weighting (18.7 ms/20°) (101). To increase 

signal-to-noise ratio, we averaged signals of six equidistant bipolar gradient echoes (TE: 2.2-

14.7 ms). To calculate the semi-quantitative MT-maps, we used mean signal amplitudes and 

additional T1 maps (102), and additionally eliminated influences of B1 inhomogeneity and 

relaxation effects (103).  

To normalize functional and structural maps, we segmented the MTs maps (using heavy 

bias regularization to account for the quantitative nature of MPMs), and generated flowfields 

using DARTEL (79) with the standard settings for SPM12. The flowfields were then used for 

normalizing functional as well as structural images. For the normalization of the structural 

images (MT), we used the VBQ toolbox in SPM12 with an isotropic Gaussian smoothing 

kernel of 3mm. 

To investigate anatomical links between SN/VTA and VS and dmPFC, we performed 

a (voxel-based morphometry [VBM]-based) structural co-variance analysis (58). The approach 

assumes that brain regions that are anatomically and functionally related (e.g. form a common 

network) should co-vary in gray matter density between subjects. This means that subjects with 

a strong expression of a dmPFC gray matter density should also express greater gray matter 

density in ventrolateral SN/VTA, possibly reflecting genetic, developmental or environmental 

influences (59). We used the segmented, normalized gray matter MT maps and applied the 

Jacobian of the normalization step to preserve total tissue volume (104), as reported in a 
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previous study (84). To account for differences in global brain volume, we calculated the total 

intracranial volume and used it as a nuisance regressor in the analysis. For each subject, we 

extracted the mean gray matter density in dmPFC and bilateral VS (mask derived from 

functional contrasts, thresholded at pFWE<.05, see above). Additionally, we extracted the gray 

matter density of each voxel in our SN/VTA mask. We then calculated the effect of dmPFC 

and VS gray matter in a linear regression model predicting the gray matter density in every 

voxel in the SN/VTA. Similar to our functional analysis, we calculated the difference of the t-

values for dmPFC and VS for each voxel (dmPFC-VS). These were then used for the same 

spatial gradient analysis as in the analysis described above. 

For all our SN/VTA analyses, we used a manually drawn anatomical region-of-interest 

in MRIcron (105). We used the mean structural MT image where SN/VTA can be easily 

distinguished from surrounding areas as a bright white stripe (45), similar to previous studies 

(92, 93).  

 

Data availability 

Imaging results are available online on http://neurovault.org/collections/IAYMWZIY/. 
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Supplementary Information 

 

Supplementary Task Details 

We calculated the median effort employed during the red frame phase as the effort exerted at that trial. The 

individual effort trajectories were monitored online to ensure that the subjects kept the force approximately 

constant during the whole effort execution phase (feedback was given after each block if necessary). To maintain 

the subjects’ motivation and engagement, the points gained were converted and added to a blue bar shown at the 

bottom of the screen. Every time the bar reached the yellow target line, subjects received £1.00, and the bar started 

over from the left side of the screen, similar as implemented in previous studies (e.g., 106). Each point that the 

subjects won translated into an approximate 2% increase in the bar. The subjects earned £4.59±0.82 on average. 

To de-correlate outcome success (effort above/below threshold) from actual amount won, subjects received 0 

points in 50% of all trials (probabilistically determined, cf. Fig. 1B). A jittered fixation cross (mean 6000ms, range 

2000-10000ms, uniform distribution) was shown between two trials. Each of the two stimuli was presented 80 

times, equally distributed across the 4 sessions of approximately 15 minutes each. Timing of task events were 

determined by maximizing the design efficacy for effort and reward PEs. 

To measure effort, we used a bespoke, MR-compatible, pneumatic force gripper for the right hand. Air 

pressure was converted to digital signals using a National Instruments data converter (NI-6009, National 

Instruments Corporation Ltd., Newbury, UK) using a sampling rate of 1000Hz. During effort execution, the 

position of the thermometer was updated every 20ms. The effort feedback, as well as the threshold, was shown 

relative to the maximal force that the subject was able to execute. The calibration of maximum force was done at 

the beginning of the experiment. To ensure subjects were not deliberately squeezing below their maximum force, 

we determined the maximum executed force during gripper practice and replaced the maximal force if necessary. 

To account for slow drifts in baseline pressure due of a change in temperature that affects air expansion in the 

pipes, we adjusted the baseline pressure at the beginning of every scanning session. Pilot studies showed this is 

sufficient to account for these slow temperature drifts. It is well known that many modalities are perceived in a 

logarithmic rather than in a linear fashion (107). We thus used log-converted force measures for display and the 

determination of the force thresholds. Pilot investigations confirmed that log-transformed force feedback felt more 

natural and was easier to handle than non-converted feedback. Pilot studies revealed that an effort execution phase 

of 5000ms was feasible for males who, unlike females, were able maintain force levels across the whole 

experiment. Because pilot studies showed a high variability among female subjects, we decided to only test males 

in this study. We decided to modulate effort threshold based on the force and to keep time of execution constant, 

because effort is otherwise confounded by the time that one spends on the task, and thus confounds effort 

execution with temporal discounting (14). 

Before entering the MRI, subjects were trained on the task. In a first phase, subjects were familiarized with 

the force grippers and learned how to control the ‘thermometer’. This task was repeated in the scanner during the 

survey scans so that the subjects could adjust to the new environment. During the task instructions, subjects were 

told about the changing force thresholds and reward magnitudes. During two practice runs, subjects learned how 

thresholds and points change and how they can adjust their force accordingly. 

The task was delivered using the Cogent toolbox for Matlab (R2010, MathWorks, Natick MA, USA). Pulse, 

breathing and eye-tracking was recorded to monitor the subjects’ states and was used for artefact correction. 

 

 

Computational Modelling 

We developed a novel computational reinforcement learning model (32) predicting executed effort at each 

trial to understand the processes underlying the effort and reward learning in this task. The model consists of three 

distinct parts (Fig. S1): effort learning module, reward learning module, and a reward-effort discounting and 

subjective utility module.  
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Figure S1. Computational framework for effort and reward learning. (A) Expected rewards tR  are learned using 

a reward PE δt
R and a learning rate γ. (B) Learning about effort resembles an iterative logistic regression of beliefs 

about being successful given the exerted effort ( | )t tp O E  (blue lines depict different beliefs about the effort 

threshold). This belief is then updated on each trial using an effort PE δt
E that adjusts the indifference point of the 

belief ωt. The free parameters α and k depict a learning rate and the precision of beliefs, respectively. (C) Effort 

discounting of reward magnitude follows a sigmoidal function so that rewards are more strongly discounted with 

higher effort. Model comparison reveals that reward magnitude not only affects the height of the sigmoid but also 

its indifference point, which means that lower reward are discounted already at lower effort levels, whereas high 

rewards are discounted only with the highest effort (red lines depict how different reward magnitudes are 

discounted as a function of effort). (D) Based on effort and reward expectation as well as reward discounting, we 

can compute the subjective net benefit for each trial. The upper panel depicts how subjective net benefit changes 

as a function of expected reward, given a fixed belief that the effort requires is at 60%. This shows how for 1 

point, the maximal benefit is just above 60%, whereas for high rewards, it is well above 60% to ensure that the 

points are won, accounting for the uncertainty of the effort belief. The lower panel shows how subjective net 

benefit changes for a reward magnitude of 3 as a function of different beliefs about the height of the effort 

threshold (blue lines). An example trajectory of maximal subjective net benefit can be found in Fig. 1B (pink 

line). 

 

Effort learning 

In the task subjects are not explicitly told how much effort is needed to succeed in a given trial, but they had 

to learn it based on their prior experience with a given stimulus. Because the subjects do not receive explicit 

feedback about the height of the effort threshold, it is not possible to calculate the effort prediction error in a 

simple Rescorla-Wagner-like (31) fashion, i.e. as the difference between expected and received effort (cf. eq. (1.5)

). Rather, the subjects will update their belief about the probability of succeeding ( | E )t tp O  on every trial t. To 

do so, we used a modified version of an iteratively reweighted least squares logistic regression (IRLS, Fig. S1B; 

, 38). Here, the belief of succeeding is computed using a sigmoidal transformation of the executed effort at trial t 

Et 

 
( )

1
( | ; , )

1 t
t t t k E

p O E k
e




 



 , (1.1) 

where ωt describes the indifference point of the sigmoid, which is equivalent to the current belief about the 

height of the effort threshold. Parameter k describes the uncertainty about the height and is used as a free 

parameter. Et is the median log-force that was exerted between 0 (no force exerted) and 100 (individual maximum 

force, determined during practice). To account for additional perceptual uncertainty about the effort actually 

exerted (because the median over 4 seconds was used, we do not assume perfect knowledge), we converted Et 

into a Gaussian distribution with a standard deviation of 5 (arbitrarily chosen) around the mean of the actually 

exerted force using sampling from a normal distribution (100 samples). For outcome, the actual outcome was used 

assuming no uncertainty about the visual feedback).  
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On every trial, ωt is updated using an effort prediction error δE
t and a learning rate α (free parameter): 

 1

E

t t t       (1.2) 

The effort prediction error δE
t is the difference between the success at trial t, Ot, and the prior belief given the 

exerted force ( | ; , )t t tp O E k : 

 ( | ; , )E

t t t t tO p O E k     (1.3) 

This learning rule can be seen as a simplified version on a temporal-difference based predictive learner (108), 

only that we did not incorporate the gradient of our prediction (cf eq. 2 in (108)) because our trajectories were 

relatively smooth and thus a gradient would have little effect (i.e. act as a scaling factor, which is now absorbed 

in learning rate α). Moreover, it is difficult to imagine how a gradient was effectively implemented in a biological 

system such as the human brain. 

 

Reward learning 

To learn about the number of points that are associated with a stimulus, we used a standard Rescorla-Wagner 

learning model (31) (Fig. S1A), where the expected reward magnitude tR  is being updated using a reward 

prediction error δR
t and a learning rate γ (free parameter): 

 1
R

t t tR R      (1.4) 

The reward prediction error is the difference between the expected tR   and number of points that was 

presented Rt: 

 
R

tt tR R     (1.5) 

In this study, we used the current number shown on the screen as Rt, irrespective of whether the subject 

exerted enough effort to surpass the effort threshold. We decided to do so, because subjects learn about the reward 

magnitude irrespective of their effort success, and thus update their reward expectations. Moreover, model 

comparison (see main text) revealed that subjects also learned about probabilistic (50%) 0-outcomes, rather than 

ignoring the magnitude at that trial. 

  

Reward-effort discounting and subjective net benefit 

It is well known that effort and other costs discount rewards (9) and recent studies investigated the effort-

discounting function in great detail (29, 39, 41). Here, we compared previously suggested functions (hyperbolic, 

quadratic, sigmoidal) and extended these. For all models, we introduced a utility parameter τ that accounts for 

non-linearities in the subjective representation of reward (1, 39, 109, 110) and this improves model fit (Fig. S2). 

The quadratic discounting calculated the subjective value of a reward v(R|e) given an effort e, is based on 

Hartman et al.’s studies (29, 41), and has a free decay kernel parameter κ that depicts the discounting steepness: 

 
2( | ) Rv R e e     (1.6) 

The hyperbolic discounting was originally introduced as mirroring hyperbolic temporal discounting and is 

formalized with a discounting kernel κ: 

 ( | )
1

R
v R e

e







  (1.7) 

The sigmoidal effort-discounting function is more flexible than the quadratic and hyperbolic functions and 

has two free parameters: indifference point p and the slope κ. Similar to Klein-Függe et al. (39), we extended the 

sigmoid by two terms: subtracting 
1

1 pe
to ensure that ( ) Rv R   when effort e equals 0 (i.e., no 
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discounting). By multiplying 
1

1
pe

 
 

 
, it is ensured that the subjective values v(R) will not become negative 

for high effort, in keeping with previous modelling of effort discounting (39).  
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  (1.8) 

In this sigmoidal discounting, the reward only affects the height of the sigmoid, but the indifference point p 

is unaffected by the reward. This means that the acceleration of discounting always occurs at the same effort level. 

However, it might be that with high rewards, discounting only emerges at very high effort, whereas low rewards 

discount at low effort (cf. horizontal shifts in Fig. S1). We thus implemented an additional sigmoidal function 

where height and indifference point are modulated by expected rewards: 
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1 1 1
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  (1.9) 

 

On each trial, we assume that subjects exert the effort that has the highest subjective net benefit for them by 

combining the beliefs about the effort threshold and the belief about the current reward. The net benefit for every 

effort e (0-100%, Fig. S1) is calculated as the product of the belief about the effort threshold and the subjective 

value of that effort, and the normalized probability density at the chosen effort was the used for calculating the 

model fit (log likelihood): 

 B( ) ( | e; , ) ( | )tt te p O k v R e   (1.10) 

Alternatively, one could additionally account for the utility of not succeeding (i.e. expending effort without 

receiving a reward). Because the probability of not succeeding in this task is the inverse of the success-probability, 

such a model results in almost identical results as simulations revealed. We thus decided to compute utility as in 

eq. (1.10), similar to previous studies (39, 41). 

Model parameters were estimated by maximizing the probabilistic benefit function, independently for each 

subject, using a genetic algorithm (111), and model comparison was done using fixed- and random-effects analysis 

for BIC (112).  

Please note that the goal of our modelling was to derive a model that most adequately reflects the learning 

signals, and we did not seek to design it in order to maximize orthogonality between free parameters. It is thus 

possible that some of the parameters express a considerable covariance, and we thus decided to not analyze the 

parameters in detail. 

 

 

Model comparison and selection 

We compared several potential models and the best fitting model was selected for further analysis (Fig. S2). 

First, we compared the model fit using the four different effort-discounting functions. The sigmoidal effort-

discounting, where height and indifference point are modulated by reward outperformed the other models clearly 

(eq. (1.9)).  

Further model comparisons revealed that by imposing no learning for either rewards or effort (by setting the 

expected reward/effort to the mean expectation across the task), the model fits were clearly worse. This confirms 

that subjects learned about rewards and effort, and that these learning processes are necessary for the model to 

explain the behavior. 

In addition, we compared the effort PE model to a heuristic effort learner. This model adjusted its effort 

expectations based on the outcome (success/no success). However, in contrast to the effort PE model, it did so by 

merely adjusting its expectation by the same amount, stable across trials. This means that such a model ignores 

the size of a prediction error (eq. 1.2) and only uses its valence, and consequently always changes the effort 

expectation by the same amount. 

We also compared our model to a model in which rewards are learned using (near) optimal inference. In this 

task, the best approximation of the current reward magnitude is achieved by taking the previously displayed 
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reward magnitude while ignoring the probabilistic 0 rewards. This optimal model performed better than the no-

learning model, but worse than the PE-based learning model. 

Moreover, a model ignoring stimulus identity performed worse than the winning model, thus supporting the 

notion that subjects take stimulus-identity into account (logL=-17320, BIC=35523). 

Lastly, we found that a model without utility parameter τ performs worse and a reward learning algorithm 

that ignores the probabilistic 0 reward magnitudes also has slightly worse model fits.  

 

 

Figure S2. Model comparison. Model comparison revealed that a sigmoidal effort-discounting function, where 

height and indifference point are modulated by reward (‘sigmoidal + height-modulation’) performs best. Models 

that do not employ PE-based learning, such as a no-learning model, use heuristics or optimal inference model 

perform worse. Both, a utility parameter τ and the learning of 0-reward trials turned out to improve model fits. 

The model winning model comparison (using BIC) in a fixed-effects (middle panel) and a random effects analysis 

(right panel; , 94) is highlighted in bright gray. 
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Figure S3. Salience PEs across domains. Whole-brain conjunction analysis (p<.05, cluster-extent FDR correction, 

height threshold p<.001) reveals that unsigned, salience PEs of both domains activate a common network 

including the left anterior insula (A; MNI: -29, 20 -6, cluster 106 voxels, peak t=4.48) and intraparietal sulcus (B; 

MNI: -47 -62 44, cluster 179 voxel, peak t=4.35). 

 

 

Figure S4. Correlation between fMRI regressors. To control for potential collinearities between our regressors of 

interest, we disabled the orthogonalization in our analysis, letting the regressors compete for variance (37). 

Because we independently varied effort and reward trajectories, we were able to achieve very low correlations 

between our regressors. Color bar: average Pearson correlation coefficient; rPE: reward prediction error (PE); 

ePE: effort PE; abs rPE: absolute, salience rPE; abs ePE: salience ePE. 
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Figure S5. Double dissociation of reward and effort predictions error in cortex and striatum. The double-

dissociation between effort and reward PEs was also evident in literature-based regions-of-interest of (A) the 

ventral striatum (VS-ROI derived from http://www.neurosynth.org/; reward PE: t(27)=6.93, p<.001; effort PE: 

t(27)=.25, p=.807; comparison: t(27)=3.74, p<.001), and (B) the dmPFC (ROI derived from (25): MNI: 2 18 54, 

10mm sphere; effort PE: t(27)=5.92, p<.001; reward PE: t(27)=1.31, p=.202; comparison: t(27)=-2.70, p=.012). 

Light blue indicates ROIs overlaid over main effects as shown in Fig. 2. Whole-brain comparison between reward 

and effort prediction errors confirmed a double-dissociation in dmPFC (C) and VS (D) on a whole-brain corrected 

level. (E) Our findings do not contradict previous findings showing reward PEs in the medial wall (37, 113–115), 

as we also found reward PEs, but in distinct, more ventral areas of the medial wall (RPE: reward prediction error). 
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Figure S6. Coronal view on reward and effort PEs in SN/VTA. The spatial gradients for effort and reward PE 

distributions confirms that reward PEs (red) are primarily processed in dorsomedial regions, whereas effort PE 

(blue) are represented in ventrolateral areas. Also see Figures 3 & 4. 

 

 

 

 

 

Figure S7. Effort representation along the medial wall. Effort PE activation (warm colors, as in Fig. 2D) spans 

dmPFC between pre-SMA and ACC (anatomical regions in pink derived from Iannaccone et al., 2015, (116)). 

The effort PE activation lies in close proximity with a previous finding (25) of effort outcomes (blue). 

Interestingly, the effort PEs lie anterior to activations for effort expectation (green). Both, a previous (2) and our 

study (effort expectation during anticipation: p<.05 cluster-extend FWE, MNI: [-15 -12 62], t=4.88, cluster 

size=494) find effort expectation signals in SMA. This suggests that effort evaluation is processed more anteriorly 

to effort expectation. All activations are projected to the same sagittal plane (x-axis) for visualization purposes. 
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Table S1. Effort and reward prediction error activation. Main effect of effort and reward prediction error. Areas 

shown that are significant at p<.05, height-FWE corrected for multiple comparisons, k>30, unless stated 

otherwise. ACC: anterior cingulate cortex; dmPFC: dorsomedial prefrontal cortex; IPS: intraparietal sulcus; 

ITL: inferior temporal lobe; n.s.: no significance; pre-SMA: pre-supplementary motor area; SN/VTA: substantia 

nigra/ventral tegmental area; VS: ventral striatum 

 

Contrast Region Hemisphere Cluster size 

(voxels) 

x y z T Score 

        

effort prediction error temporal pole right 39 48 8 -18 8.39 

 

dmPFC 

(pre-SMA/ACC) 

bilateral 47 -2 15 62 7.45 

 SN/VTA bilateral 6 -3 -14 -15 4.34* 

        

-effort prediction error n.s.       

        

reward prediction error visual cortex left 228 -38 -75 -8 11.83 

   818 -29 -84 17 10.51 

   61 -39 -72 14 7.91 

  right 73 38 -83 11 8.28 

   56 38 -84 -2 8.06 

 IPS right 1764 30 -48 48 11.14 

   32 51 -33 53 7.58 

  left 323 -23 -69 45 8.50 

 VS right 319 11 11 0 10.30 

  left 81 -14 8 -3 8.29 

 ITL right 336 41 -59 -11 9.81 

  left 82 -38 -57 -5 9.49 

 SN/VTA left 109 -9 -26 -12 5.63** 

  right 104 12 -26 -11 5.07*** 

        

-reward prediction 

error 

n.s.       

        

* p=.011, small-volume FWE-corrected for anatomical SN/VTA mask 

** p=.001, small-volume FWE-corrected for anatomical SN/VTA mask 

*** p=.002, small-volume FWE-corrected for anatomical SN/VTA mask 


