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Abstract 

Gold nanoparticles are commonly manufactured by the citrate reduction method, a 

synthesis method pioneered by Turkevich et al. (1951). Based on their experimental 

evidence, Turkevich et al. (1951) advanced the organizer theory, a nucleation-growth 

synthesis mechanism. Subsequently, Kumar et al. (2007) developed a mathematical 

model for the description of the synthesis, basing it on such a theory. However, this 

model has not been thoroughly tested. Recently, contrary to the evidence provided 

by Turkevich et al. (1951), other mechanistic descriptions of the synthesis, which 

emphasize the role of the pH of the solution, have been advanced in the literature. In 

this paper, we investigated the model of Kumar et al. (2007) for different conditions 

of pH, temperature and initial reactant concentrations. To solve the model, we used 

the numerical code Parsival, which is used for solving population balance equations. 

We tested the model for different synthesis conditions studied experimentally by 

various researchers, for which results are available in the literature. The model 

poorly predicted the experimental data because the Turkevich organizer theory does 

not account for the acid-base properties of chloroauric acid and sodium citrate. A 

new model, with a more accurate mechanistic description of the synthesis and of the 

chemistry involved, is therefore required. 
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1 Introduction 

Research in nanotechnology is increasing and is prioritized in developed countries 

such as the United States, the United Kingdom and Japan. This technology exploits 

the unique properties of nanoparticles. These are particles ranging from 1 to 200 nm. 

Depending on the type of material, nanoparticles can be broadly divided into four 

classes: metallic, semiconductor, magnetic and others (Liveri, 2006). In this work, we 

focus on metal and, in particular, gold nanoparticles. 

Gold nanoparticles (GNPs) are important in many applications of nanotechnology, 

because they are inert and optically active. In biomedicine, for example, especially in 

the treatment of cancer, GNPs are highly effective. Different biomedical applications, 

however, require GNPs of different sizes. For instance, for tumor therapy in humans 

the optimal particle size is 50 nm, whilst for tumor diagnosis it is 20 nm (Dreifuss et 

al., 2015). Performance and properties of GNPs depend strongly on particle size and 

shape. The citrate method is the most common method for producing spherical gold 

nanoparticles. Using it, researchers have synthesized GNPs of sizes in the range 9 

to 150 nm, which are potentially useful in several applications. However, the GNPs 

produced are usually polydisperse and often irreproducible. 

A model of the synthesis would help to select the conditions in which to produce the 

particles and to design the reactor in which the synthesis is to be conducted; this 

would enable to control the process better and render the GNPs more reproducible. 

However, before developing a model, one needs to understand, or at least have a 

theory to describe, the mechanisms governing the synthesis. A model built on this 

mechanistic description, in turn, would permit testing the latter and thereby acquiring 

a better grasp of the synthesis mechanisms. In 1951, Turkevich and co-workers 

pioneered the citrate reduction method, using electron microscopy to investigate how 

the GNPs evolve during the synthesis. Their findings made them advance the 

popular “Turkevich organizer theory”. According to this theory, sodium citrate 

reduces chloroauric acid to aurous ions and concurrently oxidizes to dicarboxy 

acetone. Subsequently, by bringing together (that is, by “organizing”) a sufficient 

number of aurous ions, dicarboxy acetone causes gold nuclei to form. Concurrently, 

it also decomposes into acetone, eventually arresting the nucleation process. Once 

this has happened, the remaining aurous ions make the nuclei grow. This justifies 

why this theory is also referred to as “nucleation-growth” theory. 

Subsequently, Frens (1973) studied this synthesis and demonstrated that different 

sizes of GNPs can be obtained by changing the concentration of sodium citrate while 

keeping the concentration of chloroauric acid at about           . This technique 

was slightly modified by Freund and Spiro (1985) to produce GNPs used for testing 

size-dependent catalytic properties of the particles. Abid (2003) used the synthesis 

to form different sizes of GNPs intended for laser and optical properties. However, 

unlike Frens (1973), Abid (2003) varied the concentration of both chloroauric acid 

and sodium citrate. Chow and Zukoski (1994) also explored the synthesis, this time 

by varying the concentration of chloroauric acid while keeping that of sodium citrate 

at           . Unexpectedly, they observed that the particles aggregated. In 2007, 

Kumar and co-workers rationalized these experimental data, developing a model for 



  

the synthesis based on the mechanism proposed by Turkevich et al. (1951). The 

model predictions fitted reasonably well the data of the latter and of many of the 

other researchers mentioned above [for details, we refer to Kumar et al. (2007)]. 

Recently, nevertheless, with the advent of new techniques such as the small angle 

X-ray scattering and X-ray absorption near edge spectroscopy, many authors have 

investigated the synthesis, stressing the importance of the role played by the pH of 

the reaction solution. Ji et al. (2007), for example, reduced the polydispersity of the 

particles by increasing the pH of the solution. They observed that the nucleation-

growth mechanism occurs only when the pH is above 6.5. Below, they observed that 

GNPs evolve by nucleation, aggregation and intraparticle ripening. Similarly, when 

performing the synthesis at 75 0C, for initial pH values of the precursor between 3 

and 5, Wuithschick et al. (2015) reported that nuclei aggregate until forming particles 

of stable size, which they called seeds. Thereafter, these grow into the final GNPs. 

This description is referred to as “seed-mediated” mechanism. Moreover, in a recent 

publication, Kettemann et al. (2016) discussed the importance of the speciation of 

the precursor and reducing agent at different pH. This aspect of the synthesis is not 

accounted for in the theory of Turkevich et al. (1951) and, consequently, in the model 

developed by Kumar et al. (2007). 

In light of this evidence, in this paper we intend to test the Turkevich organizer theory 

by investigating the model of Kumar et al. (2007). We first review the model and then 

we test it under new conditions, by comparing its predictions to experimental data 

available in the literature. In testing the model, we consider factors such as the initial 

concentrations of the precursor and reducing agent, the initial and final pH of the 

reaction solution, and the temperature of the latter. 

2 Review of the mathematical model 

In this section, we briefly review the mathematical model developed by Kumar et al. 

(2007) for the GNPs synthesis by the citrate method. The model comprises material 

balance equations for the reactants and the products involved in the synthesis and a 

population balance equation (PBE) that describes how the particle size distribution 

(PSD) of the nanoparticles evolves. Before reporting such equations, we first clarify 

what compounds are present and what chemical reactions occur. 

Chemical reactions 

The components accounted for in the model are auric ions, citrate ions, aurous ions, 

dicarboxy acetone and acetone, represented by T, C, M, S and D, respectively. All 

the other reaction products are lumped in one fictitious component P. Five chemical 

steps are present: 

Homogeneous reduction:    
  
        (1) 

Nucleation:   
    
               (2) 



  

Heterogeneous disproportionation:   
            
                          (3) 

Degradation of dicarboxy acetone:  
  
       (4) 

Reduction of acetone:       
  
           (5) 

Reaction 1 yields the reactants required in the subsequent steps. The reaction rate is 

assumed to be first-order with respect to both reactants. The reaction yields aurous 

ions and dicarboxy acetone.  

From the Turkevich organizer theory, dicarboxy acetone organizes aurous ions in the 

nucleation step (reaction 2). This step requires two molecules of dicarboxy acetone 

to organize three aurous ions. When a sufficient number of aurous ions are brought 

together, they disproportionate to form a nucleus. The reaction rate is assumed to be 

third-order and second-order with respect to aurous chloride and dicarboxy acetone, 

respectively. Kumar et al. (2007) assumed that the nucleus has a known volume   , 

thus containing     moles of gold, where   denotes the molar density of gold. This 

step stops when either dicarboxy acetone or aurous ions are no longer available. 

While step 2 occurs, so does step 3, which leads to particle growth. However, to take 

place, the latter requires the surface of particles. Thus, this step cannot occur before 

nuclei are formed. Steps 2 and 3 compete for aurous ions. For reaction 3, the rate is 

assumed to be first-order with respect to aurous chloride. As we will see in Section 4, 

unless a significant particle concentration is present in the system, the consumption 

rate of aurous ions by step 3 is negligible compared to that of step 2, the latter step 

being present until dicarboxy acetone (the catalyst for step 2) is fully degraded. This 

mechanism makes it possible to decouple nucleation from particle growth. 

Reaction 4 represents the degradation of dicarboxy acetone. As mentioned, this step 

is crucial, since it limits nucleation and allows decoupling it from particle growth. The 

reaction rate is assumed to be first-order. 

Reaction 5 occurs when the ratio of citrate to chloroauric acid is below unity. Acetone 

acts as a second reducing agent, converting the precursor into GNPs. The reaction 

rate is assumed to be first-order with respect to both reactants. In the model of 

Kumar et al. (2007), the stoichiometric coefficient of component T is 4, whereas we 

have used the value 2.5. The reason is explained in Appendix A of the Supporting 

Information (SI). The value 4 reported in the original model may be a typo. However, 

our simulations showed that, for the conditions investigated, the change in value of 

the coefficient does not affect the results significantly (in particular, the PSD and the 

mean size of the particles vary negligibly). As we will see in Section 4, reactions 2 

and 4 determine the mean size. Because reaction 5 is much slower than these two 

reactions, varying the coefficient affects negligibly the mean size. 

Table 2.1 summarizes the chemical reactions, along with their kinetic rate equations 

and constants (Section 3 reports how the values of the latter were obtained). 



  

Balance equations 

Assuming that the reaction solution is perfectly mixed (which implies that all intensive 

properties, such as temperature and concentrations, are uniform), we can select as 

control volume the region (of constant volume  ) occupied by the mixture contained 

in the batch reactor in which the synthesis occurs. The material balance equations of 

the mixture components are then those reported below. 

Auric chloride 

This is reduced by citrate in step 1 and may be reduced by acetone in step 5. On the 

other hand, it is produced when aurous ions disproportionate in the nucleation and in 

the growth steps. The material balance equation is: 

   

  
                       

   
        

 
        

 

  
 (2.1) 

where C denotes the molar concentration of the reactants (the subscript indicating 

which component is being considered), k the reactions rate constants (the subscript 

indicating which reaction is being considered),   the nanoparticle volume (notice that 

this is not a constant, but a variable characterizing the internal state of the particles) 

and      the particle size distribution (this, in addition to the independent variable   

shown explicitly, depends on the time as well).  

Citrate 

Citrate appears only in step 1 as a reactant. The material balance equation is: 

   

  
         (2.2) 

Aurous chloride 

This is produced in steps 1 and 5, when auric chloride is reduced, but is consumed 

in steps 2 and 3. Therefore, the material balance equation is: 

   

  
                       

   
         

 
        

 

  
 (2.3) 

Dicarboxy acetone 

This is consumed by the reaction in step 4 and generated by the reaction in step 1. 

Note that in the nucleation step dicarboxy acetone acts as a catalyst, and therefore it 

is not consumed. The material balance equation is: 

   

  
             (2.4) 

Acetone 

The material balance equation for acetone is obtained similarly and reads: 

   

  
                     (2.5) 

 

 



  

Gold nanoparticles 

We describe the particle population using the number density function (NDF)       , 

which is the number of GNPs per unit volume of physical and particle-volume space 

at time  . In other words,        is defined so that           represents the number 

of particles per unit volume of physical space with volume in the range    around   

at time  . The evolution of        is governed by the population balance equation 

and reflects the effects of the nucleation, growth and aggregation processes taking 

place in the mixture. The nucleation and growth rates are modelled as follows: 

             
   

          (2.6) 

       
  

 
   

 
   (2.7) 

where         is a Dirac delta function centered on the nucleus volume   . The 

factor 2 on the right-hand side of the equations above appears because in reactions 

2 and 3, for each mole of T that forms, two moles of gold atoms generate.  

Although the model is based on a nucleation-growth mechanism, it accounts also for 

aggregation, in light of the experimental results that Chow and Zukoski (1994) found 

at high citrate concentrations. So, the aggregation submodel plays an important role 

only under some process conditions (clarified in Section 4), and is given by: 

          
 

 
 

            

 
       

 

  
               

       

 
     

 

  
    (2.8) 

The first and second terms represent particle birth and death caused by aggregation, 

respectively.   and   are the aggregation kernel and stability factor, respectively. 

The former is given by: 

        
    

  
 

 

     
 

  
      

           (2.9) 

where   ,   and   are the Boltzmann constant, the temperature of the mixture and 

the viscosity of the fluid, respectively. The stability factor is given by the expression 

reported below. We discovered a typo in the equation for   reported by Kumar et al. 

(2007). The authors confirmed (via email correspondence) that the correct 

expression is: 

    
   

 
                          (2.10) 

where     and     are the initial molar concentrations of chloroauric acid and sodium 

citrate, respectively, and   is the surface charge, given by: 

                     ;      
 

                
 (2.11) 

Note that   depends on     and    . These are the initial concentrations of T and 

C, and so do not change with time. The only variable in eq. (2.10) is  , which can 

assume a maximum numerical value of     when     and a minimum numerical 

value of      when    . Thus,       varies from       to      ; the order of 

magnitude does not change, and   changes little as the synthesis progresses. This 



  

is unexpected. Rather,   should increase significantly and tend to infinity with time 

so as to stabilize the particles and prevent them from aggregating indefinitely. 

Finally, the population balance equation reads: 

                                         (2.12) 

The first term on the right-hand side of the equation models, as usual, convection; in 

this case, however, it is convection in particle-volume space (not in real space). The 

other three terms represent generation owing to nucleation and aggregation. For 

further details about the expressions reported above, we refer to Kumar et al. (2007). 

3 Model implementation in Parsival 

As shown, the model comprises material balance equations for the reacting species 

and a population balance equation for the GNPs. The former are ordinary differential 

equations, while the latter is an integro-differential equation. Their combination yields 

a complex model that can only be solved numerically. To this end, we employed a 

commercial code called Parsival. This simulation tool is designed for the integration 

of population balance equations in which the number density function representing 

the particle population, as well as any other intensive variable such as concentration, 

are uniform in space. However, the number density function adopted in Parsival is in 

terms of the particle diameter  , while the NDF in the original model of Kumar et al. is 

in terms of the particle volume  . Also, Parsival works on mass basis and expresses 

the material balances in terms of mass per unit time, while the original model is on 

mole basis and expresses the material balances in terms of moles per unit time. So, 

to solve the model in Parsival, we had to modify the equations. These are reported 

below (details about the conversion are given in Appendix B of SI). In the equations, 

  is the molecular weight (the subscript indicating the component being considered) 

and        is the number density function in terms of the particle diameter  . 
 

Auric chloride 

          

  
                           

   
                   

 

  
  (3.1) 

Citrate 

          

  
              (3.2) 

Aurous chloride 

          

  
                           

   
                    

 

  
  (3.3) 

Dicarboxy acetone 

          

  
                  (3.4) 

 



  

Acetone 

          

  
          

 

   
        (3.5) 

All other products 

          

  
     

 

   
        (3.6) 

Population balance equation 

                                         (3.7) 

with: 

              
   

         (3.8) 

      
 

 

  

  
   

  

 
 (3.9) 

     
 

 
 

       

 

  

  

 

  
                      with                    (3.10) 
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    (3.11) 

        
    

  
 
 

 
 

 

  
        (3.12) 

where    is the particle volume shape factor (which we set equal to /6, assuming 

that the particles are spherical). 

The nucleation term in the PBE involves a Dirac delta function. This function cannot 

be implemented in Parsival; therefore, we resorted to a similar but smooth function: a 

Gaussian distribution with mean equal to    (that is, the size assumed for the nuclei) 

and an extremely small standard deviation. 

In the synthesis no nanoparticles are initially present. We could implement this initial 

condition in Parsival, but an initial NDF that is identically zero may lead to numerical 

convergence problems. So, we initialized the problem employing the same Gaussian 

distribution used for modelling nucleation, making sure that the mass (or number) of 

particles initially present was vanishingly small and thus irrelevant. 

We will show that these assumptions (i.e., initial particle mass and initial form of the 

NDF) do not affect the results. 

4 Implementation check 

To check that the model had been correctly implemented in Parsival, we reproduced 

some of the results obtained by Kumar et al. (2007). Parsival requires values for the 

seven parameters used in the model, i.e.,   ,   ,   ,   ,   ,   and   . Kumar et al. 

(2007) obtained the values for   ,    and    via best-fit, by requiring that the model 



  

results should fit the data of Frens (1973). They fixed    to render the synthesis time 

of the same order of magnitude as that experimentally determined at 100 0C. Also, 

they assumed a value for    smaller than    to reflect that the time the process takes 

to complete is larger when a limited amount of citrate is present (as opposed to the 

case in which citrate is in excess). They took the value of   from the literature and 

assumed a nucleus size of 2 nm. We employed the same values in our simulations. 

These are:  

        
  

     
                             

  

   
 

 
 

    
                

 

 
 

 

            
  

    
                    

  

     
 

 

        
   

                                 

 
From these values, we obtained approximate characteristic times for the various 

reactions of the synthesis (see Appendix C in the SI). The synthesis begins with the 

reduction of chloroauric acid by citrate (reaction 1), which produces aurous chloride 

and dicarboxy acetone. The characteristic time of this reaction is          . In the 

presence of dicarboxy acetone, aurous chloride converts according to reaction 2, 

whose characteristic time is        
   . Concurrently, dicarboxy acetone degrades 

into acetone according to reaction 4, whose characteristic time is         . Once 

dicarboxy acetone is consumed, reaction 2 stops. Therefore, reaction 2 has barely 

started when it stops. However, quite a lot of nuclei are formed (                . 

According to reaction 3, the residual aurous chloride grows the formed nuclei. The 

characteristic time of this reaction is        
   . The last reaction is the second 

reduction of auric chloride by acetone, occurring only when the ratio of citrate to 

chloroauric acid is less than unity. The synthesis, nevertheless, is usually carried out 

with citrate in excess, and therefore we did not estimate the characteristic time of this 

final reaction.  

As previously pointed out, the model also accounts for aggregation; nevertheless, 

particles only aggregate significantly under certain conditions. We will point out these 

conditions when discussing how the model predicts the data of Chow and Zukoski 

(1994). Before that, we discuss the results from the simulations obtained by using 

the initial conditions adopted previously by Frens (1973) and subsequently by Kumar 

et al. (2007). The latter, Case 1, will illustrate that in the Turkevich organizer theory 

particles evolve via the nucleation and growth processes; the former, Case 2, will 

illustrate the conditions that favour aggregation. In reporting the experimental data, 

we included error bars only for the data of Chow and Zukoski (1994), because the 

other researchers did not report them in their publications. 



  

Case 1 

Kumar et al. (2007) employed the experimental data of Frens (1973), which were 

obtained by keeping     constant at            while changing     from       to 

            at 100 0C. These initial conditions translate into citrate to gold ratios 

from about 0.4 to 2.5. They reported their numerical solutions (the mean diameter of 

the particles) when 99% of gold had converted to GNPs, basing this criterion on the 

fact that the first and higher-order processes included in the model take infinite time 

to complete (Kumar et al., 2007). In the simulations, for the case where         

          ,  this criterion translated into a synthesis time of       . The synthesis 

times for other cases may be longer or shorter, depending on the initial conditions. 

Figure 4.1 reports the numerical predictions obtained by us in Parsival and by Kumar 

et al. (2007), along with the experimental findings of Frens (1973). Kumar et al. 

extended the numerical predictions beyond a ratio of 2.5, considering values up to 7. 

Our predictions agree reasonably well with those of Kumar et al., with a maximum 

deviation within 5%. To illustrate how we obtained this agreement, let us analyse the 

results further. For the case in which                   , the characteristic time 

for aggregation (      ) is much longer than the synthesis time (      ). Therefore, 

aggregation is insignificant, and the mean size of the particles is      , as reported 

by Kumar et al. The particles form at      (the nucleus size) and then grow to their 

final size. We can calculate the amount of gold that forms the nuclei as follows: 

 

                                             

                                  
 

   

 
 

   

  
                       

 (4.1) 

Thus, the nuclei concentration that Kumar et al. obtained is: 

 

 

   
 

                

                          
                     

 

In our simulations we obtained                     (the relative deviation from the 

value above is less than 0.8%). Because these values are very close, our predictions 

closely agree with those of Kumar et al.  

Citrate reacts with auric ions to produce aurous ions and dicarboxy acetone. The 

stoichiometric ratio of citrate to gold, obtained by combining reactions 1 to 5, is     

(refer to Kumar et al., 2007). DCA organizes the aurous ions in the nucleation step 

(reaction 2), but concurrently degrades into acetone (reaction 4). When         is 

less than    , the amount of DCA is limited by the concentration of citrate. Thus, as 

this ratio decreases, the rate of nucleation decreases. Because the concentration of 

the precursor is kept constant, the nuclei produced grow to bigger sizes. 

When         is higher than    , the amount of DCA is limited by the concentration 

of chloroauric acid, which is kept constant. Hence, as the ratio increases, the rate of 

nucleation remains almost constant, yielding GNPs of almost identical mean size. 



  

Case 2 

Kumar et al. (2007) used this case to emphasize the role of aggregation, which was 

insignificant for the conditions examined above. The experimental results that they 

tried to reproduce were those of Chow and Zukoski (1994). The latter varied     from 

     to            while keeping     and the temperature constant at            

and 70 0C, respectively, and reported that the nanoparticles aggregated. Although 

the temperature was different from Case 1, Kumar et al. used the same values of the 

reaction rate constants. In our investigation, we did the same, not accounting for the 

temperature effect, inasmuch as our goal in this preliminary part of the work was to 

reproduce the values reported by Kumar et al. and discuss our findings. 

With these conditions citrate is always in excess, so that chloroauric acid determines 

the amount of DCA formed. Using the same criterion of 99% of gold converted to 

GNPs and following the reasoning in Appendix C of the SI, the synthesis times for  

              and                are        and      , respectively. Figure 

4.2 shows the predictions of the model that we implemented and those obtained by 

Kumar et al., compared with the experimental data of Chow and Zukoski (1994). The 

model of Kumar et al. does not match the experimental data very well; however, the 

results seem to yield a correct trend, showing that the mean diameter decreases to a 

minimum value and then increases when the initial concentration of tetrachloroauric 

acid is increased. This, as Kumar et al. reported, shows that the aggregation process 

observed by Chow and Zukoski does occur. The predictions of the model which we 

implemented in Parsival, however, do not show this trend (see Figure 4.2 for the 

predictions trend at 99% of gold converted to GNPs). 

To investigate the reason for this difference,  we estimated the characteristic times of 

the aggregation process for               and               . The times we 

obtained are      
    and      

   , respectively (refer to Appendix D of the SI for 

details). At these lowest and highest initial concentrations of tetrachloroauric acid, 

the characteristic times of aggregation (    and      ) are much longer than the 

corresponding synthesis times (    and     , respectively). We therefore concluded 

that the results reported by Kumar et al. in this case could not be obtained using the 

99% conversion criterion previously described.  

When               (the lowest initial concentration of tetrachloroauric acid), the 

citrate to gold ratio is   . In these conditions, about                  form, hence 

consuming                of auric ions (see Appendices C and D of the SI for 

details). These nuclei grow to an estimated mean particle diameter of        (this 

value is not shown in Figure 4.2). For the highest initial concentration of 

tetrachloroauric acid, however,               , about                    form, 

thus consuming                 of auric ions. These nuclei grow to an estimated 

mean particle diameter of        . Hence, within the synthesis time, the particle 

diameter decreases when the initial concentrations of tetrachloroauric acid increase. 

This agrees with our numerical results. 

To obtain the trend reported by Kumar et al., we ran the simulation for much longer 

times than the synthesis times to allow particles to aggregate. The model predictions 



  

at different simulation times (   ,     and        ) are also shown in Figure 4.2. 

Since the characteristic time for aggregation at                is      , by       

the NPs have started to aggregate, increasing the mean particle diameter from 

        to        . As     decreases, the particle concentration decreases while    

increases, the particles requiring longer times to aggregate significantly. By      , 

the mean size for                has increased to more than twice the value 

obtained at 99% gold converted to particles; conversely, for               , for 

instance, the mean size has only increased from         to        . 

We should note that in the model of Kumar et al. particles aggregate indefinitely; this 

is because the stability factor  , which should increase with time, remains constant. 

As shown in Section 2,   depends on the initial concentrations     and    , not on 

the current concentrations    and   . Figure 4.2 reveals this indefinite aggregation: 

the longer the simulation time, the larger the mean particle diameter. We can infer 

that, as the simulation time tends to infinity, the particles would coalesce into one 

aggregate. This is clearly at variance with the experimental evidence. 

To make the model correctly reflect the experimental evidence, which indicates that 

aggregation must eventually stop, in the equation for the stability factor, Eq. (2.10), 

we replaced the initial concentrations,     and    , with the current ones,    and   . 

The model, however, did not improve. As    and    decrease due to the reactions, 

 , and in turn the aggregation time, increase. Because    and     eventually reach 

constant values (but do not both vanish),   and the aggregation time also reach 

constant values. Accordingly, the aggregation time never diverges and the particles 

aggregate indefinitely at constant rate. However, several authors, such as Chow and 

Zukoski (1994) and Ji et al. (2007), reported that the aggregation process becomes 

less significant as particle size increases. Therefore, the expression for   must be a 

function of, and should increase with, particle size. 

Because particles aggregate indefinitely in the model, we retain the criterion of 99% 

of gold converted to GNPs to obtain the simulation time and use the corresponding 

mean size in testing the model in Section 5. 

Effects of our assumptions in the model implementation 

We ran four simulations to check the effect of the reactor volume and of the initial 

particle size distribution on the results of the model. In the model of Kumar et al. 

(2007), it was assumed that the system was perfectly mixed. This implies that the 

properties of the system are uniform in physical space and therefore do not depend 

on the location in physical space. It also implies that the reactor volume should not 

affect the results of the model. To check this, we varied the reactor volume, keeping 

the initial concentration of the reactants constant. We used two reactor volumes of   

and      , respectively. To check the effect of the initial particle size distribution, we 

used two distributions of different shapes (see Figure 4.3), denoted as D1 and D2. In 

all cases, the initial particle mass was set to 1e-20 kg; this is a negligible amount, 

which reflects the fact that initially no particles are really present in the system (note 

that, as already mentioned, using an initial distribution that vanishes identically over 



  

the entire size space is not recommended). In all cases, the final mean size of the 

particle was the same, equal to      nm. So, as expected, neither the volume nor the 

shape of the initial distribution affects the numerical results.  

5 Testing of the model 

In the previous sections, we reported and solved the model developed by Kumar et 

al. (2007); also, we compared our results to those of Kumar et al. (2007). In this 

section, we test the model using experimental data available in the literature to 

assess whether the Turkevich organizer theory, on which the model is based, rightly 

describes the synthesis. Kumar et al. used the discussions in Case 1 (Section 4) to 

illustrate that the organizer theory is generally valid for the citrate reduction method. 

After employing the work of Frens (1973) to estimate the parameters used in the 

model and predicting his experimental data with excellent agreement, Kumar et al. 

reported that the same model parameters gave good predictions for the work of 

Turkevich et al. (1951), Freund and Spiro (1985), and Abid (2003). We believe the 

model well reproduced these data because these researchers used initial conditions 

similar to those of Frens, whose work Kumar et al. fitted to make the predictions from 

the nucleation-growth model accurate. In Case 2 we showed how the model failed to 

predict the data of Chow and Zukoski (1994) and the inconsistencies in temperature 

and simulation times. In this section, we employ new data to test the model. 

Many other researchers have investigated the synthesis experimentally and in recent 

times have emphasized the significant role of pH in the synthesis (both the initial and 

final pH), which determines how particles evolve in the synthesis. For example, Ji et 

al. (2007) observed that NPs evolve by nucleation, aggregation and growth when the 

final pH of the mixture is below 6.5, while they evolve by nucleation and growth when 

the final pH of the mixture is above 6.5. In the same way, Wuithschick et al. (2015) 

stated that the synthesis follows the seed-mediated mechanism (which is consistent 

with the nucleation-aggregation-growth description of the synthesis) when the initial 

pH is equal to 3.5. This mechanism of the synthesis can be explained on the basis of 

the chemical properties of the precursor and reducing agent, which are a strong acid 

and a weak base, respectively. 

The precursor, tetrachloroauric acid, completely ionizes in an aqueous solution to 

release hydrogen ions and tetrachloroauric ions. In the presence of a base, hydroxyl 

ions replace chloride species in tetracloroauric ions to yield from monohydroxylated 

to tetrahydroxylated species. The speciation of the latter depends on the pH. The 

more hydroxylated the species is, the less reactive it is [whilst monohydroxylated 

trichloroauric ions can be reduced, species from dihydroxylated dichloroauric ions do 

not react, unless the pH is lowered (Ji et al., 2007)]. The model developed by Kumar 

et al. (2007) does not account for these pH effects, solely accounting for how the 

tetrachloroauric acid reduces in the synthesis. 

The reducing agent, on the other hand, performs three important roles: reduces the 

precursor, supplies the hydroxyl ions and stabilizes the NPs, preventing aggregation. 

These additional reactions and processes render the synthesis complex to describe. 



  

Wuithschick et al. (2015) identified the factors affecting the final size as temperature, 

the initial concentrations of the precursor and reducing agent, and the initial and final 

pH. Thus, we used these factors to test the model. First, we tested the model against 

the work of Wuithschick et al. (2015) and Turkevich et al. (1951) for the effect of 

temperature. Second, we tested it against the work by Takiyama (1958), carried out 

at 80 0C. Third, we employed the works of Zabetakis et al. (2012) and Li et al. (2011) 

to test the model for the effect of the initial pH of the precursor. Lastly, we used the 

data of Ji et al. (2007) to test the role of the final pH of the mixture. For all these 

experimental data, we did not report error bars, because they were unavailable in the 

articles mentioned above, from which the data were taken. 

5.1 Effect of temperature 

In their publication, Kumar et al. (2007) only tested the model for the Turkevich 

organizer theory at the usual synthesis temperature of 100 0C. In the literature, 

however, authors such as Turkevich et al. (1951) and Wuithschick et al. (2015) have 

investigated the effect of temperature on the final particle diameter. The former 

reported the mean sizes at 70, 80 and 100 0C for initial concentrations of     

            and               , while the latter reported the mean sizes as the 

temperature changed from 23 to 100 0C for initial concentrations of     

            and               . In both cases, citrate was in excess. To test 

the model at temperatures different from 100 0C, we require the activation energies 

for the reactions involved in the synthesis so as to obtain their corresponding 

reaction rate constants. Out of five reactions, only four have their activation energies 

reported in the literature. Turkevich et al. (1951) reported the activation energies for 

the nucleation step (reaction 2) and growth step (reaction 3) as    and              
respectively; Wiig (1928) reported an activation energy for the reaction of dicarboxy 

acetone decomposition (reaction 4) of              . Using molecular modelling, 

Ojea-Jiménez and Campanera (2012) obtained the activation energy of the reduction 

step by citrate (reaction 1) as            . The last reaction (reaction 5), as we 

discussed, occurs only when the ratio of the initial concentrations of sodium citrate to 

tetrachloroauric acid is below unity. Therefore, in these investigations, reaction 5 was 

insignificant. 

Figure 5.1A shows how the mean particle diameter changes with temperature for the 

data of Wuithschick et al. (2015). The model poorly predicts the experimental data. 

Starting from 23 0C, the mean size from experiment decreases with temperature and 

reaches a minimum value at around 60 0C before increasing. In contrast, the model 

predicts that the size decreases from 23 0C, where the mean diameter is 24.5 nm, to  

40 0C, where the mean diameter is 21.5 nm, remaining constant thereafter. In this 

range of temperatures, the characteristic time of aggregation remains essentially 

constant at       (see Appendix D of the SI for details). However, the synthesis time 

decreases with increasing temperature. At 23 0C, the synthesis time is      , a value 

obtained following the reasoning in Appendix C of the SI, where the reaction rate 

constants at this temperature are used. As the synthesis time is longer than the time 

constant for aggregation, the particles aggregate, attaining a final mean size of 24.5 



  

nm. At higher temperature, the effect of aggregation decreases as the synthesis time 

decreases. Therefore, the mean size decreases. By 50 0C, aggregation has stopped 

affecting the mean size, because the synthesis time is now much shorter than the 

characteristic time of aggregation. When the effect of aggregation is negligible, as 

highlighted in Section 4, the balance between the nucleation step (reaction 2) and 

the decomposition of dicarboxy acetone (reaction 4) determines the final mean size, 

which remains constant at 21.3 nm with increasing temperature. To explain this 

profile, in Table 5.1, we report the values of the rate constants of reactions 2 and 4, 

and their ratio at different temperatures. The ratio (kn/ks) remains constant, and this 

explains why the final mean size is constant as well. However, the experimental data 

do not remain constant with temperature; so, the balance between reactions 2 and 4 

does not describe the synthesis. This aspect, consequently, is not properly captured 

by the model of Kumar et al. The primary reason for this is that the stability factor   

depends on the temperature of the mixture (Chow and Zukoski, 1994; Marchisio and 

Fox, 2013), but in the constitutive equation for particle aggregation used in the model 

of Kumar et al. this dependence is not accounted for.    

The seed-mediated mechanism proposed by Wuithschick et al. (2015) describes the 

synthesis and explains the profile of the final mean size with temperature shown in 

Figure 5.1A. According to this mechanism, nuclei generate after citrate reduces 

tetrachloroauric acid. These nuclei aggregate to form bigger particles. Similarly, 

particles containing two or more nuclei can also aggregate. Nevertheless, particle 

aggregation stops for particles with sizes equal to the seed size [see Wuithschick et 

al. (2015) for more information]. The seeds subsequently grow to the final particle 

size. Thus, the seed-mediated mechanism occurs according to the order nucleation, 

aggregation and growth. Among these processes, aggregation is the most sensitive 

to temperature. Temperature affects both the aggregation kernel   and the stability 

factor  , both of which determine the aggregation rate (Marchisio and Fox, 2013). 

For an aqueous system, Wang et al. (2010) reported that aggregation is insignificant 

below 60 0C for the reaction conditions which Wuithschick et al. (2015) investigated. 

Temperature also affects the rates of the nucleation and growth processes, as the 

Arrhenius equation illustrates. At low temperatures, both rates decrease so that only 

few nuclei form, and these grow slowly. Since the reaction mixture is left until all the 

precursor is converted, the few nuclei formed at 23 0C reach a large final size. As the 

temperature increases from 23 to 60 0C, the nucleation rate increases, forming more 

nuclei and leaving behind a smaller amount of precursor. The latter grows the many 

nuclei to smaller final sizes. For these initial conditions, as observed in Figure 5.1A, 

aggregation becomes significant above 60 0C. As the temperature rises from 60 0C, 

particle aggregation increases the final particle size. 

5.2 Effect of initial HAuCl4 concentration 

Another investigation of the Turkevich synthesis that did not follow the usual method 

of changing citrate concentration at a fixed concentration of tetrachloroauric acid was 

that by Takiyama (1958). This investigation predated the work of Frens and provides 

additional data with which to test the model. Takiyama studied the synthesis at 80 0C 



  

and                 while changing     from      to            ; so, citrate is in 

excess. In solving the model for these initial conditions, we used the values of the 

reaction rate constants and other parameters at the operating temperature. Figure 

5.2 shows the model predictions along with the corresponding experimental data. 

For the model predictions, which do not agree with the data, the profile of the mean 

particle diameter with the initial concentration of gold resembles that of Figure 4.2 

(this was expected, because the operating conditions in this study resemble those of 

Case 2, discussed in Section 4). As the synthesis is at 80 0C, the synthesis time is 

far shorter than the aggregation characteristic time, so that the role of aggregation is 

negligible and only nucleation and growth affect the particle size distribution. If we  

assume that the two latter processes are fully decoupled (as shown in Section 4), the 

concentration of nuclei formed equals the concentration of particles in the final 

reaction mixture. As revealed in Appendix D of the SI, to determine the concentration 

of nuclei   , we need to know the maximum concentration of nuclei       , the 

characteristic time for nucleation    and the characteristic time for the decomposition 

of dicarboxy acetone   . The expression                  is found. If we consider 

the lowest concentration of precursor considered,                , following the 

reasoning presented in Appendix C of the SI, we obtain        ,          and 

                          , which results into                       . This 

estimate has of the same order of magnitude as the value obtained from the model 

numerical solution (                   ). In forming these nuclei,            

            of the precursor converts. The concentration of the precursor that is 

left is             . Using Eq. (4.1), the remaining amount grows the nuclei to: 

  
    

        
    

 

        

For the highest precursor concentration,                , on the other hand, the 

model numerical solution yields a nuclei concentration of                    , 

which is      times the concentration of nuclei obtained for                . 

These more concentrated nuclei grow to a mean size of       . Thus, as we move 

from                 to            , the mean particle diameter decreases from 

       to       . 

The seed mediated mechanism, on the other hand, explains the experimental profile 

in Figure 5.2. The final mean size increases slightly from       at              

   to       at                 and then remains almost constant afterwards. 

Because the sodium citrate solution can supply    , the precursor can undergo two 

reactions: reduction to form the nuclei and passivation by    . The passivation can 

produce monohydroxylated species of the precursor; even in the presence of much 

   , it can produce higher hydroxylated species of the precursor. The 

monohydroxylated species reduces to gold and grows the particles while the higher 

hydroxylated species cannot reduce to gold, leaving behind unconsumed gold in the 

solution. At                , the ratio of citrate to gold is 80, producing much     

that can form higher hydroxylated species. The mean size is small as some of the 



  

precursor is lost to the formation of higher hydroxylated species. As     increases, 

the ratio of citrate to gold decreases, producing a smaller amount of    . Therefore, 

more precursor converts to gold nanoparticles, increasing the mean size. As     

increases further, more precursor goes through the reduction step and produces 

many nuclei and seeds. Although more precursor also forms the monohydroxylated 

species that can grow the seeds, the balance between the number of seeds and the 

amount of gold available to grow them keeps the final mean size almost constant. 

5.3 Effect of initial pH of HAuCl4 (aq) 

To test the effect of the initial pH of the precursor, we employed the initial conditions 

of the work by Zabetakis et al. (2012). They synthetized the NPs at different initial 

concentrations (    –            ) of the precursor at a temperature of 100 0C, 

keeping the citrate to gold ratio (denoted as  ) constant. They considered   values 

of 2, 3, 4 and 5. We obtained the initial pH values from the initial concentrations of 

tetrachloroauric acid, which is a strong acid. Figure 5.3 shows the model predictions 

against the experimental data for the effect of the initial pH of tetrachloroauric acid 

for all the values of   investigated. The model predictions are unsatisfactory. They 

generally increase as the initial pH rises, unlike the experimental data that decrease 

and then increase, hence presenting a minimum. Low initial pH translates into high 

concentration of tetrachloroauric acid. For instance, for     (i.e., the lowest pH 

considered, equal to     ),               . From the simulation, this concentration 

yields                , consuming                 of  . Since aggregation is 

insignificant, these nuclei can only grow to a mean size of       , consuming the 

remaining quantity of  . The highest pH of     , on the other hand, corresponds to 

              , and generates                . To form, these nuclei consume 

                of   and grow to a bigger mean diameter. So, in the numerical 

simulations, as the initial pH increases, the mean diameter increases. 

The seed-mediated mechanism describes the behaviour observed experimentally. 

Low initial pH translates into a small amount of    , which can only passivate a 

small portion of the precursor. Most of the precursor converts into gold and produces 

several nuclei. These nuclei aggregate to form the seeds. On how the reaction 

condition favours aggregation, Wuithschick et al. observed vigorous aggregation at 

low pH that becomes less significant as the initial pH increases. Thus, at low pH, 

because of the effect of aggregation, the several nuclei aggregate to form larger 

seeds, producing larger final particles. As the initial pH increases, the amount of 

   , which passivates the precursor, increases. The amount of the precursor that 

converts into gold decreases, yielding fewer nuclei. Because aggregation becomes 

less significant, these fewer nuclei aggregate less into smaller seeds, producing final 

smaller particles. As the initial pH increases further, even more precursor becomes 

passive. A small portion of the precursor reduces to even fewer nuclei. However, 

according to Wuithschick et al., increasing the initial pH at this stage does not 

significantly reduce the seed size. Thus, the fewer nuclei yield fewer seeds. Then, 

the passive form of the precursor, which increases with the initial pH, grows the 

fewer seeds to larger particles. 



  

Li et al. (2012) published a work similar to that of Zabetakis et al. (2012). They used 

different initial concentrations of tetrachloroauric acid at a constant citrate-to-gold 

ratio of 4. Figure 5.4 shows their data with the corresponding model predictions; the 

trends are similar to those reported by Zabetakis et al., and similar considerations to 

those already discussed hold.  

5.4 Effect of final pH of the mixture 

As previously mentioned, Ji et al. (2007) have reported that the mechanism of the 

synthesis depends on the final pH of the reaction mixture: at low pH the mechanism 

involves nucleation, aggregation and then growth, while at high pH it involves only 

nucleation and then growth. Calculating the final pH of the reacting mixture requires 

detailed knowledge of the thermodynamics of the synthesis, which is currently not 

available in the literature. The dissociation of sodium citrate depends on the pH, 

which in turn depends on the sodium citrate concentration. Along with reporting the 

values of the citrate to gold ratios considered, Ji et al. (2007) measured the 

corresponding final pH of the synthesis. They varied     from             to 

            while keeping both     and the temperature constant at             

and 100 0C, respectively. Figure 5.5 shows their data along with the model 

predictions at 99% of gold converted to GNPs. With this criterion, aggregation is 

insignificant in the simulation. For the model predictions, as the final pH increases, 

the mean particle diameter decreases. While, for the experimental data, the mean 

particle diameter decreases until the final pH reaches      and then increases. The 

lowest final pH of      corresponds to                 and a citrate to gold ratio 

     . For this ratio, in the model, citrate is the limiting reactant and determines the 

amount of DCA that forms the nuclei. The concentration of the latter is 

               . These nuclei then grow to a mean size of        . Increasing the 

final pH corresponds to increasing     so that citrate becomes in excess and     

starts determining the amount of DCA that forms the nuclei. The highest final pH of 

     corresponds to                . At this pH,                 and the 

concentration of nuclei results to be                ,      times larger than that of 

the lowest pH. The nuclei concentration therefore varies from                at the 

minimum final pH to                at the maximum final pH. As     is constant at 

           , the final mean size decreases with increasing pH.  

It is still the seed-mediated mechanism by Wuithschick et al. (2015) that explains the 

experimental data, just as Ji et al. (2007) also explained the synthesis in their report 

using two mechanisms: nucleation-aggregation-growth when the pH is below 6.5 and 

nucleation-growth when the pH is above 6.5. Both explanations, by Ji et al. (2007) 

and Wuithschick et al. (2015), stem from the acid-base properties of the precursor 

and reducing agent. From thermodynamics, tetrachloroauric ion converts reversibly 

to the monohydroxylated form, both ions being present in equal amounts at the pH of 

6.5. pH below 6.5 shifts the equilibrium to tetrachloroauric ion while pH above 6.5 

shifts it to the monohydroxylated form. At the lowest final pH of     , almost all the 

precursor forms nuclei; only a small portion (or even none) of it becomes 

hydroxylated. This produces several nuclei that then aggregate to form large 



  

particles. As the final pH increases, aggregation starts playing a less significant role, 

and therefore the particle diameter decreases until the final pH is    . Above    , less 

of the precursor forms nuclei while more becomes hydroxylated, so that less 

particles form, which later grow when the hydroxylated precursor reacts on the 

particle surface. Thus, the increase in size after the pH of     is due to fewer 

particles growing bigger, whereas the increase in size below the pH of     is due to 

several particles aggregating into bigger sizes. 

6 Conclusions 

This work investigated the mathematical model developed by Kumar et al. (2007) for 

the synthesis of gold nanoparticles by means of the citrate method. This is the only 

model, based on the Turkevich organizer theory, available in the literature. The 

model accounts for five reaction steps, one of which produces dicarboxy acetone, 

which organizes gold in the nucleation step. While DCA decomposes, the particles 

grow by the deposition of the residual precursor on their surfaces. GNPs evolve by 

the nucleation-growth mechanism, as proposed by Turkevich et al. (1951). Although 

Kumar et al. (2007) included a submodel for aggregation, this submodel does not 

play a significant role over the synthesis time.  

Further, we tested the model for different conditions of temperature, concentrations 

and pH using various experimental data from the literature. The model performed 

poorly in describing the synthesis. We believe that this is because the five chemical 

steps over which the model of Kumar et al. is built do not reflect the chemistry of the 

synthesis accurately. Because the precursor and reducing agent are a strong acid 

and a weak base, respectively, their acid-base properties cover an important role in 

the synthesis. As a weak base, the reducing agent releases     in water. The 

precursor, on the other hand, can be reduced and/or hydroxylated. Kumar et al. only 

modelled the reduction step that produces the nuclei but did not consider the 

hydroxylation step. Subsequently, these nuclei aggregate into seeds, which then 

grow by reacting with the hydroxylated precursor. Using the seed-mediated 

mechanism proposed by Wuithschick et al. (2015), we were able to qualitatively 

explain the experimental data reported by the researchers. 

In the light of this work, it is necessary that a new model be derived for the citrate 

method. Since the seed-mediated mechanism of Wuithschick et al. (2015) seems to 

be able to convincingly describe the trends observed experimentally, this model 

should be based on this mechanistic theory along with all the chemical steps that 

reflect the acid-base properties of the precursor and reducing agent. The new model 

should therefore account for the hydroxylation of the precursor and its speciation, the 

simultaneous reduction of the precursor to gold atoms, the speciation of the reducing 

agent, the aggregation of gold atoms into seed particles, and the growth of the latter 

into the final GNPs via reaction with the hydroxylated form of the precursor. 
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Nomenclature 

Symbol Meaning Units 

Roman alphabets 

     Birth aggregation rate                

   gold (III) chloride        

   Citrate        

   Acetone        

   aurous chloride        

   Dicarboxy acetone        

   Other products        

     Death aggregation rate                

  Fraction of surface occupied by 

gold species 

  

     number of particles per 

particle-length per total volume 

of fluid-particle mixture 

         

   linear growth rate     

    volume-growth rate      

     Nucleation rate          

   Rate constant for the reaction  

between citrate and auric acid 

           

   Rate constant for the reduction 

with acetone 

           

   Rate constant for the                



  

nucleation step 

   Rate constant for the 

degradation of dicarboxy 

acetone 

    

   Rate constant for the growth 

step 

    

   Boltzmann constant     

                                

     number of particles per 

particle-volume per total 

volume of fluid-particle mixture 

            

        Aggregation kernel      

  Kinetic rate equation            

  Size   

   Smallest particle size   

   Particle size of volume     

  Time   

  Temperature   

  Particle volume    

  total volume of the fluid-particle 

mixture 

   

  Stability factor   

   

 

Greek alphabets 

        Aggregation kernel      

  the Debye-Huckel parameter   

  Fluid viscosity          

  Molar density of gold        

  Surface potential    

  Characteristic time   
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Figure captions 

Figure 4.1. Comparison of the predictions of the model implemented in this work for 

Case 1 with those of the model of Kumar et al. (2007) and with the data of Frens 

(1973). 

Figure 4.2. Comparison of the predictions of the model implemented in this work for 

Case 2 with those of the model of Kumar et al. (2007) and with the data of Chow and 

Zukoski (1994). The figure illustrates how aggregation affects the mean particle size 

at different simulation times. 

Figure 4.3. Particle size distributions used to initialize the simulations and for 

describe the nucleation process in Parsival. Distribution D1 is on the left, while 

distribution D2 is on the right. 

Figure 5.1. Comparison of the model predictions at different temperatures with the 

data of (A) Wuithschick et al. (2015) and (B) Turkevich et al. (1951). 

Figure 5.2. Comparison of the model predictions at different gold concentrations with 

the data of Takiyama (1958). 

Figure 5.3. Comparison of the model predictions at different initial pH with the data of 

Zabetakis et al. (2012). R represents the ratio of citrate to gold. 

Figure 5.4. Comparison of the model predictions at different initial pH with the data of 

Li et al. (2012). 

Figure 5.5. Comparison of the model predictions at different final pH with the data of 

Ji et al. (2007). 

 

Table 2.1. Summary of the chemical reactions, with their kinetic rate equations and 

rate constants. 
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Table 5.1. Values of the rate constants of reactions 2 and 4 with temperature. 

Temperature 
(0C)  

kn ks kn/ks 

23 6.61E+15 6.57E-06 1.01E+21 

30 2.51E+16 2.50E-05 1.01E+21 

40 1.53E+17 1.52E-04 1.01E+21 

50 8.29E+17 8.25E-04 1.01E+21 

60 4.07E+18 4.05E-03 1.01E+21 

70 1.82E+19 1.81E-02 1.01E+21 



  

80 7.48E+19 7.44E-02 1.01E+21 

90 2.84E+20 2.83E-01 1.01E+21 

100 1.01E+21 1.00E+00 1.01E+21 

 

  



  

Highlights 
 

 The mathematical model of Kumar et al. (2007), based on the “Turkevich 
organizer theory”, was investigated. 
 

 To analyse the model, we tested its predictions against several experimental 
data reported in the literature. 
 

 The model does not yield satisfactory predictions in various cases, because it 
is based on a mechanistic description of the particle synthesis that does not 
account for the acid-base properties of the reactants. 
 

 A novel model, with a more accurate mechanistic description of the synthesis 
and of the chemistry involved, is required. 
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Appendix A 

In the article of Kumar et al. (2007), to which we refer the reader, the reduction of 

auric chloride by acetone is given as: 

(𝐶𝐻3)2𝐶 = 𝑂 + 𝑥𝐴𝑢𝐶𝑙3 → 𝑥𝐴𝑢𝐶𝑙 + 𝑝𝑟𝑜𝑑𝑢𝑐𝑡      (A.1) 

In eq. (A.1), the stoichiometry of acetone to aurous chloride is assumed to be 1: 𝑥. 

To determine 𝑥, we substitute for dicarboxy acetone (DCA). The chemical equation 

for the decomposition of dicarboxy acetone is:  

(𝐶𝑂𝑂−𝐶𝐻2)2𝐶 = 𝑂 → (𝐶𝐻3)2𝐶 = 𝑂 + 2𝐶𝑂2 + 2(𝑂𝐻)− − 2𝐻2𝑂   (A.2) 

The overall chemical reaction for the Turkevich synthesis to produce gold atoms in 

excess of citrate is: 

2𝐴𝑢𝐶𝑙3 + 3[(𝐶𝑂𝑂−𝐶𝐻2)2𝐶(𝑂𝐻)𝐶𝑂𝑂−] → 2𝐴𝑢0 + 3((𝐶𝑂𝑂−𝐶𝐻2)2𝐶 = 𝑂) + 3𝐶𝑂2 +

3𝐻+ + 6𝐶𝑙−          (A.3) 

By introducing eq. (A.2) in eq. (A.3), we have: 

2𝐴𝑢𝐶𝑙3 + 3[(𝐶𝑂𝑂−𝐶𝐻2)2𝐶(𝑂𝐻)𝐶𝑂𝑂−] → 2𝐴𝑢0 + 3((𝐶𝐻3)2𝐶 = 𝑂 + 2𝐶𝑂2 + 2(𝑂𝐻)− −

2𝐻2𝑂) + 3𝐶𝑂2 + 3𝐻+ + 6𝐶𝑙−       (A.4) 

Expanding eq. (A.4) yields: 

2𝐴𝑢𝐶𝑙3 + 3[(𝐶𝑂𝑂−𝐶𝐻2)2𝐶(𝑂𝐻)𝐶𝑂𝑂−] → 2𝐴𝑢0 + 3(𝐶𝐻3)2𝐶 = 𝑂 + 9𝐶𝑂2 + 6(𝑂𝐻)− +

6𝐶𝑙− − 6𝐻2𝑂 + 3𝐻+          (A.5) 

We now write eq. (A.1) as follows: 

(𝐶𝐻3)2𝐶 = 𝑂 → 𝑥𝐴𝑢𝐶𝑙 + 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 − 𝑥𝐴𝑢𝐶𝑙3     (A.6) 

and then introduce it into eq. (A.5) to eliminate acetone; this yields: 

2𝐴𝑢𝐶𝑙3 + 3[(𝐶𝑂𝑂−𝐶𝐻2)2𝐶(𝑂𝐻)𝐶𝑂𝑂−] → 2𝐴𝑢0 + 3(𝑥𝐴𝑢𝐶𝑙 + 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 − 𝑥𝐴𝑢𝐶𝑙3) +

9𝐶𝑂2 + 6(𝑂𝐻)− + 6𝐶𝑙− − 6𝐻2𝑂 + 3𝐻+      (A.7) 

We now rearrange eq. (A.7) as follows: 

(2 + 3𝑥)𝐴𝑢𝐶𝑙3 + 3[(𝐶𝑂𝑂−𝐶𝐻2)2𝐶(𝑂𝐻)𝐶𝑂𝑂−] → 2𝐴𝑢0 + 3𝑥𝐴𝑢𝐶𝑙 + 3𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 +

+9𝐶𝑂2 + 6(𝑂𝐻)− + 6𝐶𝑙− − 6𝐻2𝑂 + 3𝐻+      (A.8) 

Using the reaction 3𝐴𝑢𝐶𝑙 → 2𝐴𝑢0 + 𝐴𝑢𝐶𝑙3 in eq. (A.8), we obtain: 

(2 + 3𝑥)𝐴𝑢𝐶𝑙3 + 3[(𝐶𝑂𝑂−𝐶𝐻2)2𝐶(𝑂𝐻)𝐶𝑂𝑂−] → 2𝐴𝑢0 + 𝑥(2𝐴𝑢0 + 𝐴𝑢𝐶𝑙3) +

3𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 + 9𝐶𝑂2 + 6(𝑂𝐻)− + 6𝐶𝑙− − 6𝐻2𝑂 + 3𝐻+        (A.9) 

or equivalently: 



(2 + 2𝑥)𝐴𝑢𝐶𝑙3 + 3[(𝐶𝑂𝑂−𝐶𝐻2)2𝐶(𝑂𝐻)𝐶𝑂𝑂−] → (2 + 2𝑥)𝐴𝑢0 + 3𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 + 9𝐶𝑂2 +

6(𝑂𝐻)− + 6𝐶𝑙− − 6𝐻2𝑂 + 3𝐻+       (A.10) 

This is the final overall reaction, from which we can calculate the value of 𝑥 using 

𝑐𝑖𝑡𝑟𝑎𝑡𝑒 𝑔𝑜𝑙𝑑⁄ = ~0.43. The result is 𝑥 = 2.49, which differs from the value 4 reported 

in Kumar et al. (2007). 

Appendix B 

Parsival is a simulation program for solving population balance equations (PBEs). 

The form of the PBE that Parsival solves is reported in eq. (B.1), where it is assumed 

that the system is closed and uniform (that is, perfectly mixed). 

𝜕𝑡𝑓(𝑠) = − 𝜕𝑠[𝐺𝑠(𝑠)𝑓(𝑠)] + 𝐽𝑛𝑢𝑐(𝑠) + 𝐵(𝑠) − 𝐷(𝑠) (B.1) 

where the meaning of the symbols is given in the main manuscript; in particular, 𝑓(𝑠) 

represents the number of particles per unit volume of physical and particle-diameter 

space (so, it is a number density in a four-dimensional phase space) at time 𝑡. 

The equation reveals that in Parsival the variable characterizing the internal state of 

the particles (the so-called internal variable) is the particle diameter 𝑠; in the original 

model of Kumar et al. (2007), on the other hand, the internal variable is the particle 

volume 𝑣. Thus, the PBE solved in the original model is: 

𝜕𝑡𝑃(𝑣) = − 𝜕𝑣[𝐺𝑣(𝑣)𝑃(𝑣)] + 𝐽𝑛𝑢𝑐(𝑣) + 𝐵(𝑣) − 𝐷(𝑣)    (B.2) 

where the meaning of the symbols is given in the main manuscript; in particular, 𝑃(𝑣) 

represents the number of particles per unit volume of physical and particle-volume 

space. Moreover, it is: 

𝐽𝑛𝑢𝑐(𝑣) = 2𝑘𝑛𝐶𝑀
3𝐶𝑆

2 𝛿(𝑣 − 𝑣0)    (B.3) 

𝐺𝑣(𝑣) = 2
𝑘ℎ

𝜌
𝐶𝑀𝑣

2
3⁄     (B.4) 

𝐵(𝑣) − 𝐷(𝑣) =
1

2
∫

𝑞(𝑣 − 𝑣′,𝑣′)

𝑊
𝑃(𝑣 − 𝑣′)

𝑣

𝑣0
𝑃(𝑣′) 𝑑𝑣′ − 𝑃(𝑣) ∫

𝑞(𝑣,𝑣′)

𝑊
𝑃(𝑣′)

∞

𝑣0
𝑑𝑣′    (B.5) 

𝑞(𝑣, 𝑣′) =
2𝐾𝐵𝑇

3𝜇
(

1

𝑣1 3⁄ +
1

𝑣′1 3⁄ ) (𝑣1 3⁄ + 𝑣′1 3⁄
)    (B.6) 

To obtain eq. (B.1) from eq. (B.2), a variable transformation, which we report below, 

is thus necessary. We start by writing: 

𝑣 ≡ 𝑚𝑣𝑠3                                                                (B.7) 

where 𝑣 and 𝑠, as said, are the particle volume and diameter, respectively, while 𝑚𝑣 

is the volume shape factor. Thus, we can write: 

𝑑𝑣 = 3𝑚𝑣𝑠2𝑑𝑠                                                               (B.8) 

Next, by definition, it is: 

𝑃(𝑣) 𝑑𝑣 ≡ 𝑓(𝑠) 𝑑𝑠                                                                         (B.9) 



If we use eq. (B.8), the equation above yields: 

𝑃(𝑣) = (
1

3𝑚𝑣𝑠2) 𝑓(𝑠)                                                             (B.10) 

Similarly, one can show that: 

𝜕𝑡𝑃(𝑣) = (
1

3𝑚𝑣𝑠2) 𝜕𝑡𝑓(𝑠)                               (B.11) 

2𝑘𝑛𝐶𝑀
3𝐶𝑆

2 𝛿(𝑣 − 𝑣0) = (
1

3𝑚𝑣𝑠2) 2𝑘𝑛𝐶𝑀
3𝐶𝑆

2 𝛿(𝑠 − 𝑠0)                            (B.12) 

2
𝑘ℎ

𝜌
𝐶𝑀𝜕𝑣[𝑣2 3⁄ 𝑃(𝑣)] = (

1

9𝑚𝑣
4 3⁄ 𝑠2

) 2
𝑘ℎ

𝜌
𝐶𝑀 𝜕𝑠𝑓(𝑠)                                      (B.13) 

∫ 𝑣
2

3⁄ 𝑃(𝑣)𝑑𝑣
∞

𝑣0
= 𝑚𝑣 ∫ 𝑠2𝑓(𝑠, 𝑡)𝑑𝑠

∞

𝑠0
                                       (B.14) 

For the aggregation submodel, we first substitute eq. (B.7) for 𝑣 in eq. (B.6); doing so 

yields:  

𝑞(𝑣, 𝑣′) = 𝛼(𝑠, 𝑠′) =
2𝑘𝐵𝑇

3𝜇
(

1

𝑠
+

1

𝑠′) (𝑠 + 𝑠′)                                      (B.15) 

Similarly, it is: 

𝑞(𝑣 − 𝑣′, 𝑣′) = 𝛼(℥, 𝑠′) =
2𝑘𝐵𝑇

3𝜇
(

1

℥
+

1

𝑠′) (℥ + 𝑠′)                                                  (B.16) 

where: 

  𝑣 − 𝑣′ = 𝑚𝑣℥3     and        ℥3 ≡ 𝑠3 − 𝑠′3
                                         (B.17) 

This relation, along with the following: 

𝑃(𝑣′) = (
1

3𝑚𝑣𝑠′2) 𝑓(𝑠′)    ;    𝑃(𝑣 − 𝑣′) = (
1

3𝑚𝑣℥2) 𝑓(℥)   ;    𝑑𝑣′ = 3𝑚𝑣𝑠′2
𝑑𝑠′     (B.18) 

allow us to write:  

1

2
∫

𝑞(𝑣−𝑣′,𝑣′)

𝑊
𝑃(𝑣 − 𝑣′)

𝑣

𝑣0
𝑃(𝑣′) 𝑑𝑣′ =

1

2
∫

𝛼(℥,𝑠′)

𝑊

𝑓(℥)𝑓(𝑠′)

3𝑚𝑣℥2

𝑠

𝑠0
𝑑𝑠′                           (B.19) 

and: 

𝑃(𝑣) ∫
𝑞(𝑣,𝑣′)

𝑊
𝑃(𝑣′)

∞

𝑣0
𝑑𝑣′ =

𝑓(𝑠)

3𝑚𝑣𝑠2 ∫
𝛼(𝑠,𝑠′)

𝑊
𝑓(𝑠′)

∞

𝑠0
𝑑𝑠′                            (B.20) 

Using all the equations derived above, we finally obtain: 

𝐽𝑛𝑢𝑐(𝑠) =  2𝑘𝑛𝐶𝑀
3𝐶𝑆

2𝛿(𝑠 − 𝑠0)                                                                           (B.21) 

𝐺𝑠(𝑠) =
2

3

𝑘ℎ

𝑚𝑣
1 3⁄

𝐶𝑀

𝜌
                                                                                                (B.22) 

𝐵(𝑠) − 𝐷(𝑠) =
1

2
∫

𝛼(℥,𝑠′)

𝑊

𝑠2

℥2

𝑠

𝑠0
𝑓(𝑠′, 𝑡)𝑓(℥, 𝑡)𝑑𝑠′ − 𝑓(𝑠, 𝑡) ∫

𝛼(𝑠,𝑠′)

𝑊
𝑓(𝑠′, 𝑡)

∞

𝑠0
𝑑𝑠′          (B.23) 

which, substituted in eq. (B.1), yields the form of the PBE that we solved in Parsival.  



Appendix C 

We estimate the characteristic time for the first four reactions involved in the GNPs 

synthesis to see how the reactions progress relative to each other. The characteristic 

time of a reaction indicates how long the reaction requires to convert a “significant” 

amount of the limiting reactant.  

Reaction 1 

Assuming that 𝐶𝑇0
= 𝐶𝐶0

= 0.3 𝑚𝑜𝑙 𝑚3⁄ , and given the stoichiometry of the reaction, 

we can write: 

 
𝑑𝐶𝑇

𝑑𝑡
= − 𝑘𝑐𝐶𝑇𝐶𝐶 = − 𝑘𝑐𝐶𝑇

2        (C.1)  

The characteristic time is therefore equal to: 

𝜏𝑐 ~ 
1

𝑘𝑐𝐶𝑇0

=
1

1.25 × 0.3
𝑠 ~ 1 𝑠 

Since this is a second-order reaction, the time that the reaction takes to reduce the 

concentration of component T to 10% of its original value is ca. 10 𝜏𝑐. Over a time 𝜏𝑐 

the reagent concentration reduces to about 50% of its original value.  

Reaction 2 

𝑑𝐶𝑀

𝑑𝑡
= −(3𝑘𝑛𝜌𝑣0𝐶𝑆

2)𝐶𝑀
3        (C.2) 

𝐶𝑀𝑚𝑎𝑥
= 𝐶𝑆𝑚𝑎𝑥

= 0.3 𝑚𝑜𝑙 𝑚3⁄  are the maximum concentration values for 𝑀 and 𝑆, if 

we assume that reaction 1 is complete. Assuming that 𝑆 does not react (in this 

reaction it behaves as a catalyst, and, for the time being, we do not consider reaction 

4, which consumes 𝑆), in the equation above the variable 𝐶𝑆 can be replaced with the 

constant 𝐶𝑆𝑚𝑎𝑥
. Thus, the reaction is third-order and we can write: 

𝜏𝑛 ~ 
1

(3𝑘𝑛𝜌𝑣0𝐶𝑆𝑚𝑎𝑥
2)𝐶𝑀𝑚𝑎𝑥

2 

𝜏𝑛 =
1

3 × 1.0053 ∙ 1021 × 105 × 4.18 ∙ 10−27 × 0.34
𝑠 = 98.72𝑠 ~ 100 𝑠 

Because this is a third-order reaction, the time that the reaction takes to reduce the 

concentration of component M to 10% of its original value is ca. 50 𝜏𝑛. Over a time 𝜏𝑛 

the reagent concentration reduces to about 58% of its original value. 

The values reported above hold in the assumption that 𝐶𝑆 is constant. But reaction 4 

depletes component S, reducing its concentration significantly in about one second 

(see below). Accordingly, over this time interval, 𝐶𝑆 decreases, making 𝜏𝑛 increase 

rapidly. So, in the end, reaction 2 proceeds for a very short time. 



Reaction 3 

We take the nuclei number density to be equal to 1017  1 𝑚3⁄  (refer to Appendix D). 

Assuming that nucleation and growth are fully decoupled and that, once nucleation is 

over, no aggregation takes place, the particle number density can be taken equal to 

1017  1 𝑚3⁄ . So, we can estimate the order of magnitude of the particle surface per 

unit volume of physical space as follows: 

  

∫ 𝑣
2

3⁄ 𝑃(𝑣)𝑑𝑣

∞

𝑣0

~ (4.18 × 10−27)
2

3⁄ × 1017 = 0.26 𝑚2 𝑚3⁄  

We can then write: 

𝑑𝐶𝑀

𝑑𝑡
= − (3𝑘ℎ ∫ 𝑣

2
3⁄ 𝑃(𝑣)𝑑𝑣

∞

𝑣0
)𝐶𝑀       (C.3) 

Therefore, the reaction is first-order and the characteristic time is: 

𝜏ℎ1 ~ 
1

3𝑘ℎ ∫ 𝑣
2

3⁄ 𝑃(𝑣)𝑑𝑣
∞

𝑣0

=
1

3 × 2.50 ∙ 10−4 × 0.26
𝑠 ~ 5000 𝑠 

In the above, we assumed the total surface area as that of the nuclei. However, with 

time, this total surface area increases and would reduce 𝜏ℎ1. If we calculate the time 

scale based on the final particle size, which is 37.5 nm for 𝐶𝑇0
= 𝐶𝐶0

= 0.3 𝑚𝑜𝑙 𝑚3⁄ , 

we have: 

 ∫ 𝑣
2

3⁄ 𝑃(𝑣)𝑑𝑣
∞

𝑣0
~ (2.76 × 10−23)

2
3⁄ × 1017 = 91.35 𝑚2 𝑚3⁄  

and consequently: 

𝜏ℎ2 ~ 
1

3𝑘ℎ ∫ 𝑣
2

3⁄ 𝑃(𝑣)𝑑𝑣
∞

𝑣0

=
1

3 × 2.50 ∙ 10−4 × 91.35
𝑠 ~ 15 𝑠 

Thus, the growth process starts slowly with a time constant of about 5000 𝑠 and ends 

rapidly with a time constant of about 15 𝑠. Therefore, relying also on the results of the 

numerical simulations, we took the effective growth time constant 𝜏ℎ to be ~ 102 𝑠, 

which is an intermediate value between the two estimated above. 

The time scale estimated yields the order of magnitude of the time required for 99% 

conversion of gold into GNPs when 𝐶𝑇0
= 𝐶𝐶0

= 0.3 𝑚𝑜𝑙 𝑚3⁄ . 

Reaction 4 

This is a first-order reaction, and so: 

𝜏𝑠 ~ 
1

𝑘𝑠
=

1

1.00
𝑠 ~ 1 𝑠         (C.4) 



A significant amount of 𝑆 therefore degrades in about one second, stopping reaction 

2 prematurely. 

Appendix D 

NPs are most likely to aggregate when their concentration is the highest. To estimate 

the characteristic time of the aggregation process, we consider the scenario where 

the aggregation rate is at its maximum value. 

According to Marchisio & Fox (2013), the aggregation characteristic time is given by: 

𝜏𝑎 ~ 
𝑊

𝑞(𝑣𝑠,𝑣𝑠)𝑁𝑐
       (D.1) 

Here 𝑁𝑐 is the characteristic number concentration of NPs in the system and 𝑣𝑠 is the 

characteristic volume of the NPs. We will consider the minimum value of 𝑊, because 

this favours aggregation. From eqs. (2.10) and (2.11), the minimum value is obtained 

when 𝑓 = 1, which gives 𝜑 = − 90 𝑚𝑉. Therefore, it is:   

ln 𝑊 = −
560

90
log10[(3𝐶𝐶0

+ 𝐶𝑇0
) × 10] + 27.5 

= −
560

90
log10[(0.9 + 0.3) × 10] + 27.5     ;        𝑊 = 1.06 × 109 

At the conditions at which the synthesis is conducted, 𝑇 = 373 𝐾, 𝜌 = 105 𝑚𝑜𝑙/𝑚3 

and 𝜇 = 2.74 × 10−4  𝑘𝑔 (𝑚. 𝑠)⁄ . Since 𝐾𝐵 = 1.38 × 10−23  𝐽 𝐾⁄ , eq. (2.9) gives: 

𝑞(𝑣𝑠, 𝑣𝑠) =
2𝐾𝐵𝑇

3𝜇
(

1

𝑣𝑠
1 3⁄

+
1

𝑣𝑠
1 3⁄

) (𝑣𝑠
1 3⁄

+ 𝑣𝑠
1 3⁄

) =
8𝐾𝐵𝑇

3𝜇
= 5 × 10−17  𝑚3 𝑠⁄  

The number of NPs per unit volume of physical space that would form before 

aggregation starts taking place if reaction 2 went to completion is equal to: 

𝑁𝑐,𝑚𝑎𝑥 =
2

3

𝐶𝑇0

𝜌𝑣0
       (D.3) 

As seen above, to complete, reaction 2 requires 50 𝜏𝑛 (i.e. 5000 𝑠). But reaction 4 

will permit reaction 2 to proceed only for about one second; therefore, it is: 

𝑁𝑐 ~ 
2

3×5000

𝐶𝑇0

𝜌𝑣0
= 9.4 × 1016  1 𝑚3⁄     (D.3) 

Replacing these results in eq. (D.1), we obtain: 

𝜏𝑎 ~ 
1.06 × 109

5 × 10−17 × 9.4 × 1016
= 2.26 × 108 𝑠 ~ 108 𝑠 

This is the characteristic time of the aggregation process for the initial conditions 

used in the synthesis. It gives an estimate of the time required by the aggregation 

process to occur significantly. 




