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Abstract

THE exponential growth of the demand for higher data rates is pushing scientists to
find ways to improve the internet infrastructure, which crucially relies on optical fibres.
The main obstacle to increasing transmission rates of optical fibre systems is presented
by the fibre Kerr nonlinear effect, which impairs signal transmission as the transmitted
power is increased. Fortunately, optical coherent detection, in combination with digital
signal processing techniques, have enabled more sophisticated digital receivers, tailored
to the optical fibre channel.

This thesis describes a comprehensive study on the performance of two digital
receiver-side techniques: digital back-propagation (DBP) and maximum likelihood
sequence detection (MLSD).

DBP is the most widespread digital technique to mitigate fibre nonlinearity at the
receiver. The performance of DBP, is assessed for long-haul, wide-bandwidth systems,
highlighting theoretical gains and practical limitations. Analytical models to predict
DBP performance are discussed and compared to numerical results. The impact of
polarisation-mode dispersion on the capability of DBP to remove nonlinear impairments
is investigated.

The principles of detection theory are discussed in the context of the optical fibre
nonlinear channel. Following such principles, MLSD strategies are studied and their
performance analysed for unrepeatered systems. A close to optimum receiver scheme,
using the Viterbi algorithm, is proposed and investigated for the first time in a single-
span fibre system.

Finally, information-theoretic tools are used to predict achievable information rates
of both receiver schemes, when employed in combination with forward error correction
codes. In particular, pragmatic coded modulation schemes were examined to assess the
potential of off-the-shelf channel codes.

Both receiving strategies analysed were demonstrated to significantly outperform
conventional receivers optimised for the additive white Gaussian noise channel. The
results of this thesis provide a useful insight on the properties of the optical fibre channel
and on the design of receivers aiming to maximise information rates through it.
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1
Introduction

1.1 The capacity crunch problem

Internet applications and services have become a pervasive presence in our lives. Due
to this unstoppable growth in popularity, internet devices constantly require higher
throughputs to sustain such services which, in turn, are becoming ever more data-
hungry in order to provide higher quality (e.g. virtual reality, video contents, IP-TV
etc.). Furthermore, the number of devices per user is increasing at an unprecedented
rate, pushed by the Internet of Things concept. Indeed, it is predicted that by 2020 the
number of devices connected to IP networks will be three times the world population
in that year [1]. All these factors contribute to the growth of the global traffic demand.
Recent estimates indicate that the internet traffic is growing exponentially, at a rate of
22% per year (compound annual growth rate) over the next five years [1]. The internet
infrastructure is, thus, under pressure to deliver higher throughputs to accommodate for
the expected growth in data demand in the near future.

The internet backbone is fundamentally underpinned by optical fibre networks
which carry 99% of the internet data traffic. The map in Fig. 1.1 shows how optical
fibres have become necessary to move large quantity of data across continents by
means of undersea cables. Fibre cables have also made their way into land-line links,
becoming by far the first technological option to aggregate and distribute data within
wide geographical areas.

The choice of optical fibres as a transmission medium is due to their extremely

12



Chapter 1. Introduction

Figure 1.1: Geographical map of the submarine optical fibre links underpinning the backbone of the
internet [2].

large bandwidth and low attenuation which allows to transmit extremely high data rates
over very long distances. Such transmission performance is currently unrivalled. An
example of large data rate, long-distance transmission is given by the FASTER undersea
fibre cable [2], partly owned by Google, which is among the highest-speed submarine
systems deployed to date: it transmits up to 60 Tb/s (10 Tb/s per fibre pair) over about
9000 km connecting the US with Japan across the Pacific ocean with no electrical
regeneration.

Undersea cables and medium/long-haul terrestrial links form what is typically
referred to as a transport network. However, metropolitan networks also strongly rely
on optical fibres to backhaul mobile networks, i.e. to link mobile networks to the core
network. Finally, access networks are transitioning to optical fibres to provide higher-
speed broadband services to domestic users. There is then no doubt that the data traffic
demand growth will have to be met by optical fibre systems.

When optical fibres started to be deployed for long-haul systems in 1980’s, they were
considered to have an unlimited transmission bandwidth, at least for any foreseeable
data rate requirement. Thirty years later, the throughputs demonstrated in record
optical fibre transmission experiments are showing clear signs of saturation. This
saturation is caused by the limitations on reliable data transmission imposed by the Kerr
nonlinear effects that characterise the optical fibre channel. As commercial systems
approach the data rates of the state-of-the-art laboratory transmission experiments, the
scientific community is concentrating its efforts on protracting the growth of data rates

13



Chapter 1. Introduction

for the years to come. This data rate exhaust is sometimes referred to as capacity

crunch [3–5], and has been the main argument underpinning research efforts on optical
fibre transmission systems in recent years.

The struggle in sustaining the growth of optical fibre transmission throughput is
highlighted by the recent so-called hero experiments, i.e. transmission experiments,
carried out in research laboratories, which set a new performance record. Fig. 1.2a
shows the total transmission throughputs attained in these experiments over the last 16
years. The modulation formats used to achieve these records are also shown. A first
thing to note is that the currently holding record transmission throughput on a single-
mode fibre was achieved in 2012, and corresponds to 102.3 Tb/s transmission over 240
km [6]. From 2012 to date, no new experiments with higher throughputs have been
reported (for single-mode fibre transmission), indicating a clear saturation. The early
2000s saw a slow growth of the data rate records as direct-detection technology reached
its maturity and the optical bandwidth was already fully utilised thanks to the adoption
of wavelength-division multiplexing (WDM). However, 2007-2011 saw an exponential
growth coincident with the revived application of coherent detection techniques in
combination with digital signal processing (DSP), which enabled modulation formats
able to encode higher number of bits for each transmitted symbol.

As state-of-the-art optical transmission demonstrations are entirely exhausting the
available optical bandwidth, it has become necessary for future optical systems to
increase the amount of bit/s transmitted over a given portion of bandwidth, a quantity
known as spectral-efficiency (SE). The evolution of the SE in optical transmission
experiments is shown in Fig. 1.2b. Until 2006 the SE of fibre transmission was below 2
bit/(s·Hz), due to the use of direct-detection systems and coarse spacing between WDM
channels. In 2006–2010, coherent detection lead to a dramatic SE increase thanks to
the use of polarisation-multiplexed (PM), high-cardinality modulation formats such
as quadrature-amplitude modulation (QAM) with up to 512 points, and denser WDM
channel packing. More recently, in 2014, a new record was set at 15.3 bit/(s·Hz) using
PM-2048QAM [7]. However, saturation of the SE also appears evident. Moreover, it
must be mentioned that record SE experiments are, in most cases, conducted with a
single transmitted channel. The reason is the greater difficulty of achieving high SE with
multiple WDM channels, due to the increased nonlinear interference compared to the
case of a reduced number of channels. In other words, SE does not stay constant as the
total optical bandwidth increases (as in a linear channel) but rather tends to decrease. As
a result, different SE records should be compared only for a fixed transmitted bandwidth.

To give a better idea on how different experiments compare with each other, a
list including all the most relevant recent experiments in optical fibre transmission is
shown in table 1.1. It can be seen that the typical SE of state-of-the-art experiments
performed over a fully populated C- and L-band is around 6 bit/(s·Hz) for long-haul
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Figure 1.2: Evolution of (a) the record throughputs and (b) record SE of optical fibre transmission
experiments over the last two decades.
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Data Rate (D) SE Opt. BW Distance (L) Year Record Ref.
102.3 Tb/s 9.1 bit/(s·Hz) C+L 240 km 2012 D [6]

66 Gb/s 15.3 bit/(s·Hz) 3.6 GHz 150 km 2014 SE [7]
52.2 Tb/s 5.82 bit/(s·Hz) C+L 10230 km 2015 D×L [9]
21.2 Tb/s 6 bit/(s·Hz) C 10290 km 2013 SE×L [10]

71.64 Tb/s 7.36 bit/(s·Hz) C+L 6970 km 2017 LR×L [8]

Table 1.1: State-of-the-art experiments in optical fibre transmission.

transmission, whereas it increases up to 9.1 bit/(s·Hz) for much shorter distances (240
km). As mentioned before, very high SE such as 15.3 bit/(s·Hz) has been demonstrated
only over a very small bandwidth (3.6 GHz single-channel) and short distance (150
km). Finally, the most recent experiment over transpacific distance is shown [8]. In this
experimental demonstration, the highest overall data rate of 71.64 Tb/s and 70.2 Tb/s
was achieved over 6970 km and 7600 km, respectively.

It is evident how, in order to overcome the capacity crunch, it will be inevitable to
leverage between higher SE and larger bandwidth: an increase in the optical bandwidth
is subject to the development of new optical amplification devices which can currently
reach 100 nm bandwidth; further increasing the SE (while keeping transmission reliable)
will instead require to tackle the current bottleneck imposed by fibre nonlinearity which
will be, for a significant part, down to the development of new transceivers’ schemes.
Next-generation optical fibre systems will be designed according to both requirements.

1.2 Next-generation optical fibre systems

As mentioned in the previous section, coherent detection and DSP has lead to a sig-
nificant increase in the SE of optical fibre transmission by enabling the adoption of
PM, in-phase/quadrature modulation formats such as QAM. The tendency to adopt
higher order modulation formats in optical fibre communication is highlighted by the
plot in Fig. 1.3. This figure shows the number of papers considering a given MQAM
modulation in the proceedings of the Optical Fibre Communication Conference (OFC)
over the last years. While quaternary phase-shift keying (QPSK) is shown to be the
most utilised format, starting from 2008 16-QAM has shown the same growth rate as
QPSK. The use of higher order QAM has recently become more prevalent, with, for
instance, 64QAM demonstrations going from 9% of the total number of works in 2010
to 12% in 2015. To date, QAM formats with higher cardinality than 16QAM represent
together more than 20% of the works presented in OFC, demonstrating the trend to
adopt high-SE modulation formats.

However, increasing the modulation order also requires higher values of the received
optical signal-to-noise ratio (OSNR) in order to provide reliable transmission, which,
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in turn, means operating at higher optical transmission powers per channel. Beyond
a certain power (although the optical fibre is itself only weakly nonlinear) a nonlinear
regime is entered which leads to transmission impairments (as explained in sec. 2.1.2).
Some of the fibre nonlinear distortions are deterministic since they can be predicted
using a deterministic differential equation with known initial condition (transmitted
signal). As a result, such distortions can be in principle reversed and cancelled from
the detected signal. However, other nonlinear effects, such as the nonlinear interaction
between signal and amplified spontaneous emission (ASE) noise originating from the
optical amplifiers, cannot clearly be considered deterministic due to the stochastic
nature of the ASE. These impairments cannot be compensated for (see chapter 3), hence
imposing a major limitation on the achievable data rate, at least when conventional
optical receivers are used [11–13]. However, the ultimate transmission limit, i.e. the
channel capacity in Shannon’s definition [14], of the optical fibre nonlinear channel
remains unknown [13]. Particularly, only (many) lower-bounds, e.g. in [11, 12, 15–17],
and one upperbound [18] on the capacity are known. Although these bounds are tight at
relatively low powers, where the fibre is quasi-linear, it is not known how close these
bounds are to the actual channel capacity in the nonlinear power regime.

Most of the current optical fibre receivers neglect nonlinearity as a source of trans-
mission impairments, and optical fibre systems are operated at powers that are low
enough to consider this to be true. Optical receivers are, therefore, optimised to operate
in such a linear regime which can be modelled as the well-known additive white Gaus-
sian noise (AWGN) channel [19]. Using these receiver schemes, reliable data rates in
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optical communication systems achieve a peak at a given power and decrease beyond
that point [13].

This clearly indicates that in order to push optical fibre transmission to its funda-
mental limit it is critical to develop new and more sophisticated receiver techniques. In
particular, digital receivers should be designed adapting communication theory prin-
ciples to the nonlinear fibre channel. When a channel is affected by interference and
distortion, such as in the optical fibre case, two main approaches are possible: equal-
isation or optimised detection [20, Ch. 7,8]. Although in some cases the distinction
between these two approaches is not necessarily sharp, in general, important differences
can be found: equalisation techniques aim to undo channel distortions from the received
signal, producing an equalised. i.e. distortion-free, signal which is impaired only by a
true stochastic process; optimised detection strategies instead do not modify the channel
detrimental effects, but rather attempt to produce the best estimate (in the minimum
error probability sense) of the transmitted data based on the observation of the distorted
output signal.

The most popular algorithm implementing nonlinear equalisation in the context of
the optical fibre channel is called digital backpropagation (DBP) [21]. DBP aims to
compensate for deterministic nonlinear effects using a nonlinear zero-forcing equalisa-
tion strategy [20, Ch. 8], i.e. inverting the channel response, based on the knowledge of
the fibre propagation equations. However, like all zero-forcing equalisation techniques,
in some cases the effect of the noise can be enhanced by the equalisation process, which
can be therefore detrimental for the error rate performance of the receiver.

The alternative is to resort to statistical receivers that aim to minimise the error
probability, based on the knowledge of the channel probabilistic description. As the
optical fibre channel has memory, optimised statistical receivers are expected to account
for this memory when estimating the transmitted data. A way to do that is applying a
maximum likelihood sequence detection (MLSD) strategy. Receivers implementing
an optimum detection strategy are also by definition optimal receivers in the error
probability sense. However, complexity issues often prevent a realistic realisation of
such receivers and more pragmatic schemes must be considered.

In this thesis, both DBP and MLSD techniques are analysed and their performance
are assessed, in particular in comparison to receivers optimised for an AWGN channel,
which represent the standard approach for fibre transmission systems. Benefits and
shortcomings of both receiver schemes are highlighted, providing insights on the
receiver design issues.

Due to the markedly different features of the two receiver strategies analysed, each
scheme was studied in different transmission scenarios. As a result, the work in this
thesis should not be interpreted as a comparative study between DBP- and MLSD-based
receivers. Instead, one of the aims of this thesis is to help understanding the potential of
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the two receiver schemes, and the suitability of one scheme or the other for a specific
transmission scenario. For the first time, all the main transmission performance metrics
are used in the characterisation of the two schemes, such as: bit error rate, signal-to-
noise ratio and achievable information rates. The combination of the three metrics
allows a comprehensive analysis of each receiver scheme in both the uncoded and coded
regimes.

1.3 Thesis outline

The remainder of this thesis is structured as follows.
In Chapter 2, the fundamental theoretical tools to understand the engineering

problems underlying optical fibre communications are introduced. The chapter first
highlights the physics of optical fibre transmission discussing the main pulse propagation
effects. Then, the reference optical fibre transmission systems and subsystems used in
this thesis are described, such as: multi-span fibre systems and coherent receivers. The
most widespread analytical models and numerical methods for optical fibre propagation
are also discussed.

Chapter 3 analyses the performance of DBP in multi-span EDFA-amplified optical
fibre systems for a wide variety of system parameters. Particularly, DBP effectiveness
is evaluated in the context of wideband, long-haul transmission scenarios. Firstly,
an analytical study is performed based on the analytical tools described in chapter 2.
Secondly, numerical results, used as validation of the analytical approach, are presented.
Ideal gains and practical limitations of the DBP algorithm are discussed.

Chapter 4 tackles the problem of optimising the detection strategy in the presence
of nonlinear distortions with memory which is a salient feature of the optical fibre
channel. The properties of a single-span fibre channel are outlined and design of
maximum likelihood sequence detection receivers tailored to this channel is described.
The uncoded bit-error rate performance of such receivers is then assessed through
numerical simulations and compared to conventional receiver approaches optimised for
the linear AWGN channel.

In Chapter 5, information-theoretic quantities are used to describe the performance
of the receiver schemes studied in chapters 3 and 4 when channel coding is adopted.
First, achievable information rates are quantified for long-haul, high-SE optical fibre
systems. A comparative study was performed for different receiver schemes including
DBP and three-different PM-MQAM modulation formats. In particular, achievable
information rates, when pragmatic encoder/decoder pairs are adopted, are presented
and compared across a wide range of receiver architectures.

Chapter 6 draws conclusions on the performance of the two receiver schemes
analysed in chapters 3, 4 and 5 and outlines new research ideas to expand the potential
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of such receivers and further pushing the limits of optical fibre communication.
Finally, the Appendix complements some of the concepts discussed in chapters 3

and 4 adding an analytical derivation of the signal-ASE nonlinear interference power
and the mathematical description of the Viterbi algorithm adopted for the results in
chapter 4.

1.4 Key contributions

i) In section 3.4, closed-form expressions from the available channel models are
derived to facilitate predictions on the performance of DBP. These results were
partly included in [22, Sec. 3], [23] and were used to produce some of the results
in [23–25].

ii) In section 3.5, DBP performance is studied with respect to the constraints imposed
by pragmatic DSP implementations. This study was published in [26].

iii) In section 3.5, DBP performance is numerically evaluated for the first time for
large compensation bandwidths and wideband optical transmission (1 THz). This
study was included in [22, Sec. 3].

iv) Polarisation-mode dispersion (PMD) impact on the performance of multi-channel
DBP is assessed as a function of the PMD parameter and compensation bandwidth.
This study was published in [26–30].

v) In section 3.7.1, a novel Monte-Carlo approach to efficiently simulate wideband
optical fibre systems in the presence of PMD is introduced. The method is used
to evaluate the effect of PMD on the performance of DBP and led to the results
published in [31].

vi) In chapter 4, the assessment of an optimum detection receiver for the single-span
optical fibre channel is performed for the first time. This work resulted in the
paper [32].

vii) A comprehensive study of the achievable information rates for optical fibre trans-
mission systems employing a wide variety of receiver architectures and FEC
schemes is presented in chapter 5. This study was published in [30].

1.5 List of publications

The research work carried out for this thesis has also lead to the following publications:
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3. D. Lavery, R. Maher, G. Liga, D. Semrau, L. Galdino, and P. Bayvel, "On
the bandwidth dependent performance of split transmitter-receiver optical fiber
nonlinearity compensation," OSA Optics Express, vol. 25, no. 4, 4554–4563,
2017.

4. T. Xu, N. Shevchenko, D. Lavery, D. Semrau, G. Liga, A. Alvarado, R. Killey, and
P. Bayvel, "Modulation format dependence of digital nonlinearity compensation
performance in optical fibre communication systems," OSA Optics Express, vol.
25, no. 4, 3311–3326, 2017.

5. G. Liga, A. Alvarado, E. Agrell, and P. Bayvel, “Information rates of next-
generation long-haul optical fiber systems using coded modulation,” IEEE Journal
of Lightwave Technology, vol. 35, no. 1, pp. 113–123, 2017.

6. D. Lavery, D. Ives, G. Liga, A. Alvarado, S. J. Savory, and P. Bayvel, “The benefit
of split nonlinearity compensation for single-channel optical fiber communic-
ations,” IEEE Photonics Technology Letters, vol. 28, no. 17, pp. 1803–1806,
2016.

7. P. Bayvel, R. Maher, T. Xu, G. Liga, N. A. Shevchenko, D. Lavery, A. Alvarado,
and R. I. Killey, “Maximizing the optical network capacity,” Philosophical Trans-
actions of the Royal Society, A. Mathematical, Physical and Engineering Sciences,
vol. 374, no. 2062, 2016.
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Conference papers
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2
Theoretical tools for optical fibre

communication

2.1 Theory of optical fibre propagation

The aim of this chapter is to introduce the basic concepts in the analysis and physical
understanding of fibre transmission. The main challenges involved in the design of
optical fibre communication systems will also be discussed.

2.1.1 From the wave equation to the NLSE

The propagation of optical pulses through an optical fibre can be described by the wave
equation

∇2E− 1
c2

∂2E
∂t2 = µ0

∂2PL

∂t2 +µ0
∂2PNL

∂t2 , (2.1)

where E(r, t) represents the electric field as a function of position r and time t,
c is the speed of light, µ0 is the vacuum magnetic permeability, while PL and PNL

are the linear part and the nonlinear part of the induced electric polarisation vector
P, respectively. Assume that each of the vectors above are aligned along the generic
direction x̂, such that E(r, t) = E(r, t)x̂ and P(r, t) = P(r, t)x̂. This corresponds to an
assumption of isotropy of the optical fibre medium, which can be considered valid
only locally [1]. Effects arising when this assumption is not verified, such as fibre
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birefringence, is tackled later on in this chapter.
Under this assumption, Eq. (2.1) can be reduced to a scalar equation given by:

∇2E− 1
c2

∂2E
∂t2 = µ0

∂2PL

∂t2 +µ0
∂2PNL

∂t2 . (2.2)

The linear component PL(r, t) and nonlinear component PL(r, t) of P(r, t) are related
to E(r, t) by

PL(r, t) = ε0

∫ ∞

−∞
χ(1)

xx (t− t ′)E(r, t ′)dt ′ (2.3)

PNL(r, t) = ε0

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
χ(3)

xxxx(t−t1, t− t2, t− t3)E(r, t1)E(r, t2)E(r, t3)dt1dt2dt3,

(2.4)

where ε0 is the vacuum dielectric constant while χ(1)
xx and χ(3)

xxxx are components of
the first-order and third-order susceptibility tensors, respectively. Several different
nonlinear optical effects arising in an optical fibre can be described by the third-order
tensor component χ(3)

xxxx. In the following, it is assumed that χ(3)
xxxx is instantaneous and

purely imaginary. The physical phenomenon associated with this specific form of χ(3)
xxxx

is the well-known Kerr effect [1]. The main physical manifestation of the Kerr effect is
the local change of the fibre refractive index due to the optical field intensity.

Eq. (2.1) cannot be easily treated without some further simplifying assumptions.
A common approach takes into account the nonlinear part of the equation PNL as a
perturbation of the solution for the linear case (PNL=0). Furthermore, E(r, t) is assumed
to be a quasi-monochromatic signal. This means that E(r, t) (and P(r, t)) can be
expressed as

E(r, t) =
1
2
[E(r, t)exp(− jω0t)+E∗(r, t)exp( jω0t)], (2.5)

where E(r, t) is a slowly-varying complex envelope (compared to the frequency
of oscillation ω0). Under the above conditions, the method of the separation of the
variables can be used to solve Eq. (2.1). According to this method, the generic solution
can be expressed in the form

E(r, t) = F(x,y)A(z, t)exp( jβ0z) (2.6)

where β0 is the wave number at frequency ω = 0.
Substituting Eq. (2.6) into Eq. (2.1) and switching to the Fourier domain, we obtain
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a pair of equations with decoupled variables [1, Sec. 2.3]

∂2F
∂x2 +

∂2F
∂y2 +[ε(ω)k2

0− β̃]F = 0, (2.7)

2iβ0
∂Ã
∂z

+(β̃2−β2
0)Ã = 0 (2.8)

where Ã , Ã(z,ω−ω0) is the Fourier transform of A(z, t), and β̃(ω) is the wave number
as a function of frequency. In order to obtain Eq. (2.8), a partial second derivative
in z is neglected as a result of the slowly-varying envelope assumption. This set of
equations admits solutions only for specific values of β̃ referred to as eigenvalues. Such
solutions are called eigenfunctions. The pair eigenvalue and eigenfuction is referred to
as a propagation mode.

The wave number β̃ can be obtained solving the eigenvalue equation in Eq. (2.8)
and contains two terms

β̃(ω) = β(ω)+∆β. (2.9)

The term ∆β includes the attenuation effect and the nonlinearity induced by PNL in
Eq. (2.1), and it is typically expressed as

∆β = j
α
2
+ γ|A|2 (2.10)

where α and γ are referred to as attenuation coefficient and nonlinearity coefficient,
respectively. Separating the two components of the wave number in Eq. (2.8) and
rearranging, we obtain

∂Ã
∂z

= j[β(ω)+∆β−β0]Ã, (2.11)

where β̃2−β2
0 was approximated by 2β0(β̃−β0). The linear wave number β(ω) is

not in general an analytical known function, as it depends on the fibre index profile.
However, it can be expanded in Taylor series around ω0 as

β(ω) = β0 +β1(ω−ω0)+
1
2

β2(ω−ω0)
2 +

1
6

β3(ω−ω0)
3 + · · · (2.12)

where βi for i = 0,1,2, . . . represents the i-th derivative of β(ω) evaluated in ω = ω0.
Recalling the assumption on the quasi-monochromatic envelope, Eq. (2.12) can be
truncated to the second-order without significant loss in accuracy. Substituting the
truncated version of Eq. (2.12) into Eq. (2.11) and then switching back to the time
domain1, Eq. (2.11) becomes

1Going from the frequency domain to the time domain the operator (ω−ω0) is replaced by j ∂
∂t .
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∂A
∂z

=−β1
∂A
∂t
− jβ2

2
∂2A
∂t2 −

α
2

A+ jγ|A|2A (2.13)

where the right-hand side of Eq. (2.10) was used for ∆β. Eq. (2.13) is commonly
referred to as nonlinear Schrödinger equation (NLSE)2 and it is considered to be the
key equation to understand fibre propagation effects.

2.1.2 Pulse propagation effects

Based on Eq. (2.13) it is possible to recognise three main propagation effects: signal
attenuation, chromatic dispersion and nonlinear phase shift. These effects are crucial in
the design of an optical fibre system and particularly in the design of ad-hoc receivers
for the optical fibre channel, as discussed in chapters 3 and 4.

Each of these effects can be studied separately by isolating, in turn, one of the three
terms on the right-hand side of Eq. (2.13) and forcing the residual two terms to zero.
Although the combined action of these three terms leads to a qualitatively different
solution, solving Eq. (2.13) in these three cases gives a strong physical insight on how
pulse propagation through an optical fibre works.

The three particular cases are described in the following:

1. Attenuation

−α
2

A 6= 0, − jβ2

2
∂2A
∂t2 = 0, jγ|A|2A = 0.

In this case the solution of Eq. (2.13) (with an initial condition at z = 0 given by
A(0, t)) is trivial and is given by

A(z, t) = A(0, t)exp
(
−α

2
z
)
. (2.14)

Since α is a real-valued coefficient, Eq. (2.14) indicates an attenuation of the
optical field and, thus, of the transmitted optical power along the propagation path.
The attenuation term on the right-hand side of Eq. (2.14) can be easily obtained
even when either is non-zero.

2. Chromatic dispersion

−α
2

A = 0, − jβ2

2
∂2A
∂t2 6= 0, jγ|A|2A = 0.

In this case Eq. (2.13) can be easily solved by switching to the Fourier domain
where it can be rewritten as

2A mathematically alike equation was derived by Schrödinger, although for the description of the
well-known quantum wave-function, hence the name.
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∂Ã
∂z

=

(
− jβ1ω+

jβ2ω2

2

)
Ã (2.15)

whose solution is given by

Ã(z,ω) = Ã(0,ω)exp
[(
− jβ1ω+

jβ2ω2

2

)
z
]
. (2.16)

The solution in Eq. (2.16) indicates a frequency-dependent phase-shift which is
referred to as chromatic dispersion (CD). The physical meaning of β1 and β2 can
be understood from Eq. (2.16). Indeed, β1 induces a delay in the propagation
of the wave group around the frequency ω0 (phase shift linearly varying with
ω). Particularly, β1 specifies the velocity at which a wave group propagates
through the fibre, hence the name group velocity (GV). The β2 coefficient instead
indicates the velocity at which different wave groups around ω0 travel compared
to each other (quadratically dependent phase shift). For this reason, β2 is com-
monly referred to as group velocity dispersion (GVD). The propagation delay
between different groups results in a broadening of the pulse amplitude profile
(see [1, Ch. 3]). This broadening can be shown to accumulate linearly with the
transmission distance and quadratically with the signal bandwidth. CD is a key
phenomenon in optical fibre transmission as it causes different pulses to interact
and interfere with each other. This effect is called inter-symbol interference (ISI)
and severely impairs transmission particularly when pulses are transmitted at high
rate.

ISI also leads to what it is typically referred to as a channel with memory. Channel
memory can be defined as the amount of time (or symbol periods) over which a
pulse effectively extends due to the action of the channel, and its interference on
other pulses is still significant. A more rigorous definition of channel memory is
given in section 4.2.

Although, as discussed in 2.4.2, CD can be easily compensated through DSP,
CD still interacts with nonlinear effects producing ISI that needs to be taken into
account at the receiver (see chapter 4).

An example of how transmitted pulses are broadened by the effect of CD is
illustrated in Fig. 2.1. The propagation of a Gaussian pulse is numerically
simulated through a variable length fibre section. The duration of the pulse
was set to σ = 16 ps, corresponding to a symbol rate of 32 GBaud which is
the one adopted for the performance studies in chapter 3 and 4. Each pulse is
normalised to unitary energy and fibre γ parameter was set to zero. It can be
seen that the profile of the transmitted pulse is substantially broadened already
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Figure 2.1: Dispersion of a (normalised) Gaussian pulse (σ=16 ps) during propagation through an optical
fibre with α=0.2 dB/km, D=17 ps/(nm·km) and γ=0.

after propagating a few tenths of kilometers. The β1 coefficient produces a delay
between the transmission instant and the arrival time of a pulse travelling between
transmitter and receiver. Therefore it is customary to replace in Eq. (2.13) the time
variable t with t ′ = t−β1z, such that, in the new time reference, the propagating
pulse is always centered around the time instant t ′ = 0. Thus, more conveniently,
Eq. (2.13) can be rewritten as

∂A
∂z

=− jβ2

2
∂2A
∂t ′2
− α

2
A+ jγ|A|2A (2.17)

which is the most typical form of the NLSE.

3. Nonlinear phase shift

−α
2

A = 0, − jβ2

2
∂2A
∂t2 = 0, jγ|A|2A 6= 0.

In this case the NLSE reduces to

∂A
∂z

= jγ|A|2A (2.18)

which, differently from the previous cases, is still a nonlinear differential equation.
In can be shown that ( [1, Ch. 3]) a solution of Eq. (2.18) can be found in the time
domain in the form

A(z, t) =U(z, t)exp [ jφNL(z, t)] (2.19)
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where U(z, t), |A(z, t)| and φNL(z, t), Arg(A(z, t)). Substituting Eq. (2.19) into
Eq. (2.18) yields the following set of differential equations

∂U
∂z

= 0, (2.20)

∂φNL

∂z
=

U2

LNL
, (2.21)

where LNL is the so-called nonlinear length and is defined as

LNL ,
1

γP0
(2.22)

where P0 = max(|A(0, t)|2) is the transmitted pulse peak power.

The set of Eqs. (2.20) and (2.21) can be solved analytically and the solution is
given by

A(z, t) = |A(0, t)|exp [ j(φNL(z, t)] , (2.23)

φNL(z, t) =
|A(0, t)|2

LNL
z+φNL(0, t). (2.24)

The solution shows that the amplitude of the pulse does not change as the pulse
propagates3 but a time-varying phase-shift is induced on the pulse, which is
dependent on the pulse instantaneous transmitted power |A(0, t)|2. This nonlinear
phenomenon is sometimes referred to as self-phase modulation (SPM) due to this
action of the signal instantaneous power of modulating its phase.

As mentioned before, the three propagation effects discussed above combine to
produce a more complicated evolution of the transmitted pulse. Particularly, the inter-
play between chromatic dispersion and nonlinearity generates a joint phase/amplitude
distortion which cannot in general be analytically described.

An analytical solution of NLSE is in general not known. In order to theoretically
address the analysis of fibre propagation effects it is possible to: i) find approximated
analytical solution of NLSE using perturbation methods (see section 2.5); ii) solve
Eq. (2.17) using numerical methods, such as the split-step Fourier method (SSFM),
which is discussed in section 2.6.

2.1.3 Classification of nonlinear Kerr effects

The nonlinear term in Eq. (2.17) is responsible for the so-called Kerr effect [1]. High-
data rate optical transmission uses WDM channels, i.e. parallel data streams are carried

3When attenuation is also present, its only effect on the pulse amplitude is given by Eq. (2.14).
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by different wavelengths, spaced apart by a given frequency spacing to avoid channel
crosstalk. Thus, traditionally, it has been of great interest to classify the effects of the
Kerr term in Eq. (2.17) based on which channels are involved in the generation of such
effects. A first broad categorisation can be made by separating nonlinear effects based
on whether or not channels other than the one of interest are involved in their generation.
We therefore refer to either inter-channel nonlinearity and intra-channel nonlinearity.
Furthermore, different kind of nonlinear interactions (still within the scope of the Kerr
effect) are possible when two or more channels co-propagate in a nonlinear optical
fibre.

In order to identify these different effects, let us assume that the transmitted optical
field is given by

A = A0 +A1 +A2 (2.25)

where A0, A1, and A2 are the (scalar) complex envelopes of the transmitted channels at
three different wavelengths and A0 is assumed to be the channel of interest. Replacing
Eq. (2.25) into Eq. (2.17) we find

∂(A0 +A1 +A2)

∂z
=− jβ2

2
∂2(A0 +A1 +A2)

∂t2 + jγ|A0+A1+A2|2(A0+A1+A2) (2.26)

where the attenuation term has been dropped for simplicity of notation. A standard
approach consists in assuming a small nonlinearity (perturbative approach) [1], hence
Eq. (2.26) can be rewritten as a set of three differential equations. The equation relative
to the channel of interest reads as

∂A0

∂z
=− jβ2

2
∂2A0

∂t2 + jγ|A0|2A0︸ ︷︷ ︸
SPM

+2 jγ(|A1|2 + |A2|2)A0︸ ︷︷ ︸
XPM

+ jγ(A2
1A∗2)︸ ︷︷ ︸

FWM

. (2.27)

As shown in Eq. (2.27), the original nonlinear phase shift acting on the channel of
interest is split into three components: i) a term dependent only on the power of the
channel of interest itself, hence called self-phase modulation (SPM); ii) a term dependent
only on the power of the the interfering channels called cross-phase modulation (XPM);
iii) a term dependent on a cross-product between the two interfering channels called four-
wave mixing (FWM). The derivation above can be repeated for three or more channels.
However, the arising terms are similar to the ones in Eq. (2.27). The only difference
consists of the XPM term adding up multiple channels, and additional pairwise FWM
cross-products arising with more channels. While both SPM and XPM depend on the
power of the channels, the FWM effect is dependent on the actual optical field. Due to
this feature, the phase relationship between the co-propagating channels is crucial for
the accumulation of the FWM.

The derivation above can be repeated on a frequency component basis, i.e. assum-
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f3f1 f2f

Figure 2.2: Illustration of the generation of FWM at frequency f , due to the CW optical fields at
frequencies f1, f2 and f3.

ing the propagating field is composed of four continuous-wave (CW) components at
frequencies f , f1, f2 and f3. As illustrated in Fig. 2.2, CW optical fields at frequency f1,
f2 and f3 interact with each other to form a new wave at frequency f . The phenomenon
is possible whenever the relationship between the four frequencies is [2]

f = f1 + f2− f3. (2.28)

Defining A(z), A( f ,z) and A j(z), A( f j,z) and solving Eq. (2.17) in the Fourier
domain for the field component at frequency f it can be shown that4

A(z) = jd
(2π)2 f

nc
A∗1A2A3 exp

(
−α

2
z
) 1− exp( j∆βz−αz)

α− j∆β
(2.29)

where c is the speed of light, d is a degeneracy coefficient either equal to 3 for
f1 = f2 6= f3 or to 6 for f1 6= f2 6= f3, n is the refractive index (as a function of the
frequency f ), and

∆β = β( f1)+β( f2)−β( f3)−β( f ). (2.30)

From Eq. (2.29) it can be observed that the amplitude of the FWM strongly depends
on ∆β. For ∆β� 1, the rightmost fraction in Eq. (2.29) significantly increases in
magnitude and, as a result, the FWM product is amplified. The condition where ∆β is
close to zero is commonly referred to as phase matching condition and it is typically
met in systems where the dispersion parameter is low. As a result, in scenarios where
transmission is performed far from the zero-dispersion point, and standard single mode
fibre is used, FWM can be considered as a minor nonlinear effect compared to SPM and
XPM. In chapters 3 and 5, the performance of receivers compensating for intra-channel
nonlinearity (SPM) is analysed, as well as compensation of inter-channel nonlinearity,
including both XPM and FWM.

4In order to obtain Eq. 2.29, a perturbative approximation must be adopted, which in the FWM
literature is commonly referred to as undepleted pump assumption [1, Ch. 10].
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2.1.4 Polarisation effects

In the section above, the optical field was assumed to stay polarised during propagation,
i.e. aligned to a given polarisation vector. Also, the fibre was assumed to be perfectly
isotropic, meaning that no preferred polarisation orientation exists. As a result of that,
the wave equation in Eq. (2.1) can be reduced from a vector equation to a scalar one.

However, a real optical fibre can be considered only isotropic at a local level. Perfect
isotropy is preserved when the fibre is an ideal cylindrical waveguide, in which case
each mode of polarisation is a degenerate solution of Eq. (2.1), i.e. they show the same
transversal distribution F(x,y) and wave number β(ω).

In reality, due to the fabrication process and stress applied along a fibre cable,
the fibre itself shows a slight asymmetry of its transversal geometry, which can be
approximated as an ellipse (instead of a circle). As a result, two non-degenerate modes
of polarisation, corresponding to the two ellipse axes, are found as the solution of
Eq. (2.1). Because of the difference between the wave numbers experienced, these
two preferred modes of polarisation show two different effective refractive indices5 nx

and ny. This phenomenon is thus commonly referred to as fibre birefringence. Fibre
birefringence is typically measured by |nx−ny|, and it is typically very small. However,
over a sufficiently long distance this effect accumulates and can become a significant
source of impairment for light-wave transmission. Luckily, the orientation of the
birefringence axes also varies randomly along the transversal direction z, so reducing
the overall accumulated birefringence.

The main effects due to fibre birefringence on the propagating signal are: i) random
polarisation evolution of a continuous-wave (CW) optical field; ii) polarisation mode
dispersion (PMD). The latter is discussed in depth in section 2.2. The former effect
results in random evolution of the polarisation during propagation which statistically
repeats itself after a given distance. Such a spatial period is called beat length and
it is related to the strength of the fibre birefringence and to the evolution of the fibre
birefringence axes.

Clearly, in the presence of birefringence, the propagation problem cannot be reduced
to a scalar problem. The NLSE can be therefore re-derived from Eq. (2.1) under the
assumptions discussed in 2.1 exception made for the assumption of a polarised signal.
Instead, two preferred modes of polarisation must be considered coupled at any given
fibre section. In the fixed birefringence case, this leads to the so-called coupled NLSE
(CNLSE) [1, Ch. 6], [3], [4], [5] which is given by

5The axis with a lower index is called slow axis while the one with a higher index is called fast axis.
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∂Ax

∂z
− jβ2

2
∂2Ax

∂t2 − jγ
(
|Ax|2 +

2
3
|Ay|2

)
Ax =

jγ
3
|Ay|2A∗x exp(−2 j∆βz)

∂Ay

∂z
− jβ2

2
∂2Ay

∂t2 − jγ
(
|Ay|2 +

2
3
|Ax|2

)
Ay =

jγ
3
|Ax|2A∗y exp(2 j∆βz)

(2.31)

where the functions Ax(z, t) and Ay(z, t) are defined by

E(z, t) = F(x,y) [Ax(z, t)x̂+Ay(z, t)ŷ] (2.32)

and

∆β = βx
1−βy

1, (2.33)

while βx
1 and βy

1 are the GVs of x and y polarisations, respectively.
Note that here x̂, and ŷ represent a generic pair of states of polarisation (SOPs), i.e.

they are complex vectors describing the time-domain oscillation of the optical field
along the fibre axes (which are in turn real vectors) [6]. It is also customary to represent
a SOP as a 3D real vector moving along a sphere called Poincaré sphere [6].

Under the assumption of fast birefringence, each of the two polarisations quickly
moves around the Poincaré sphere. In this case, it can be shown that [5], [7] the nonlinear
terms on the right-hand side of the two equations in Eq. (2.31) quickly averages to zero.
As a result of the averaging of the nonlinear term in Eq. (2.31) one obtains

∂A
∂z

=−α
2

A+
jβ2

2
∂2A
∂t2 + j

8
9

γ|A|2 (2.34)

which is commonly referred to as the Manakov equation [5]. The Manakov equation de-
scribes the average effect of the birefringence axes rotation on the nonlinear propagation
phenomena. This allows to obtain an equivalent description of the interaction birefrin-
gence/nonlinearity, avoiding stochastic descriptions of the fibre polarisation evolution.
Both Manakov and CNLSE equations were shown to return essentially identical results
when SOPs move on the Poincare’ sphere faster (in space) than the nonlinear Kerr
effect. Also, in such case Manakov equation can be numerically solved with a coarser
integration step than the CNLSE, thus enabling a more efficient simulation of the optical
fibre propagation. For this reason, in this thesis the Manakov equation in (2.34) is used
instead of the CNLSE.

However, when PMD is included, the description given by Eq. (2.34) is not sufficient
and additional terms are required. This leads to the so-called Manakov-PMD equation,
as shown in section 2.2.

38



Chapter 2. Theoretical tools for optical fibre communication

2.2 PMD theory

In this section a short theory of PMD is developed. Illustrating the physical mechanism
underlying PMD and its stochastic nature will help to understand its detrimental impact
on nonlinearity compensation schemes which are studied in section 3.7.

In the previous section, we discussed constant birefringent fibres, for which propaga-
tion of lightwave pulses can be described using Eq. (2.31). When the fibre birefringence
axes are rapidly rotating but with a birefringence which is constant for all frequencies
of the transmitted signal, Eq. (2.34) can be used to capture the average nonlinearity
accumulated by a CW signal whose SOP uniformly evolves on the Poincare’ sphere. It
is worth noticing that the Manakov equation assumes that the transmitted signal does
not depolarise, i.e. all signal frequencies have SOPs which are assumed aligned in their
movement on the Poincare’ sphere.

On the other hand, when the GVs βx
1 and βy

1 over the two fibre local axes of
birefringence assume different values, and such axes rotate along the fibre, PMD
arises. This can be understood by analysing the 2x2 matrix describing the polarisation
transformations of signals propagating through an optical fibre, which is referred to
as Jones matrix [1, Ch. 2]. Let us assume that a fibre section is made up of many
sections with different local birefringence axes with different GVs. The transformation
between the input optical field of each section and its output can be described by the
2x2 frequency dependent matrix

Tk = Rk ·Dk(ω) =

(
e− j ϕk

2 cosθk e− j ϕk
2 sinθk

e j ϕk
2 − sinθk e j ϕk

2 cosθk

)
·
(

e− j τk
2 ω 0

0 e j τk
2 ω

)
(2.35)

where ϕk and θk denote a random phase shift and angle difference between the
birefringence axes of the (k−1)-th and the k-th section, respectively, and

τk ,
|βx

1k−βy
1k|

2
∆z (2.36)

represents the delay between two pulses travelling over the local birefringence axes of
the k-th section of length ∆z. The random processes ϕk and θk define the stochastic
evolution of the SOP over the Poincare’ sphere at frequency ω = 0.

Over N sections we then obtain, in the absence of any other propagation effect (CD,
nonlinearity, etc.),

J(ω)Ain(ω) = Aout(ω) (2.37)

where

J(ω) =
N

∏
k=1

Tk(ω) =

(
u1(ω) u2(ω)
−u∗2(ω) u∗1(ω)

)
(2.38)
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is the Jones matrix of the cascade of fibre sections, and u1 and u2 are generic functions
of frequency representing a frequency-dependent random transformation. In the absence
of polarisation-dependent loss, such transformation is unitary and therefore u1 and u2

are such that [8]
|u1|2 + |u2|2 = 1. (2.39)

Eqs. (2.37), (2.38) therefore indicate a different (random) polarisation rotation of the
frequency components of the signal that hence depolarises. This effect is schematically
illustrated in Fig. 2.3 which shows the random evolution of the SOPs of three frequency
components of a modulated signal under the effect of PMD. At section z=0 of the
optical fibre the signal is linearly polarised and, thus, all frequency components show
the same SOP. During propagation PMD acts as a frequency dependent Jones matrix
at each fibre section. As a result, the SOPs of each frequency component will evolve
independently yielding a random output SOPs configuration (z = L).

Alternatively, [8] showed that the transformation in Eq. (2.37) can be more intuit-
ively understood by choosing a particular pair of orthogonal polarisation states called
principal states of polarisation (PSP). Signals propagating over the two PSPs, to the
first-order, is mapped onto a different pair of PSPs (or output PSPs) without any depol-
arisation but only with a relative delay. In other words, J(ω) allows two orthogonal
eigen-vectors A+

in, A−in (and relative eigen-values), such that the corresponding output
SOPs A+

out, A−out verify
∂A±out

∂ω
= 0. (2.40)

For the two PSPs we then have

A±out ≈
(

e− j ϕ
2 cosθ e− j ϕ

2 sinθ
−e j ϕ

2 sinθ e j ϕ
2 cosθ

)
·
(

e− j τ
2 ω 0

0 e j τ
2 ω

)
A±in. (2.41)

θ here reflects the relative angle between the input and the output PSPs, whereas τ

Freq.
0

L

z

Figure 2.3: Evolution of the SOPs of different signal frequency components in the presence of PMD.
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is the overall delay experienced by two pulses transmitted over the input PSPs, and is
referred to as differential group delay (DGD). Although the dependency on the distance
z was dropped for simplicity of notation in Eq. (2.41), the overall DGD is clearly a
stochastic process of the variable z which can be modelled as a Wiener process [9].
At a given fibre section, τ is then a random variable resulting from the combination
of multiple τk random variables and subsequent random rotations. It can be shown
that [9, 10], as long as many τk add up into τ then, regardless of the stochastic behaviour
of ϕk and θk, the probability density function (pdf) of τ at the end of a fibre section of
length z is given by

p(τ,z) =
2τ2
√

2πq3
exp
[
−
(

τ2

2q2

)]
(2.42)

where q2 =< τk >
2 z

Lc
, and Lc is the length over which the PSPs can be considered

correlated and corresponds to the length of a PMD section.
The pdf in Eq. (2.42) is a so-called Maxwellian distribution, whose parameters are

given by

< τ >=

√
8
π
< τk >

2, (2.43)

σ =

√
3π−8

π

√
z

Lc
. (2.44)

The validity of this pdf to describe the statistical behaviour of the DGDs can be con-
firmed numerically. In Fig. 2.4, a histogram of multiple occurrences of the DGD at the
output of a fibre section of length z = 1000 km is shown. The results are obtained using
the numerical method described in section 2.6.3, with Lc =100 m which yields 104

PMD sections. The histogram, obtained from 2×104 random realisations, shows very
good agreement with the pdf in Eq. (2.42) which serves as a validation of the theory
above. Furthermore, the Maxwellian distribution of the DGDs and the statistical models
for PMD presented in [9, 10] have also been experimentally validated in several works,
e.g. [10, 11]. The power of this description of the DGD lies in the fact that it allows to
treat a random concatenation of birefringence sections as an equivalent single section.
However, it is worth recalling that Eq. (2.41) does not mean that two signals aligned
over the two input PSPs will not change SOP during propagation. Instead, it means
that such signals, to the first-order, are aligned to the output PSPs of that fibre section
with a relative delay. Also, as mentioned above, the approximation in Eq. (2.41) is true
only to the first order. Thus, a signal launched on one of the PSP will also in general
experience distortion due to second-order PMD effects, which are in turn reflected by
the dependence of τ on ω. The Jones matrix in Eq. (2.38) indicates that, in general,
PMD is present to all orders. However, second-order and higher-order PMD terms
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Figure 2.4: Histogram of the DGD values for z=1000 km and Lc =100 m and 2 · 104 realisations
accumulated. Eq. (2.42) is shown in red.

can be neglected depending on how large the bandwidth of the propagating signal is
compared to the PMD characteristic bandwidth that can be defined as 1/τ.

In the presence of PMD, the Manakov equation needs to be extended to account
for the independent SOPs evolution for the frequency components of the propagating
signal. This can be done starting from the CNLSE set of equations and dropping the
assumptions of constant birefringence. Averaging again over the Poincare’ sphere, the
following equation can be obtained [5, 7]

∂A
∂z

+
α
2

A− jβ2

2
∂2A
∂t2 − j

8
9

γ|A|2 =−b′σ
∂A
∂t

+
1
3

jγ(N̂−< N̂ >) (2.45)

where

b′ =
|βx

1k−βy
1k|

2
(2.46)

is the delay per unit length,

σ = TH

(
1 0
0 −1

)
T (2.47)

and T is a matrix describing the transformation of the SOPs as a function of the distance
z (see [7]). Finally, N̂−< N̂ > is a nonlinear transformation defined in [7]. Eq. (2.45)
is referred to as Manakov-PMD equation. The difference between this equation and
the Manakov equation in (2.34) is represented by the two terms on the right-hand side
of Eq. (2.45): the first term accounts for the so-called linear PMD effect which was
described earlier; the second term represents a residual interaction between PMD and
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nonlinearity after the averaging process over the Poincare’ sphere is performed. For
this reason, such term is typically referred to as nonlinear PMD. However, if the SOP
evolves quicker (in space) than the characteristic length over which nonlinear fibre
effects occur, then nonlinear PMD averages to zero over the fibre nonlinear length and
therefore can be discarded, leading to

∂A
∂z

+
α
2

A− jβ2

2
∂2A
∂t2 − j

8
9

γ|A|2 =−b′σ
∂A
∂t

. (2.48)

In this thesis, Eq. (2.48) is used for the description of fibre propagation in the
presence of PMD. In particular, it is used in section 3.7 for the evaluation of the
effectiveness of nonlinearity compensation receiver schemes in the presence of PMD.

2.3 Structure of an optical fibre communication system

The architecture of an optical fibre link can vary depending on the transmission distance
to be covered and throughput requirements. A major impact on the optical link structure
comes from the selected amplification scheme and the fibres used in each span. The
span losses, the amplification scheme and the specific fibre make a huge difference
to the performance of the communication system. Indeed, different link architectures
will result in markedly different channel properties and, as a result, the transceiver
design will need to be tailored to that specific optical channel, i.e. to a specific link
configuration.

In the following, a description of two different kinds of optical fibre link studied in
this thesis is provided, along with a discussion of their main features from an optical
transmission perspective.

2.3.1 Single-span fibre systems

Single-span systems are optical links connecting two nodes over a relatively extended
reach without optical amplification in between. They are generally used for access
network links or to connect offshore islands to the mainland and typically span distances
in the range between 100 to 400 km. A typical example of a single-span system is
illustrated in Fig. 2.5. It consists of a high-power transmitter including an optical
amplifier, referred to as booster amplifier. No optical amplifiers are usually placed along
the link. However, in the cases where the span length is considerable (e.g. 200≈400 km),
optical amplifiers are placed at about 100 km before the receiver, albeit using a remote
feeding. For this reason such amplifiers are referred to as remote optical pre-amplifiers.
At the receiver, an optical pre-amplifier is used at the receiver to recover from the link
attenuation. The attenuation experienced by the optical signal in these systems is usually
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Figure 2.5: Schematic diagram of a typical single-span optical fibre system.

considerable (e.g. 80 dB for a 400 km span with 0.2 dB/km attenuation coefficient),
and therefore represents the main limitation to transmission. Special fibres such as
ultra low-loss fibres (attenuation coefficient below 0.17 dB/km) are usually adopted to
mitigate this issue and to maximise the receiver optical signal-to-noise ratio (OSNR).
Optical amplification is in most cases performed using an erbium-doped fibre amplifier
(EDFA). EDFA amplifiers are based on the principle of stimulated emission [12, Ch. 6]
of light by the dopants population which is achieved through an external pump laser.
In EDFAs, the dopant material consists of erbium ions. The optical amplification
process is accompanied by the generation of optical noise which is due to the amplified

spontaneous emission (ASE) phenomenon [12, Ch. 6]. The power spectral density
(PSD) of the ASE noise generated by an EDFA and coherently detected is given by [13]

N(ν) = Np(G−1)nsphν (2.49)

where Np is the number of detected polarisations, G is the amplifier gain, h is the Planck
constant, ν is the frequency of operation and nsp is the spontaneous emission factor
which indicates the amount of spontaneous emission noise produced by an EDFA and
the factor of 2 is due to the noise being in two polarisations. The noisiness of the EDFA
is often indicated by a parameter called the noise figure (NF), which is defined as

NF =
SNRin

SNRout
(2.50)

and therefore represents the signal-to-noise ratio (SNR) degradation of an optical signal
going through an EDFA. Spontaneous emission factor and noise figure are related
by [14]

NF = 2nsp
G−1

G
≈ 2nsp (2.51)

where the approximation in the right-hand side of Eq. (2.51) follows from the fact that
G� 1.

If we neglect the effect of fibre nonlinearities and the noise introduced by the booster

EDFA, the SNR of single span systems is then given by
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SNR =
G ·PRX

PASE
=

Pexp(−αL)G
B(G−1)NF ·hν

≈ Pexp(−αL)
B ·NF ·hν

(2.52)

where PRX is the received optical power, PASE is the power of the ASE noise added
by the EDFA over the channel bandwidth, P is the transmitted optical power, B is
the signal bandwidth and L is the span length. From Eq. (2.52) it can be inferred
that for a fixed transmitted power the SNR degrades quite dramatically (exponential
decay) with the transmission distance, regardless of the pre-amplifier gain. When
high-sensitivity receivers are adopted 6, the pre-amplifier can be avoided and the optical
signal is detected at very low optical powers. In this case, the noise limitation is given
by the shot-noise, which represents the unavoidable quantum uncertainty inherent to
the photo-detection process [15]. It can be shown that [12], the shot-noise PSD is
equivalent to the PSD introduced by an ideal EDFA with nsp = 1 (NF=3 dB) and thus
the shot-noise limited SNR in single-span systems is given by

SNR =
Pexp(−αL)

2hνB
. (2.53)

In conclusion, in order to operate a single span system at an SNR value that guaran-
tees error-free transmission for a given net data rate, the transmitted power is required
to increase exponentially with the transmission distance (and linearly increasing with
the transmitted bandwidth). This requirement, in turn, forces to operate transmission in
a highly nonlinear regime. As a result, single-span systems are impaired by nonlinear
distortions as the transmission distance increases. Because of the high powers required
(in excess of 15 dBm per channel), nonlinear effects in single-span systems are even
more prominent than in other fibre systems where the optical signal is repeated, and
therefore receiver schemes need to be properly adapted to this condition. This topic is
tackled in chapter 4.

2.3.2 Multi-span fibre systems

Multi-span EDFA-amplified systems represent the vast majority of optical fibre com-
munication systems. As illustrated in Fig. 2.6, such systems comprise multiple optical
amplification nodes before the signal is electrically regenerated (receiver node). The
amplification length is therefore much shorter than of a typical single-span system and it
varies between 40 and 120 km [13]. This amplification length guarantees a much higher
receiver SNR values than in a single span case (for the same transmission distance),
at the expense, of course, of the deployment of additional EDFAs. The gain of each
EDFA is commonly chosen to guarantee a perfect compensation of the span losses

6Such are receivers where the impact of the electrical front-end noise can be considered small due to
extremely sensitive photo-diodes, e.g. the avalanche photo-diode.
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Figure 2.6: Schematic diagram of a typical multi-span EDFA-amplified optical fibre system.

(transparent link condition). Under this assumption, the receiver SNR (neglecting again
nonlinear effects) for a multispan EDFA system can be written as

SNR =
P

NsPASE
≈ P

2NsGnsphν
=

P
2Ns exp(αLs)nsphν

(2.54)

where Ns is the number of fibre spans in the link and Ls is the span length. As can
be observed from Eq. (2.54), in a multi-span system the SNR decreases only linearly
with distance, as opposed to the previously discussed single-span case. However, this
assumes that Ls is kept fixed, i.e. the number of amplifiers must increase linearly with
the transmission distance. Adding more amplifiers for a given transmission distance
(i.e. decreasing the span length), therefore, improves the received SNR. However, when
nonlinear effects are taken into account through some specific nonlinearity management
criterion an optimum span length can be identified [16, 17].

Legacy multi-span systems employ in-line compensation of CD through dispersion
compensating fibres. After the introduction of coherent detection in the mid-2000s,
in-line CD compensation was gradually abandoned because of the availability of DSP
techniques able to compensate CD electronically. Also, dropping in-line optical CD
was demonstrated to improve coherent transmission performance since dispersion helps
to mitigate nonlinear fibre effects [13, 18, 19].

The lower amount of power required to guarantee a certain SNR level compared to
the single-span case, is beneficial for the performance of multi-span systems which can
operate in a pseudo-linear transmission regime. However, a specific characteristic of
multi-span systems is the significant generation of signal-ASE nonlinear interactions,
due to the accumulation of ASE noise along the link. This is addressed in detail in
section 2.5.3.

Dispersion-unmanaged, multi-span systems using EDFA amplification represent the
main solution for medium to long-haul optical fibre links and, thus, their transmission
performance is studied in chapters 3 and 5.
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2.4 High-spectral efficiency optical fibre communica-
tion systems

In the previous sections, an overview of the general physical properties of an optical
fibre system was given. This section is focused on the techniques that can enable higher
SE optical transmission compared to the older generation of intensity-modulation,
direct-detection (IMDD) systems. These techniques include optical generation of 4D
modulation formats, spectral shaping and coherent detection.

2.4.1 High-SE optical transmitters

The advent of the new coherent detection era has opened the door for new formats
of modulation able to encode information on the four available degrees of freedom
of an optical field: in-phase (I), and quadrature (Q) components, and two orthogonal
SOPs. This resulted in a major SE improvement, as compared to IMDD systems, where
only one degree of freedom (the field intensity) is exploited. Several attempts were
made in the past to increase SE using IMDD systems [20] and research on this is still
ongoing. However, increasing the cardinality M of the modulation format through
a higher number of dimensions significantly improves the sensitivity in the uncoded
regime (minimum Euclidean distance) for the same nominal SE. Moreover, for the
classical additive white Gaussian noise (AWGN) channel [13, Sec. III], this is also
true for coded systems. Indeed, in this case, the net rate of coded systems using 2D
modulation formats is in general higher than 1D formats with the same cardinality and
same SNR [13, Sec. IV].

Let us assume that the baseband equivalent of the transmitted signal is in the form
(linear modulation)

s(t) =
∞

∑
n=−∞

an p(t−nTs) (2.55)

where an ∈ S = {s1,s2, ...,sM} is the symbol transmitted at time slot n and it is complex
number drawn from the constellation S , p(t) is the transmitted pulse and Ts is the
symbol period. The nominal SE of such a modulated signal can be defined as

SE ,
Rs

B
log2 M [bit/(s ·Hz)] (2.56)

where Rs = 1/Ts is the symbol rate, B is the bandwidth of the transmitted pulse p(t)

(typically defined at 3 dB). The nominal SE represents the maximum transmission rate
per unit bandwidth at which information can be transferred using a specific modulation
format and a given pulse. It is worth noting that the nominal SE does not always
correspond to the actual information per unit bandwidth that is transferred through the
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channel. The latter quantity is instead referred to as net SE, and depends on the coding
scheme adopted and on the quality of the channel.

The nominal SE can be increased using two parameters of the modulator: the
constellation cardinality M and the ratio ρ , Rs/B. When a pulse p(t) is selected,
the ratio ρ is a fixed number that indicates its spectral confinement. The Nyquist
criterion [21, Ch. 2] sets an upper limit on ρ which, in the absence of ISI, cannot be
greater than one7. Transmission at a symbol rate Rs = B is said to be at Nyquist rate. In
general, ρ can be quite a small number. In order to increase such number the transmitted
signal must be carefully shaped in order for its spectrum to meet specific requirements.
Techniques aiming to contain the spectral shape of p(t) for a given Rs and thus to
maximise ρ are referred to spectral shaping. The most spectrally-efficient pulses are
members of the well-known family of Nyquist pulses, also called root-raised cosine
(RRC) pulses [21, Ch. 7].

For an AWGN channel, the optimal signal detection is represented by a matched-

filter followed by a sampler at 1 Sa/sym [22, Ch. 7]. Therefore, in order for the sampler
output to be ISI-free, the spectrum of the matched filter output should be given by

Q( f ) =





Ts, | f | ≥ 1−α
2Ts

Ts
2

{
1− cos

[
πTs
α

(
f − 1+α

2Ts

)]}
, 1−α

2Ts
≤ | f | ≥ 1+α

2Ts

0, | f | ≥ 1+α
2Ts

(2.57)

where α is called roll-off of the pulse and can vary between 0 and 1. The spectral
shape in Eq. (2.57) is referred to as raised-cosine, and since

Q( f ) = P( f )P( f )∗ (2.58)

hence the name RRC for a pulse p(t) whose normalised spectrum is given by P( f ).
The roll-off is an indicator of spectral confinement of p(t). Small values of the

roll-off are related to higher values of ρ and, therefore, higher SE, e.g. when α = 0 then
ρ = 1.

High-SE optical transmitters are, therefore, based on a combination of both an
increased number of signal dimensions and spectral shaping. The modulation of an
optical carrier in both I and Q components is performed by optical IQ modulators. The
structure of an IQ modulator is shown in Fig. 2.7. The optical CW carrier is split over
two branches each containing a so-called Mach-Zehnder modulator (MZM). The MZM,
shown in Fig. 2.7, is composed of two arms introducing a phase shift φ controlled by an
electrical driving signal. The two optical paths recombined with different phases give
rise to an interference with an amplitude that varies based on the phase φ, thus allowing

7B here represents the double-sided bandwidth.
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Figure 2.7: Schematic diagram of an IQ modulator.

to modulate the amplitude of the input CW laser. In an IQ modulator, the two MZMs
modulate the I and Q channels. The Q channel is then subsequently phase-shifted by
90 degrees and the two optical path are finally recombined to generate a 2D modulated
signal. In order to generate a polarisation-multiplexed (PM) signal, the IQ modulator
structure is replicated over two distinct branches in which the two orthogonal SOPs are
modulated, as illustrated in Fig. 2.8. The SOP in one of the two arms is then rotated
onto an orthogonal SOP using a polarisation rotator. Such a device is referred to as a
dual-polarisation (DP) optical modulator.

The spectral shaping of the pulse can be performed either optically [23–25] or
electrically [26, 27]. The optical approach can be based on the design of sharp optical
filters [23, 24], parametric amplification techniques [25], or cascaded MZM structures
[28]. The advantage of such techniques is that high-quality Nyquist pulses can be
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Figure 2.8: Schematic diagram of a DP IQ modulator.
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generated even down to a zero roll-off value. The electrical approach is more flexible,
as it typically relies on a digital-domain design of the pulse [28]. However, the main
drawback is given by the increasing resolution required as the pulse roll-off decreases
(increasing peak-to-average ratio), which is usually a demanding requirement for digital-
to-analogue converters.

2.4.2 Coherent detection

A major step ahead in the endeavour for spectrally efficient optical fibre transmission was
marked by the re-discovery of coherent optical detection and digital signal processing
techniques [29–31]. Coherent detection allows access to the entire information of
the transmitted optical field, i.e. its amplitude and phase components, as opposed to
IMDD systems, in which only the field intensity can be detected. As a result, coherent
detection enables the use of high-SE modulation formats, where the information is
encoded jointly on the amplitude and phase of the optical field.

The photo-detection process, which is typically performed by a photo-diode, is
inherently sensitive to the intensity of an incoming field. In order to detect the optical
field the process must follow two steps, which are illustrated in Fig. 2.9: i) mixing
of the incoming optical signal with a CW signal at the same nominal frequency; ii)
photo-detection.

The mixing consists of coupling the optical field to be detected with an optical carrier
(typically available at the receiver) with the same nominal frequency and phase of the
transmitted one. Such an optical carrier is called local oscillator (LO). The summation
of these two fields is then photo-detected by mean of a photo-diode. Assuming that the
polarisation state of the incoming optical field and the one of the LO are aligned and
the LO frequency and phase are ideally locked to the signal carrier, then the electrical
signal at the output of the photodiode is proportional to

|Esig(t)+ELO|2 =(Esig(t)+ELO)(Esig+ELO)
∗= |Esig(t)|2+|ELO|2+2Re(Esig(t)E∗LO)

(2.59)
where Esig(t) and ELO are the complex amplitudes of the transmitted optical field and
the LO, respectively. The time dependency is made explicit only for Esig(t) to stress the
fact that the incoming signal is modulated, whereas ELO is a CW optical field. The right-
most equality in Eq. (2.59) shows that by mixing and subsequently detecting the field
intensity, a coherent term proportional to the I component of Esig (2Re(Esig(t)E∗LO))
arises. Likewise, by coupling Esig with a 180 degrees phase-shifted version of ELO

(-ELO), a term proportional to the Q component of Esig is obtained. The direct-detection
(d.d.) components, i.e. the terms that are proportional to the field intensity (|Esig(t)|2
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and |ELO|2), can be removed using different approaches. The most straightforward
one consists in filtering out the direct current component that arises from |ELO|2, and
increasing the ratio between the LO power and the signal power, such that the residual
term |Esig|2 is small compared to the coherent term.

The polarisation state of the incoming signal is in general unknown at the receiver.
In order to reconstruct it, polarisation-diverse receivers are adopted. Fig. 2.9 shows
the structure of such a coherent receiver. The incoming signal is first split into two
orthogonal polarisations through a polarisation beam splitter (PBS). These orthogonal
polarisations are then mixed with two phase-shifted versions of the LO provided by IQ
couplers. The resulting four optical signals are then sent to four photo-diodes whose
currents are proportional to

I1 ∝ Re(Ex)+d.d. terms

I2 ∝ Im(Ex)+d.d. terms

I3 ∝ Re(Ey)+d.d. terms

I4 ∝ Im(Ey)+d.d. terms

(2.60)

where Ex and Ey are the signal polarisation components selected by the PBS.
An alternative coherent receiver structure is the balanced architecture, where both

signal and LO direct-detection terms are coherently cancelled through the generation
of identical copies of the same direct-detection component. Such an architecture is
schematically shown in Fig. 2.10. This architecture features a pair of four photodiodes
per polarisation. Each signal polarisation coming out of the PBS is mixed with the LO
using a 90 hybrid which is 4×4 optical coupler producing the four linear combinations
between signal and LO shown in Fig. 2.10. The photodiodes outputs are pairwise fed
into a differential amplifier which amplifies the difference between the two signal, so

LO

PD 1 I1

PD 2 I2

PD 3 I3

PD 4 I4

Esig(t)

ELO(t)

PBS

IQ coupler
‖

IQ coupler
⊥

Figure 2.9: Structure of a single-ended polarisation-diverse coherent receiver.

51



Chapter 2. Theoretical tools for optical fibre communication

PBS

LO

90 degree
hybrid

90 degree
hybrid

PD 1

PD 2

PD 3

PD 4

TIA

TIA

I1

I2

PD 5

PD 6

PD 7

PD 8

TIA

TIA

I3

I4

0◦

180◦

90◦

270◦

0◦

180◦

90◦

270◦

Esig(t)

ELO(t)

‖

⊥

Figure 2.10: Balanced polarisation-diverse coherent receiver.

performing the coherent suppression of the direct-detection terms. Altough a better
sensitivity (due to a better direct-detection term suppression) can be achieved using this
structure [15], this comes at the cost of double the number of photodiodes required for
a single-ended structure.

Separating the received field into four orthogonal components allows for a full
reconstruction of the transmitted field which is performed in the digital domain by the
DSP subsystems [30]. The typical DSP chain of a coherent receiver is displayed in
Fig. 2.11. The four outputs of a coherent receiver are sampled and a first deskew and
orthonormalisation is performed to compensate for a non-ideal receiver front-end. The
compensation of static linear fibre impairments, such as CD, can then be performed
using digital filters [29], thanks to the linear mapping between the optical field and
the electrical signal at the output of the coherent receiver. Specifically, electronic CD
compensation (EDC) digitally reverses the CD of the fibre performing the following
operation in the digital domain

exp
(
− jβ2ω2

2
z
)
. (2.61)

As discussed in [29], the implementation of this all-pass filtering in the digital domain
can vary from a time-domain finite impulse response (FIR) filter to a frequency domain
FFT-based filter, depending on the amount of CD to be compensated and the frequency
resolution adopted.

When a PM signal is transmitted, a DSP block is required to separate the two data
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Figure 2.11: Typical DSP chain in a coherent receiver.

channels encoded on the two orthogonal polarisations. Indeed, the orthogonal SOPs
provided by the coherent receiver are obtained through the PBS, and contain a generic
linear superposition of the transmitted PM channels. Separating the two transmitted data
channels requires finding a 2×2 matrix that inverts this superposition. This operation is
referred to as polarisation demultiplexing and it is performed using blind equalisation
algorithms such as the constant-modulus algorithm (CMA) [30]. The CMA exploits
particular features of specific PM modulation formats, such as PM-QPSK, where the
signal always features a constant modulus on each of the two polarisations (hence the
name constant modulus algorithm). The algorithm then aims to minimise the error
of the received signal to a constant modulus signal. In addition to separating the two
polarisation channels, the CMA8 also performs a compensation for other dynamic fibre
linear impairments such as PMD and residual CD. This is achieved by adapting the taps
of a set of real FIR filters for each polarisation 9.

Finally, frequency- and phase-syncronisation are required to compensate for a
frequency shift between signal carrier and LO, and phase noise on both transmitted
laser and LO laser. Feedforward techniques for frequency estimation are generally
modulation-format dependent, and are based, for instance for the QPSK case, on taking
the fourth power of the received symbols. This quantity can be used as an estimator for
either maximum likelihood estimation techniques [33] or spectral techniques [34].

The phase noise of lasers typically utilised in optical communications varies between
1 KHz and 1 MHz [30]. This means that the phase noise process can be tracked over
hundreds or tens of symbols, depending on the cardinality of the constellation and on
its tolerance to phase fluctuations. Popular feedforward techniques for phase-noise
tracking are also based on fourth power estimators which are averaged over a given
time window. The most widespread of such techniques is referred to as Viterbi &

8The CMA algorithm is not the only adopted solution, and more sophisticated algorithms are required
for modulation formats with higher cardinalities than PM-QPSK, such as PM-16QAM, PM-64QAM etc.

9Alternatively, separate FIR filters can be used for I and Q components on each of the two polarisation
channels to adaptively compensate for residual skew between the I and Q channels [32].
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Viterbi algorithm [35]. Main alternatives to feedforward techniques are represented by
decision-directed phase estimation or digital phase-locked loops [34, 36].

This thesis exclusively analyses coherent systems. Although of paramount import-
ance for real-world optical coherent receivers, the focus of thesis work is on transmission
impairments yielded by fibre nonlinearity rather than on the implementation and on
the performance of the DSP blocks discussed above. A suboptimal choice of the DSP
parameters (e.g. window size of the Viterbi& Viterbi algorithm) can result in a pen-
alty in the receiver performance. For all the results presented in the remainder of the
thesis, phase noise and frequency shifts are neglected and full knowledge on the signal
polarisation evolution is made available to the receiver. This approach arises from the
assumption that polarisation demultiplexing, frequency- and phase-syncronisation are
performed ideally at the receiver and no penalty is, thus, incurred.

2.5 Modelling of the optical fibre channel

It section 2.1.4 and 2.2 it was explained why Manakov or Manakov-PMD equations were
chosen instead of NLSE or CNLSE for a comprehensive and effective description of fibre
propagation in the presence of random polarisation phenomena. However, Manakov
equation (see Eq. (2.34)) has no general analytical solution. Because of this, numerical
methods are often used to derive arbitrarily accurate solutions, as discussed in section 2.6.
However, due to the computational complexity of these methods, in many applications
it is often important to derive simple analytical relationships that allow for a quick
estimation of the performance of an optical fibre communication system. In particular,
it is of great interest researching for approximated closed-form expressions which
describe the impact of fibre nonlinearity on the transmission performance. Furthermore,
looking for analytical relationships between the transmitted signal and the received one
is of paramount importance for solving the question on the ultimate limits of optical
fibre transmission, i.e. the optical fibre channel capacity [13, 37, 38].

The problem of finding (relatively simple) explicit analytical relationships for the
performance metrics of interest, satisfying Eq. (2.34) with acceptable accuracy, is
usually referred to as channel modelling. In recent years this has been the focus of a
large part of research in optical fibre communications and it still represents a central
topic in this area. In the following, some of the recent advances on this topic are
discussed, with particular focus on the most widely used analytical model, i.e. the
Gaussian noise (GN) model [39]. Because of its mathematical simplicity, this model is
used in the rest of this thesis to gain a deeper insight on the results obtained through
numerical simulations.
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2.5.1 The GN-model of fibre propagation

The GN-model was first introduced by Carena et al. in [40], and further discussed
in [39, 41, 42]. The GN-model is arguably the most popular and widespread among
the available models of nonlinear fibre propagation, mainly due to the simplicity of the
expressions resulting from the model.

According to GN-model distortions arising from fibre nonlinearity can be accounted
for as an additive source of (Gaussian) noise which is independent from both the signal
and the ASE noise. As a result this noise source adds in power to the conventional ASE
noise accumulating along an optical fibre link, and it is usually referred to as nonlinear
interference (NLI). The additive characteristic of the NLI power is justified by the usual
adoption of standard detection techniques that are tailored to the AWGN channel, such
as the matched filter/sampler receiver followed by symbol-by-symbol decision. Indeed,
using such a conventional approach, the NLI can only be accounted for as an additive
and independent noise source10.

The main result of the GN-model is an analytical, and in some cases closed-form
expressions, relating the main system parameters and the NLI power. This power is
then typically used to estimate an effective received SNR, which under the assumption
of additivity of the NLI, is given by

SNR =
P

PASE +PNLI
(2.62)

where P is the signal power (one channel), PASE is the total ASE noise power accumu-
lated along the fibre link.

The GN-model is based on two main hypothesis: i) nonlinearity impact on signal
propagation is low (perturbative hypothesis); ii) the transmitted signal is replaced by a
Gaussian process with the same average power. Under the first assumption, the NLI can
be found performing the following steps: i) solving (2.34) without the nonlinear term,
which yields the so-called zero-th order solution; ii) replacing the zero-th order solution
to the nonlinear term; iii) solving again (2.34) to finally find the first-order solution.
The first-order solution to (2.34) is a first approximation to the NLI which is the more
accurate the lower is the amount of nonlinearity. This approach to solve Eq. (2.34) is
shared among the almost entirety of the available channel models and it is referred to as
first-order perturbation method [43, Ch. 1].

Once a first-order solution is obtained, the second assumption simplifies the problem
of converting the analytical expression for the NLI field into an NLI power. Indeed, by
assuming that the propagating field is a Gaussian process with a PSD S( f ), the PSD of
the first-order NLI can be written as [40]

10Any noise process can be considered additive. However, when signal and noise are to some extent
correlated, it is more suitable to see the noise as multiplicative.
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GNLI( f ) =
16
27

γ2
∫ ∞

−∞

∫ ∞

−∞
S( f1)S( f2)S( f1 + f2− f )θ(∆ f1,∆ f2)d f2 d f1 (2.63)

where S( f ) is the PSD of the transmitted signal, and

θ(∆ f1,∆ f2),

∣∣∣∣∣
1− e−αLse j4π2|β2|Ls∆ f1∆ f2

α−4π2|β2|∆ f1∆ f2

∣∣∣∣∣

2
sin2(2Nsπ2∆ f1∆ f2|β2|Ls)

sin2(2π2∆ f1∆ f2|β2|Ls)
(2.64)

is the FWM efficiency function already shown in Eq. (2.29) for a discrete spectrum. In
Eq. (2.64), Ns is the number of fibre spans in the link, Ls is the span length, whereas
∆ f1 and ∆ f2 are defined as ( f1− f ) and ( f2− f ) respectively.

Eq. (2.63) is derived through three main steps: i) a discrete spectrum is first assumed
and the discrete FWM products are calculated based as in [2]; ii) full uncorrelation
between all frequency components of the transmitted spectrum (see Appendix [40,
Appendix D]) is assumed, which allows for the power additivity of the FWM products;
iii) the frequency spacing between the discrete components of the spectrum tends to
zero. The assumption in step ii) is verified if the actual transmitted signal is replaced by
a Gaussian process. However, this is not in general the case and the inaccuracy caused
by this assumption is further discussed in the next section.

A general closed-form expression for Eq. (2.63) does not exist, as this is dependent
on the specific spectral shape of S( f ). However, in all cases the NLI power can be
written as [39]

PNLI = ηP3 (2.65)

where η is a function of several system parameters, albeit independent of the transmitted
power. For particular scenarios, approximated closed-form expressions of η have been
proposed [39, 40, 44].

In particular, when the transmitted channel spectrum is exactly rectangular and
the system under consideration is EDFA-amplified and dispersion-unmanaged an ap-
proximated closed-form expression for the η factor over one span of fibre is given
by [39]

η1 ≈
8
27

γ2L2
eff

π|β2|R2
s Leff

arcsinh
(

π2

2
LeffR2

s N
2 Rs

∆ fch
ch

)
(2.66)

where
Leff =

∫ L

0
exp(−αz)dz (2.67)

is the effective length of a fibre span of length L, Rs is the symbol rate, Nch is the number
of transmitted WDM channels, and ∆ fch is the channel spacing. The dependence of η
on the overall optical bandwidth B = RsNch (under ideal Nyquist spacing conditions) is
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nonlinear through the arcsinh function, which can be approximated for large values of
the argument to a logarithmic function. As a result, Eq. (2.66) predicts a monotonically
increasing NLI power as the transmitted bandwidth is increased, with no saturation as B

tend to infinity (although the slope of the increase does tend to zero). Furthermore, the
dependency on the symbol rate of the NLI PSD is just apparent. In fact, multiplying η
by P3 to obtain the NLI power, a linear dependency Rs can be found, and therefore the
NLI PSD (in this case equal to PNLI/Rs) is independent on Rs.

Over multiple spans, the NLI accumulation is in general noncoherent, i.e. the NLI
power does not scale linearly. An approximated scaling with the distance is given
by [39]

η = η1N1+ε
s (2.68)

where

ε≈ 3
10

ln

(
1+

6
Ls

Leff

arcsinh(π2

2 |β2|LeffB)

)
(2.69)

is referred to as coherence factor and varies between 0 and 1, albeit being typically a
small number (≤ 0.2). Substituting Eq. (2.68) into Eq. (2.65) and then into Eq. (2.62)
we find

SNR =
P

NsPASE +η1N1+ε
s P3

. (2.70)

Although, as discussed later on, Eq. (2.70) is just an approximation, it can be used to
explain the typical performance behaviour of optical fibre transmission systems, where
an optimum operating point is always found as a function of the transmitted power
P. The analytical prediction of the SNR of the central channel given by Eq. (2.70) is
illustrated in Fig. 2.12 as a function of the power per channel and for two different
transmitted bandwidths and transmission distances.

It can be seen that all curves show the same qualitative behaviour. Indeed, for
transmitted powers up to approximately -4 dBm, the SNR increases as 1 dB/dB, as
expected for the linear case (PNLI = 0). This is due to the dominance of linear noise
term (PASE) compared to the NLI term. As the NLI power becomes comparable to
the total ASE noise the curves begin to saturate until a peak is achieved. The effect
of the NLI becomes dominant beyond this point where, due to its scaling as P3, the
SNR decays as P−2 (see Eq. (2.70) when NsPASE is considered negligible). At all
transmission distances, the increase of the transmission bandwidth results in a decrease
of the optimum SNR by about 1 dB and a shift of the optimum transmitted power by
about -0.7 dB. The dependence on transmission distance is instead stronger, as the
optimum SNR can be observed to decrease approximately linearly with Ns (e.g. ≈6
dB reduction going from a distance of 800 km to 3200 km). A detailed analysis of
the scaling of the SNR based on the GN-model predictions are presented in the next
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Figure 2.12: SNR of the central channel as a function of the transmitted power P for different transmitted
optical bandwidths, and for different transmission distances. The SNR is obtained using Eq. (2.70).

chapter.

2.5.2 Recent developments on optical fibre channel modelling

Since its introduction in 2012 the GN-model has received a lot of attention from the
research community. This research focus resulted in uncovering the main flaws of the
model [45, 46] and in the introduction of new and more accurate models [47–50], which,
at present, represent the state-of-art of analytical modelling of optical fibre transmission.

The main difference between such improved models and the GN-model consists in
the dropping of the Gaussian assumption for the propagating signal. This assumption
was justified on the observation that for typical dispersion-unmanaged systems the
output constellation shows a distribution that closely approaches a circularly symmetric
Gaussian distribution at all powers of interest for optical fibre communications [40].
This effect was observed both in experimental scenarios and simulated systems, even
in the absence of ASE noise [40, 51], and hence the assumption of the NLI behaving
as a Gaussian process. Furthermore, in a few works it was argued that, although the
transmitted signal might have properties very dissimilar from a Gaussian process, the
effect of dispersion would effectively transform the signal into a Gaussian process
after a certain distance. Particularly, in [45], the transient during which the signal is
still very dissimilar from a Gaussian process (first spans of a transmission link) was
recognised to result in an underestimation of the NLI power. However, in the limit of
infinite dispersion, it was argued that this signal would become a Gaussian process due
to the central limit theorem, and as a result the error in the GN-model estimation would

58



Chapter 2. Theoretical tools for optical fibre communication

vanish.
In both [46, 50], it was observed this is not the case and, under a Gaussian assump-

tion, a constant error in the NLI power estimation is accumulated over each fibre span
after the initial ones. As a result, it was clear that this assumption, although bringing
significant simplifications in the analytical expressions, would result in a fixed inaccur-
acy. Such inaccuracy was recognised to be strongly dependent on the properties of the
transmitted signal and specifically on the modulation format adopted in transmission.

The first work recognising the effect of modulation format on the NLI was [47],
where a first-order perturbation theory in the time domain to solve Eq. (2.34) was presen-
ted. The derivation of the first-order solution did not rely on any specific assumption
about the signal and lead to analytical expressions for NLI in both its intra-channel and
inter-channel components. One of the main shortcomings of this model (apart from the
role of the modulation format on the generation of the NLI) was the fact that a good
portion of the NLI could be identified as pure phase noise, in contrast with [40] where
both ASE noise and NLI were assumed circularly Gaussian. However, probably due to
the complexity of the analytical expressions, the significance of the model in [47] were
never entirely understood.

The work in [47] was subsequently expanded in [50]. In this work, the expressions
in [47] were further developed and an equivalent frequency-domain approach was
introduced. Using the latter approach, the shortcomings of the GN-model could be
better identified. Also, numerical results, in agreement with the new model, showed a
gap between GN-model predictions and NLI generated by the modulated signals, such
as PM-QPSK and PM-16QAM, can be found.

Independently from the previous two works, results in [48, 49] showed qualitatively
similar results based on a variation of the regular perturbation approach used in both
[47, 50] called logarithmic perturbation (LP) method. The derivation was performed in
the frequency domain (hence the name frequency-resolved LP) an assuming XPM as the
main component of the NLI (no SPM or FWM included in the description). Through
this approach, this work showed that, to the first-order, optical fibre can be seen as a
linear time-varying system, hence allowing a simplified analysis both in terms of NLI
power [48] and in terms of achievable rates [49].

In response to these two works, the GN-model was refined to account for the specific
properties of the transmitted signal [52, 53]. This new model, called enhanced GN
(EGN)-model, introduced, in addition to the GN NLI power estimation, a correction
term which was found to be modulation format-dependent. Furthermore, this new term
includes contributions to the NLI which were discarded in the models in [47, 49, 50].

All the models discussed in this section do not in general provide closed-form
approximations due to the higher complexity of the analytical relationships compared to
GN model. However, in [54], an approximated closed-form formula was presented for
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the EGN-model. Similarly for the closed form expression in Eq. (2.66) the EGN formula
in [54] is tailored for the ideal Nyquist shaping case (roll-off=0), with arbitrary spacing
between the channels, in a dispersion-unmanaged, EDFA-amplified, fibre channel.
According to this formula, the corrected NLI factor for a perfectly rectangular channel
spectrum can be written as

ηEGN = η−ηcorr (2.71)

where η is the NLI coefficient according to the GN model and ηcorr is the correction
factor given by

ηcorr ≈
80
81

Φ
γ2L2

effNs

Rs∆ f πβ2Ls
HN([Nch−1]/2). (2.72)

Φ is a coefficient which is closely related to the modulation format fourth and sixth
standardised moment (see [52]) and it can be found to be equal, for instance, to 1 for
PM-QPSK, 17/25 for PM-16QAM and 13/21 for PM-64QAM. HN is the harmonic
number function defined as

HN(N) =
N

∑
n=1

1
n
. (2.73)

Based on this correction factor, each modulation format generates a different NLI
power and therefore a different SNR. The impact of the correction factor introduced
by the EGN-model on the SNR for different modulation formats is assessed in the
following. The calculation of the SNR is performed for a transmission of 31x32 GBaud
channels and a channel spacing of 33 GHz over a distance of 3200 km. The results are
shown in Fig. 2.13.

As discussed earlier, the GN-model underestimates the SNR by an amount that
varies based on the actual modulation format adopted. The largest underestimation is
found for PM-QPSK, as in this case the GN-model underestimates the optimum SNR
by 0.53 dB. The GN-model overestimation of η can be deduced by measuring the SNR
gap for asymptotically large transmitted powers. It can be deduced that PM-QPSK η
factor is overestimated by 1.47 dB in the nonlinear region. As the modulation order
increases, the gap with the GN-model decreases to 0.3 dB and 0.85 dB compared to the
optimum SNR and η of PM-64QAM, respectively. However, this gap does not close
completely, as can be deduced by comparing the SNR performance of PM-16QAM and
PM-64QAM, which show only a negligible difference. This suggests that a modulated
signal preserves its non-Gaussian features, even for an arbitrary large constellation
cardinality. The analytical results described in the last two sections are used in chapter
3 to validate the numerical results on the SNR performance of systems using EDC or
NLI compensation at the receiver.
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Figure 2.13: SNR of the central channel as a function of the transmitted power P for a 31x32 GBaud
channels transmission over 3200 km and different modulation formats. The SNR is obtained using
Eq. (2.70).

2.5.3 Signal-ASE beating

In the above sections different models of nonlinear fibre propagation were discussed in
order to predict the NLI power and, consequently, the receiver SNR through Eq. (2.62).

One of the underlying assumptions of all the models presented is that the signal-
signal NLI is generated only from interactions within the transmitted signal and itself.
However, in EDFA-amplified systems (Fig. 2.6) the ASE noise is added at every span
in a lumped fashion. This leads not only to an additive Gaussian noise accumulating
linearly with distance, but also to a continuously generated nonlinear signal-ASE
interaction. This phenomenon, also referred to as parametric noise amplification [12],
is generally neglected as signal-signal terms usually dominate. However in some
particular transmission scenarios (see chapter 3) this is no longer the case, and an
accurate estimation of signal-ASE term is required.

In order to do that, we first need to understand how the signal-ASE NLI accumulates
over a multi-span system. Fig. 2.14 schematically describes such an accumulation. Let
us assume our system has Ns spans and Ns amplifiers distributed as shown in Fig. 2.14.
The total accumulated signal-ASE term can be considered as the summation of multiple
signal-ASE contributions originating by the interaction with the noise lots added by
each EDFA in the link11. If we denote the signal-ASE NLI generated by the n-th EDFA
as PSN(n) = Γ(Ns− n+ 1), i.e. as a function of the number of spans over which the
NLI accumulates, then the total signal-ASE NLI can be rewritten as

11Clearly, the noise lots are uncorrelated with each other and so can their relative signal-ASE NLIs.
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Figure 2.14: Schematic diagram of the accumulation of the signal-ASE NLI in a multi-span EDFA-
amplified system.

PSNtot =
Ns

∑
n=1

Γ(Ns−n+1). (2.74)

In order to find Γ(Ns−n+1), we can resort to the approach followed by the GN-
model (or EGN) in [40]. In this case though, the signal PSD must be replaced with the
combination of signal PSD and ASE noise PSD. A detailed mathematical derivation is
presented in the Appendix, after which we find, if we use for simplicity the GN-model
NLI factor,

PSNtot ≈ 3ηζPASEP2 (2.75)

where

ζ ,
Ns

∑
n=1

n1+ε ≈ N2+ε
s

2+ ε
+

N1+ε
s
2

(2.76)

and the approximation follows from the Faulhaber’s formula [55, eq. (0.121))].
Eq. (2.75) shows two main properties of the signal-ASE NLI: it scales quadratically

with transmitted power (as opposed to the signal-signal NLI which scales cubically
with transmitted power); it accumulates super-quadratically (N2+ε

s ) with the distance
(as opposed to the signal-signal NLI which accumulates only super-linearly).

Although often neglected in the design of present-day optical fibre communication
systems, the role of the signal-ASE NLI is crucial as it represents one of the main
performance limitations (probably the ultimate) on the performance of optical fibre
transmission [38, 56]. In particular, the signal-ASE NLI defines the limits of receivers
which are able to fully compensate for signal-signal nonlinear effects. The performance
of such receivers will be analysed in chapter 3.
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2.6 Numerical methods for fibre propagation

Throughout this chapter the differential equations governing the propagation of light-
wave pulses in optical fibre were presented and discussed. It was also pointed out that
such equations do not have in general an explicit analytical solution. We have also
presented analytical models that attempt to provide an approximated solution under
certain assumptions and specific regimes. Numerical methods remain the only option
when the solution of Eq. (2.34) is required with arbitrary high accuracy and in all
regimes where models do not hold. For instance, one of such regimes happen when
high transmitted powers are used and, as a result, the first-order perturbation solution
becomes increasingly inaccurate.

In this section, the main techniques for numerical evaluation of the performance
of optical fibre communication systems are presented. Such numerical methods are
heavily used throughout this thesis. In particular they are used in chapters 3, 4 and 5 to
emulate fibre propagation, and numerically evaluate the system performance.

2.6.1 Split-step Fourier method

The most widespread method to numerically solve Eq. (2.34) is the SSFM algorithm
[57], [1, Ch. 2]. Although other numerical methods are available such as time-domain
finite difference methods [1, Ch. 2], [58], the SSFM has achieved popularity thanks to
its fast implementation through the fast Fourier transform (FFT), which makes it the
lowest complexity algorithm available to solve NLSE/Manakov equation [58].

The solution of (2.34) can be implicitly expressed using the exponential operator
as [1, Ch. 2]

A(z, t) = A(0, t)exp(D̂z+ N̂z) (2.77)

where A(0, t) is the initial condition imposed at section z= 0 and D̂, N̂ are the dispersion
and nonlinear operator defined as

D̂ = j
β2

2
z

∂
∂2t

(2.78)

N̂ =− j
8
9

γ||A(t,z)||2− α
2
. (2.79)

The SSFM is based on breaking the integral solution into sections small enough
such that each of the vector components of Eq. (2.77) can be approximated by

A(t,z+h) = exp
[
(D̂+ N̂)h

]
A(t,z)≈ exp(D̂h)exp(N̂h)A(t,z) (2.80)

i.e. the effect of the sum of the two operators can be expressed as the composition of
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each of the two acting separately [1, 57, 59]. This can be explained through the Baker-
Campbell-Hausdorff formula on non-commutative operators [60], based on which we
can expand the operator at the right-hand side of Eq. (2.80) as

exp(D̂h)exp(N̂h) = exp(D̂h+ N̂h+
h2

2
([D̂, N̂])+

h3

12
([D̂, [D̂, N̂])+ . . . (2.81)

where
[D̂, N̂] = (D̂N̂− N̂D̂) (2.82)

is the commutator applied to the operators D̂ and N̂. We can observe that in the limit
of the step-size h tending to zero, Eq. (2.80) converges to the exact solution at left-
hand side of Eq. (2.80) with a local error (e.g. the error experienced in a single step)
dominated by the term exp

[
h2

2 (D̂N̂− N̂D̂)
]

for small values of h.
A way to reduce this local error is to resort to the alternative approximation

A(t,z+h) = exp
[
(D̂+ N̂)h

]
A(t,z)≈ exp

(
D̂

h
2

)
exp
(
N̂h
)

exp
(

D̂
h
2

)
A(t,z) (2.83)

i.e. further splitting the SSFM step in three sections: a first section applies the linear
operator D̂ over half the step-size h/2; a second section applies the nonlinear operator
N̂ over the entire step size h; finally a last section applies again the linear operator
over the residual length h/2. In this case the D̂ operator is symmetrically applied
before and after the N̂ operator, hence the name symmetric SSFM for this approach.
Applying again the Baker-Campbell-Hausdorff formula for the two operators exp

(
D̂h

2

)

and exp
(
N̂h
)

exp
(
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2

)
, we find
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(2.84)
In this case the dominant local error term is represented by h3

6 ([
N̂+D̂

2 , [N̂, D̂
2 ]]) which

tends to zero more rapidly than the local error in the bulk-step case.
Each of the exponential operators presented above represents the solution of

Eq. (2.34) when D̂ and N̂ are in turn equal to zero. These solutions were discussed in
section 2.1 and can be expressed as

exp
(
D̂(ω)h

)
= exp

(
j
β2

2
ω2h

)
(2.85)

exp(N̂(z, t)h) = exp
(
− j

8
9

γ
∫ z+h

z
||A(t,z′)||2 exp(−αz′)dz′− α

2
h
)

(2.86)

where it is explicitly indicated when the operator is performed in the time or in the
frequency domain ω. Switching to the Fourier domain for the dispersion operator (hence
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the name split-step Fourier) allows to reduce the operator to a point-wise multiplication
(in the frequency variable ω). Moreover, the Fourier transform can be efficiently
implemented numerically using a fast Fourier transform (FFT). The operator exp(N̂(t)h)

can be also reduced to a point-wise multiplication in the time domain as the integral
within the exponential Eq. (2.86) can be calculated as

∫ z+h

z
exp(−αz′)dz′ =

1− exp(−αh)
α

, heff. (2.87)

As a result Eq. (2.86) can be written in a full closed-form expression as

exp(N̂(z, t)h) = exp
(
− j

8
9

γ||A(t,z)||2heff−
α
2

h
)
. (2.88)

The numerical implementation of the SSFM can be summarised in Fig. 2.15 for
both the bulk-step case (2.15a) and the symmetric split-step case (2.15b).

The sequence of samples of the optical field in the time domain At(z,n) is first
transformed into the frequency domain using the FFT obtaining the sequence Aω(z,k).
The spectrum is then point-wise multiplied by Eq. (2.85) and transformed back in the
time domain. Finally, the resulting time-domain sequence is point-wise multiplied by
Eq. (2.86) obtaining the sequence At(z+h,n).

In order to preserve an acceptable numerical accuracy, the solution of Eq. (2.34) for
a fibre section of length L can be obtained by breaking the total length into small enough
steps of length h and iteratively repeating the SSFM over each step. It is important
to note that for multiple iterations of the the SSFM there is no difference between the
bulk-step and the symmetric step implementation of the SSFM. This is due to the fact
that consecutive dispersion blocks, resulting from cascading the blocks in Fig. 2.15b,
can be merged in a single frequency domain block, effectively reobtaining the schematic
in Fig. 2.15a. Thus, the global error, i.e. the error accumulated over multiple SSFM
iterations, is the same for the bulk step and symmetric step case and it can be shown to
decrease as O(h2) [59].

SSFM and one of its variants are used for the numerical simulations performed in

FFT
At(z,n) Aω(z,k) exp

(
D̂h
)

FFT−1 exp
(
N̂h
) At(z+h,n)

(a)

FFT
At(z,n) exp

(
D̂h

2

)
FFT−1 exp

(
N̂h
)

FFT exp
(
D̂h

2

)
FFT

At(z+h,n)

(b)

Figure 2.15: Schematic diagram of a SSFM section of length h for the (a) bulk step and (b) symmetric
step implementation.
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chapter 3, 4 and 5. Such a variant, which is more computationally effective, is discussed
in the following section.

2.6.2 Adaptive SSFM methods

The SSFM method presented above does not allow to explicitly control the error
arising due to the spatial discretisation. Furthermore, using uniform step sizes does not
always represent the most efficient way to maximise the accuracy for a fixed number
of computations. Indeed, for EDFA-amplified systems, most of nonlinear propagation
effects takes place within a distance that can be quantified in the span effective length
(see Eq. (2.67)). As a result, for a fixed error in the numerical solution, smaller steps are
needed at the beginning of the span, while coarser steps could be used when the signal
propagates beyond the effective length, because of a small (if not negligible) impact of
nonlinearity. An effective variant of the SSFM should then be adaptive to the amount of
nonlinearity generated (i.e. on transmitted power, bandwidth and fibre parameters) and
at the same time should distribute the step sizes in order to match the attenuation profile
of the fibre.

The first adaptive method was proposed in [61], where the step size ∆z was determ-
ined by a maximum allowed nonlinear phase rotation ΦNLmax as

γ∆zPp < ΦNLmax (2.89)

where Pp is the peak power of the signal at section z. Although such criterion qualitat-
ively controls the accuracy of the calculation of the nonlinear step it does not explicitly
control the amount of numerical artifact.

In [62] an alternative method was proposed to quantitatively control the accuracy of
the SSFM. This method was based on controlling the power of the FWM spurious tones
arising as artifacts of a coarse numerical integration of Eq. (2.34). By a calculation of
the fictitious FWM products due to the SSFM spatial discretisation it was found that
this term can be kept arbitrary small by choosing a step size distribution given by

∆zn =−
1

2α
ln
[

1−nδ
1− (n−1)δ

]
n = 1, . . . ,K (2.90)

where δ = (1− e−2αL)/K and K is the number of steps given by the criterion

K >
3
4

N2
c γ2L2

eP210(x/10) (2.91)

where x represents the desired ratio (in dB) between the signal power and the power
of the spurious FWM tone. The logarithmic step distribution, which also arises from
the method in [61], was found to minimise the number of required steps to achieve
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signal-to-spurious tone ratio of at least x. The method in [62] was shown to decrease the
number of required steps by more than an order of magnitude with respect to a uniform
step size with comparable accuracy.

2.6.3 Monte-Carlo simulation of PMD

In this section we discuss the numerical methods utilised in chapter 3 to characterise
the impact of PMD on the system performance. Numerical emulation of PMD is
based on the discretisation of the Manakov-PMD equation presented in section 2.2. In
order to do that, the different PMD sections of the fibre are emulated using a wave-
plate approach [10]. Such an approach consists in cascading different sections (PMD
sections) where the PMD effect can be assumed small enough over the entire transmitted
signal bandwidth. In this case the PSP approximation (see section 2.2) can be used to
accurately describe the effect of PMD over that section. To emulate the evolution of
the PSPs over the fibre length, the PSPs of the subsequent PMD section are randomly
rotated to obtain a full uncorrelation with respect to the previous ones. Slightly different
methods can be followed in doing this [7, 10]. In our approach, the PSPs are scrambled
over the Poincaré sphere using the approach in [63]. Such an approach guarantees that
the PSPs of two adjacent PMD sections are independent and uniformly distributed over
the Poincaré sphere.

The emulation of the interaction between PMD and fibre nonlinearity traditionally
relies on the so-called coarse step method [7]. This method spatially discretise the
Manakov-PMD equation over steps that are comparable to the fibre nonlinear length.
The quick evolution of the SOPs along this length is instead accounted for by the
Manakov equation. However, the coarse step method implies that both SSFM and
wave-plate step are computed over the same section. Since the wave-plate sections need
to be uniformly sized for the correct statistical accumulation of the DGDs, a SSFM
fibre simulation including PMD is also required to keep a uniform step size. This can
be prohibitively complex for SSFM simulations of wide-band systems, which would
require a significantly small step along the whole propagation path. On the contrary,
wide-band simulations significantly benefits from the log-step approach discussed in
section 2.6.2.

In order to reconcile both needs, the method used in this thesis merges PMD
sections and SSFM steps in a single steps distribution. The SSFM is performed over
logarithmically-spaced steps. If each step is performed within the same PMD section
(wave-plate) no action is taken with respect to the PMD. At the boundary between PMD
sections, random PSP rotation and delay is applied. This implies that the SSFM step
containing the interface between two adjacent PMD sections is further split into two
smaller sections. Following this approach we can then guarantee that: i) an efficient
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simulation of fibre nonlinear propagation is performed using the log-step method instead
that the uniform one; ii) PMD and its interaction with fibre nonlinearity is correctly
emulated by keeping the wave-plate length fixed.

As for the statistical characterisation of PMD and its effect on fibre transmission, a
Monte Carlo simulation of the PMD sections is typically performed [7]. The Monte
Carlo method consists in generating a random cascade of PMD sections whose PSP is
uniformly scattered over the Poincaré sphere and DGDs of each section are drawn from
a Gaussian distribution with standard deviation equal to 10% of the mean [64].

More sophisticated and efficient techniques are available to capture peculiar features
of the PMD stochastic process, such as the importance sampling method [65, Ch. 7].
However, despite its high computational complexity, the Monte Carlo approach allows
to capture more comprehensively PMD stochastic behaviour, especially in its interaction
with fibre nonlinearity. For this reason Monte-Carlo PMD method was chosen to obtain
the results shown in section 3.7.

2.7 Summary

In this chapter, a theoretical background for the study of coherent optical fibre commu-
nication systems was presented. The topics discussed are key for understanding the
results presented in the following chapters of this thesis. First, the equations governing
the propagation of lightwave pulses in optical fibre transmission, such as the Manakov
equation, were analysed, enabling an insight on the main transmission impairments.
Then, the structure and the properties of the two optical fibre transmission systems
studied in this thesis were described. The fundamentals of high SE, coherent optical
fibre transmission, which is the focus of the work in this thesis, were discussed. Analyt-
ical models for optical fibre propagation were investigated with particular focus on the
GN-model. Finally, numerical methods for solving the Manakov equation used for the
numerical results presented in this thesis, were described.

In the next chapter, a study on the performance of receiver-side digital nonlinearity
compensation in high-SE optical fibre transmission is presented. Such an investigation
makes use of most of the theory presented here, in particular including SSFM for the
numerical results and the GN-model to develop analytical predictions on the SNR
performance. Furthermore, PMD theory and Monte-Carlo numerical methods are used
to evaluate the impact on the performance of nonlinearity compensation.
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3
Digital backpropagation: theoretical

gains and practical limitations

3.1 Inverting fibre impairments: digital back propaga-
tion

In chapter 2, it was shown how propagation of signals through an optical fibre can
be comprehensively described by the Manakov equation (see Eq. (2.34)). It was also
shown how, according to the Manakov equation, distortions arise during propagation,
which limit transmission performance.

An intuitive approach to solve this problem consists in attempting to undo such
distortions once the signal is detected at the receiver by applying the inverse operation
applied by the fibre channel. This task is made possible by the fact that pulse distortion
is described by a differential equation, which is a deterministic operator whose output
can be (at least numerically) predicted and, hence, inverted. DSP techniques are clearly
suited for this task, as any operation can be performed on the received signal, provided
that the sampling rate of the conversion from the analogue to the digital domain is high
enough. Indeed, this guarantees that there is a one-to-one relationship between the
analogue and the digital domain and no information is lost.

The algorithm which inverts digitally the Manakov equation starting from the
received signal is called digital back propagation (DBP) and it represents the most
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popular nonlinearity compensation scheme for optical fibre communication. The perfect
cancellation of fibre nonlinear impairments would linearise the fibre channel, increasing
transmission rates as the transmitted power is increased, similarly to the AWGN case.
Although, as discussed during this chapter, the perfect linearisation of the channel is
not achievable, the benefits shown by the reduction of fibre nonlinear effects through
DBP are often considerable, making this technique extremely attractive.

Reversing Eq. (2.34) means being able to reconstruct the transmitted field A(0, t)
using as an input the received field A(z, t) at a generic fibre section z. In the absence of
any noise source added along the propagation path, this can be achieved by integrating
Eq. (2.34) in the backward direction, i.e. using as initial condition the field A(z, t) and
inverting the integration boundaries. This is equivalent to solve Eq. (2.34) with the
same integration boundaries but reversing the sign of z, which effectively means solving
Eq. (2.34) with reversed sign parameters

α→−α (3.1)

β2→−β2 (3.2)

γ→−γ. (3.3)

The information on A(z, t) can be captured by a coherent receiver, and the backward
integration of Eq. (2.34) can be performed numerically using a DSP algorithm. The re-
construction of the transmitted optical field from the channel-distorted version recorded
at the receiver, corresponds to what, for linear channels, is referred to as a zero-forcing

equalisation scheme [1, Ch. 7]. DBP can be therefore regarded as a generalisation of a
zero-forcing equaliser for a nonlinear channel. As is well-known, one of the potential
performance limitations of such schemes is represented by the effect of the noise which
is added to the signal before the equalisation. Indeed, as will be discussed later in
this chapter, noise added along the fibre link represents a major bottleneck of DBP
performance.

As seen in section 2.6.1, the SSFM is generally adopted to integrate Eq. (2.34) in the
forward direction. Thus, the DBP algorithm, which implements a reverse integration of
Eq. (2.34), uses the schemes shown in Fig. 2.15, where, however, each of the exponential
operators are changed in sign. If the number of iterations of the algorithm is as low
as one per span then the symmetric-step variant of the SSFM is preferred for accuracy
reasons (section 2.6.1). On the contrary, when the number of iterations performed is
much larger than one per span the bulk-step SSFM is an obvious choice.

As a final remark, it is important to mention that in the DSP chain shown in 2.15
the choice of the rate at which the input optical field is sampled requires particular care.
Indeed, in a linear system, no bandwidth expansion can be observed and the Nyquist
sampling theorem guarantees that a sampling rate higher than twice the signal bandwidth
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will incur no aliasing through the DSP chain. This problem is further discussed in 3.6.
In this chapter, DBP performance is analysed, with the aim of highlighting potential

benefits and practical limitations. The scenario under investigation is a multi-span
EDFA-amplified, dispersion-unmanaged system like that discussed in Chapter 2. For
the first time, DBP performance is numerically investigated for a large-bandwidth
transmission (≈1 THz).

First, an analytical investigation on the ideal benefits achievable through DBP is
presented. Such an investigation made use of the GN-model discussed in the previous
chapter, which allows to obtain predictions on the received SNR. Such predictions are
then numerically verified through the SSFM.

Secondly, the limitations of the algorithm with respect to practical system constraints
are then analysed. The impact of a limited DSP complexity available at the receiver
is studied. In particular, DBP performance is studied as a function of the number of
iterations performed in the algorithm and of the sampling rate.

Finally, the impact of PMD on the DBP performance is assessed, using the Monte-
Carlo method explained in section 2.6.3.

3.2 Literature review

Before the advent of coherent optical detection, many techniques aiming to compensate
for fibre propagation impairments were already under study. The first work using digital
techniques to undo optical fibre linear and nonlinear impairments was reported in [2]
in 2005, in the context of incoherent detection systems. In this paper, a transmitter-
side digital pre-distortion technique, was adopted to compensate for both chromatic
dispersion and intra-channel nonlinearity (SPM) for a return-to-zero differential phase-
shift keying transmission. An extended work was later published as a journal paper
in [3].

The experimental demonstration in [2] was shortly followed by the pre-distortion
work in [4], which, for the first time, reportedly claimed to use SSFM to ”backpropagate“
the waveforms to be transmitted. In [5], pre-distortion was for the first time performed
in a WDM scenario, digitally backpropagating an entire set of WDM channels, hence
compensating for both intra-channel and inter-channel nonlinearities. In [6], a com-
bination of pre-distortion and post-compensation of nonlinearity was demonstrated for
OFDM transmission using a one-step nonlinear phase compensation scheme.

In all the works mentioned above, nonlinearity compensation was performed at
the transmitter and for direct-detection systems. The first fully coherent implementa-
tion of DBP as a receiver-side technique for mitigating nonlinear fibre transmission
impairments was studied in [7]. In this numerical study, a WDM transmission was
coherently detected using a phase-locked comb of wavelenghts and DBP was performed
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using a parallel implementation of the SSF method applied on a channel-by-channel
basis. In a transmission of 10x10 Gbit/s channels with 20 GHz spacing, a 2 dBQ gain
at optimum launch power and a 60% distance increase was demonstrated in the short
distance regime (500/800 km).

Later on, in [8], DBP capability of compensating for both intra-channel and inter-
channel nonlinearities in WDM systems was studied for the joint backpropagation of
the entire transmitted optical field. The performance of this implementation, referred to
as total-field NLSE (T-NLSE) in [8], was compared to the performance of the parallel
implementation introduced in [7] (referred to as coupled NLSE or C-NLSE in [8]). It
was shown that for coarsely spaced WDM channels C-NLSE results in a small penalty
but, in turn, it significantly reduces the hardware requirement with respect to receiver
bandwidth and sampling rate, which could be set to as low as 2 Sa/sym per receiver.
Moreover, it was shown that, if one gives up on compensating for the FWM (as in the
C-NLSE implementation) the requirement on the DBP step size can be significantly
relaxed and, as a result, fewer iterations are required in the algorithm to achieve a target
gain.

A detailed description of the DBP algorithm was first given in [9], together with a
characterisation of the DBP performance as a function of implementation parameters,
such as number of steps and oversampling factor and system parameters such as channel
spacing and percentage of in-line CD compensation. This work was later extended to
the dual-polarisation case in [10], where a first study on the effect of PMD on DBP was
also performed.

Many works have since focused on either reducing the complexity of the algorithm
or studying its fundamental performance limits. As an example, in [11, 12], simplified
versions of the SSF algorithm to compensate only for SPM and XPM effects that were
based on an early work in [13], were presented. Also, additional techniques were
explored in order to reduce the amount of required DBP iterations, while preserving an
acceptable compensation performance. As an example, in [14–16], Gao et al. showed
that using a low-pass filter before DBP significantly improves the system performance if
a reduced number of steps is used. More recently, in [17, 18] Secondini et al., modified
the conventional SSF method using a frequency resolved log-perturbation method to
solve NLSE [19–21]. Due to the higher accuracy of this method, it was shown that the
complexity of DBP can be globally reduced for a target performance compared to the
conventional SSF implementation.

The fundamental performance limits of DBP have been extensively explored in
several literature contributions [10, 22–31]. The two main performance bottlenecks
were recognised to be: i) the presence of signal-ASE NLI in multi-span amplified
systems [24, 25, 27, 30, 32] and ii) PMD [22, 25, 29]. However, additional numerical
validation is needed for the analytical results obtained, for instance, in [25, 30–32].
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In particular, a gap of numerical validation is apparent in those transmission regimes
where simulations are particularly intense, such as wideband optical transmission or
long-haul links affected by PMD. The results in this chapter contribute to fill this gap.

The impact of the signal-ASE NLI (see section 2.5.3) in the context of DBP per-
formance was first explored in [24, 32] by Rafique et al. In these works, the residual
signal-ASE NLI was estimated by numerically comparing the residual noise after DBP,
which includes ASE and signal-ASE NLI, and the case of ideal linear transmission,
where only ASE is present. The results showed that DBP is unable to compensate for
the signal-ASE generated along the link and, because of that, performance increasingly
degrades compared to the linear case as transmission distance increases. A more accur-
ate analytical description of this phenomenon, based on the work of Chen and Shieh
in [33], was given in [25, 26]. Here, expressions for the maximum SNR gains given by
DBP in presence of signal-ASE beat noise were introduced for the first time. Finally,
more sophisticated analytical models to account specifically for the effect of signal-ASE
on DBP were developed in [27] using SSF approach and, more recently, in [30], the
EGN-model [34].

In [10, 22], the detrimental effect of PMD on the performance of DBP was numer-
ically studied for the first time. An analytical model to predict this effect was then
introduced in [25]. Despite an heuristic approach was also discussed in [35], the model
in [25], which was specifically derived for OFDM transmission systems, remains so
far the only rigorous analytical study of the effect of PMD on DBP. The main result
of the analytical tool was that the limitations induced by PMD on DBP were much
more stringent than the ones due to the signal-ASE beat noise. As a result, the problem
of PMD in the context of nonlinear compensation schemes has continued to attract
the attention of following works such as [29, 35–38]. For instance, in [29, 36, 38],
the effect of PMD on DBP gains was numerically studied as a function of the DBP
bandwidth, PMD parameter and transmission distance for Nyquist spaced high-SE
single-carrier systems. Particularly, in [38], it was shown that for ultra-large bandwidth
systems (≈1 THz), the DBP SNR gain rapidly saturates as a function of the nonlinearity
compensation (NLC) bandwidth, as one can achieve a gain 0.8 dB below the maximum
compensation gain by only using less than a fourth of the transmitted bandwidth. The
results of the work on PMD in [29] and [38] are part of the original contribution of this
thesis and are shown in section 3.7. Strategies to counteract the loss of effectiveness of
DBP in the presence of PMD were proposed in [37, 39]. Specifically, in [37], it was
shown that, in a single channel transmission, the SNR penalty due to PMD is reduced
by 1 dB using the introduced modified DBP scheme as opposed to the conventional
DBP algorithm. Although not shown in this thesis, the results in [37] were obtained
as a joint work with Czegledi et al. and represent a continuation of the work on PMD
presented in this thesis. For this reason, it is discussed as part of the future work.
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Recent research on DBP has focused on understanding the real potential of DBP to
enable high SE long-haul optical fibre transmission, both numerically [12, 29, 40] or
experimentally [41–47].

The impact of pragmatic system constraints on the DSP, such as computational
complexity or non-ideal knowledge of fibre parameters, was studied both for single
channel [10, 11, 48] and multi-channel DBP [29]. In particular, in [29] the Q2-factor
penalty was analysed for the first time for multi-channel DBP, relating the backpropag-
ated bandwidth and key parameters for the algorithm complexity, such as the number
of DBP iterations and sampling rate. Also the penalty was characterised as a function
of the DBP nonlinear coefficient, on which an ideal knowledge is not always available.
The results of this inverstigation are presented in section 3.6.

Experimental works have shown the effectiveness of DBP in improving performance
even in practical transmission scenarios. In [41] Cai et al. showed that in a transoceanic
fully loaded C-band transmission scenario, despite the relatively small gain of up to 1
dB in Q2 factor, single channel DBP enabled each transmitted channel to perform below
the required FEC threshold (which in [41] was estimated in 4.9 dB in Q2 factor for a
28% overhead LDPC FEC). This resulted in a reach extension of up to 3000 km for
transmission distances in the range 6000 km–10000 km. DBP was also experimentally
characterised in the context of super-channels transmission in [44, 45, 45, 47]. In these
works a 100% reach increase was shown for DP-16QAM and DP-64QAM modulation
formats and a total optical bandwidth of approximately 70 GHz. In [47], multi-channel
DBP performance was instead experimentally characterised with respect to different
400G super-channel configurations. Finally, in [42], DBP was proven significantly
beneficial also in the context of single-span transmission. Indeed, in this experiment, a
520 Gbits/s super-channel was transmitted over 250 km single SSMF span with EDFA-
only amplification, with DBP increasing the transmission reach by approximately 8%
for a fixed 15% FEC overhead.

3.3 Optical fibre communication system under study

In section 2.3, two different types of optical fibre systems were discussed. When
analysing the performance of optical fibre transmission, it is critical to specify which of
the possible configurations is analysed. As pointed out in, this is due to the fact that the
physical properties of each of these systems are significantly different and, as a result,
the performance of a specific transceiver scheme may substantially vary.

In this chapter, both the analytical and the numerical investigation presented will be
focusing on a specific configuration for an optical fibre communication system. The
system under consideration, schematically illustrated in Fig. 3.1, is a multi-span, EDFA-
amplified, dispersion unmanaged, optical link. Such a transmission system represents
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Figure 3.1: Schematic diagram of the optical fibre system under study in this chapter.

the standard for present-day long-haul fibre-optic links.
Although some system parameters were varied during the study, a core set of

parameters can be identified as a reference. The fixed parameters are shown in table 3.1.
The transmitter consists of a PM-16QAM modulator at a 32 Gbaud rate. The

spectrum of each transmitted channel was Nyquist shaped with a 1% roll-off and the
spacing between the WDM channels was set to 33 GHz. Each WDM channel carries
independent data and all of them are assumed to have the same transmitted power. No
noise at the transmitter front-end was considered. The fibre link consists of multiple
spans of SSMF with an ideally linear EDFA amplifier at the end of the span which
exactly compensates for the span loss. No filtering effects are considered along the link
due to possible add-and-drop multiplexers or other optical filters. The receiving front-
end is assumed to be an ideal coherent receiver with no phase noise and no electrical
noise. Fibre linear impairments such as the accumulated chromatic dispersion or the
polarisation state rotation of the signal are ideally compensated 1 and a matched filter is
used to select the bandwidth of the signal of interest.

Table 3.1: Parameters of the reference system used for the analytical and numerical study in this chapter.

Parameter Name Value
Transmission Parameters

Modulation Format PM-16QAM
Symbol Rate 32 Gbaud
RRC Roll-Off 0.01

Channel Frequency Spacing 33 GHz
Fiber Channel Parameters

Attenuation (α) 0.2 dB/km
Dispersion Parameter (D) 17 ps/nm/km
Nonlinearity Parameter (γ) 1.2 1/(W·km)

Fiber Span Length 80 km
EDFA Gain 16 dB

EDFA Noise Figure 4.5 dB

1The work ideally here refers to having at the receiver exact knowledge of the amount of in-line
dispersion and state of polarisation of the received optical field.
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3.4 Ideal DBP gain

One of the main performance parameters to characterise the performance of an equal-
isation scheme such as DBP is the SNR measured after DBP and subsequent matched
filtering are applied. Although this does not necessarily represent the optimum receiver
configuration (see chapter 4) it represents a good performance indicator for a matched
filter based detection.

The GN-model (see chapter 2) provides a way to quantify the SNR at the matched
filter output in presence of nonlinear distortion or when the nonlinear interference is
partially or fully compensated for by the NLC scheme. As explained in chapter 2,
according to any perturbative model, nonlinear distortions can be accounted for as
additional noise. Thus, considering separately the different additive noise contributions,
the SNR at the matched filter output after transmission over a fibre link is given by

SNR =
P

NsPASE +ηSSN
(1+εss)
s P3 +ζηSNPASEP2

(3.4)

where we indicate

P Transmitted power per channel
Ns Number of fibre spans
PASE ASE noise power of a single EDFA and over the channel bandwidth
εss Coherence factor of the signal-signal term
ηSS Signal-signal NLI factor
ηSN Signal-ASE NLI factor
ζ Signal-ASE NLI accumulation factor

Furthermore, the quantities at the denominator of the right-hand side of Eq. (3.4)
can be separated as

PASEtot , NsPASE (3.5)

PSStot , ηSSN
(1+εss)
s P3 (3.6)

PSNtot , ζηSNPASEP2 (3.7)

where PASEtot, PSStot, and PSNtot are the total ASE noise power, total signal-signal NLI power
and total signal-ASE NLI power, respectively.

The ηSS and ηSN are the so-called NLI factors for the signal-signal NLI and signal-
noise NLI, respectively [28]. As discussed in section 2.5, these coefficients describe the
proportionality of the signal-signal NLI and signal-noise NLI to P3 and P2, respectively,
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and they are functions of both transmission and fibre parameters (see section 2.5).
Furthermore, their value depends on the specific model adopted. Although the domains
of integration to derive ηSS and ηSN are in general different, it can be shown that (see
Appendix A)

ηSN = 3ηSS (3.8)

when the transmitted spectrum is perfectly flat, and the WDM bandwidth B is equal to
the ASE bandwidth. This is typically the case as optical filters placed along the link are
adjusted to the WDM bandwidth.

Thus, for simplicity we can refer to a single η , ηSS and rewrite the SNR as

SNR≈ P

NsPASE +ηN(1+εss)
s P3 +3ζηP2

. (3.9)

Throughout this chapter the GN-model is used to make analytical predictions
on the SNR with or without the use of DBP. The reason for using this model is in
the availability of closed-form expressions for the η and ζ factors, through which a
qualitative analysis can be more rapidly performed. However, the accuracy of such
closed-form expressions is verified against numerical results based on SSFM simulations
and shown in section 3.5.

The NLI term PSStot represents the power of the additive term derived from a first-
order perturbative solution of Eq. (2.34) (see Appendix). Since DBP calculates the
solution of Eq. (2.34) in the reversed z direction, its effect on the SNR can be accounted
for as a full or partial reduction of PSStot. In contrast, PSNtot cannot be cancelled because
of its stochastic nature. However, the interaction between DBP and ASE noise is a
relevant topic and requires an ad-hoc analysis. In the following sections we will closely
analyse Eq. (3.9) and we will discuss the theoretical gains achievable via DBP whether
it is applied on the entire transmitted signal bandwidth or just on a part of it.

3.4.1 Received SNR in absence of NLC

In absence of NLC, the receiver SNR after matched filtering and sampling is given
by Eq. (3.9). The η and ζ factors can be expressed, according to the GN-model, in
approximated closed-form given by Eq. (2.66) and Eq. (2.76), respectively.

By looking at Eq. (3.9) it can be observed that, while the total ASE noise power
NsPASE has clearly no dependence on the transmitted power P, PSStot and PSNtot depend on
P3 and P2, respectively. At low transmitted powers (linear region), PASEtot is the dominant
term and the SNR increases at a rate of 1 dB/dB of transmitted power increase. For
higher powers, PSStot becomes significant with respect to PASEtot and the SNR increases
with a rate lower than 1 dB/dB, until a maximum is achieved. In the assumption of
PSStot� PSNtot, the optimum value of the SNR can be calculated approximating Eq. (3.9)
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Figure 3.2: P∗EDC and SNR∗EDC as a function of transmitted optical bandwidth B (expressed in number of
32 GBaud channels) for a 3200 (40x80) km transmission distance.

as
SNR =

P
PASEtot +PSStot +PSNtot

≈ P
PASEtot +PSStot

. (3.10)

Such an assumption is based on the dominance of P term on PASE (for large enough
values of P) and hence the dominance of P3 with respect to the PASEP2 term 2. Setting
∂SNR

∂P to zero, we obtain the optimum value of the launch power P∗EDC and the relative
optimum SNR given by

P∗EDC = 3

√
PASE

2ηNε
s

(3.11)

SNREDC(P∗EDC), SNR∗EDC =
2

3 3
√

2
1

P2/3
ASEη1/3N(1+ε/3)

s

. (3.12)

It can be observed that the optimum launch power per channel P∗EDC presents a
dependence on the ASE noise power (∝ P1/3

ASE), on the NLI coefficient (∝ η−1/3), and
very weakly on the transmission distance (∝ N−(ε/3)

s ). The optimum SNR instead
is decreasing with respect to the ASE noise power (∝ P−1/3

ASE ) and, almost linearly,
with respect to the transmission distance (∝ N−(1+ε/3)

s ). Moreover it shows the same
dependence than P∗EDC on the η factor.

In Fig. 3.2 P∗EDC and SNR∗EDC are plotted as a function of the transmitted bandwidth,

2For long enough distances Eq. (3.4) shows that PSNtot can still be significant for P in the optimum
launch power region, however such distances are much longer than any distance of interest for optical
fibre communications.
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using Eqs. (3.12), (3.11) and the GN-model based closed-form expressions in Eqs. (2.66)
and (2.69) for the η and the ε coefficients, respectively. The system considered here
is a 3200 (40x80) km transmission link with a number of channels spanning from
1 to 151 (≈5 THz). It can be observed that the variation of both P∗EDC and SNR∗EDC

is contained within only 2 dB out of which 1.5 dB are only caused by the first 21
transmitted channels.

3.4.2 Full-field nonlinearity compensation gain

When DBP is ideally applied on the entire received spectrum the signal-signal NLI is
coherently cancelled and therefore PSStot is forced to zero. The SNR after a full-field
nonlinearity compensation is thus given by

SNRDBP =
P

NsPASE +3ζηPASEP2 (3.13)

In this case, the optimisation of the launch power and the SNR gives

P∗DBP =

√
Ns

3ηζ
(3.14)

SNR∗DBP =
1

2
√

3
1

PASE

√
1

3ηζNs
. (3.15)

Truncating the ζ factor to the second term, as shown in 2.76, and substituting in
Eqs. (3.14) and (3.15), we obtain

P∗DBP ≈
√

2+ ε
3

1

η1/2N(1+ε)/2
s

(3.16)

SNR∗DBP ≈
1
2

√
2+ ε

3
1

η1/2PASEN(3/2+ε/2)
s

. (3.17)

It can be noted that, differently from Eq. (3.11), the optimum power in this case
does not depend on the ASE noise power but only on the η factor and on the distance
(∝ N(1+ε)/2

s ). However, the optimum SNR depends on the main system parameters
including η factor, PASE and (strongly) on the transmission distance, as it decays as
≈ N−3/2

s .
To illustrate the scaling laws shown by the formulas in Eqs. (3.14), and (3.15), in

Fig. 3.3 two contour plots show P∗DBP and SNR∗DBP as a function of launch power after
full-field DBP is applied.

For shorter distances (≤ 4000 km), both P∗DBP and SNR∗DBP show a weak dependence
on the transmitted bandwidth when the number of transmitted channels is higher than
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Figure 3.3: Contour plots of (a) P∗DBP and, (b) SNR∗DBP, as a function of the number of transmitted
channels and transmission distance.

51 (B ≈1.65 THz). This is the region where P∗DBP and SNR∗DBP assume the largest
values. It can also be observed that for high values of P∗DBP and SNR∗DBP and for very
small transmitted bandwidths (≤ 10 channels), further reducing the number of channels
results in an abrupt increase in the transmission distance. For larger values of P∗DBP and
SNR∗DBP, the trade-off between distance and number of channels transmitted is instead
smoother. Finally, Fig. 3.3 shows that while P∗DBP varies in a 6 dB range, the relative
SNR∗DBP has a range of variation of ≈ 15 dB. This demonstates that the relationship
between P∗DBP and SNR∗DBP is not linear across different transmission distances and
bandwidths.

Using the SNR expressions in Eqs. (3.12) and (3.17), the gain for an ideal full
nonlinearity compensation can be written as

GDBP ,
SNR∗DBP

SNR∗EDC
= k

1

η1/6P1/3
ASEN1/2+ε/6

s

(3.18)

where k is a constant given by

k =
3 3
√

2
4

(
2+ ε

3

)
. (3.19)

Eq. (3.18) shows that DBP gain is very weakly related to the nonlinearity factor η
(∝ η−1/6), to the ASE noise introduced by each EDFA amplifier (∝ P−1/3

ASE ) and to the
transmission distance (approximately ∝ N−1/2

s ). Furthermore, as shown in Eq. (2.66),
the relationship between the NLI factor and the compensation bandwidth BDBP is not
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linear, such that

GDBP ∝ arcsinh
(

π2

2
LeffB

)−1/6

. (3.20)

The scaling laws shown in Eqs. (3.18), (3.20) are of particular interest for the
transceiver design of an optical fibre link as it indicates what is the maximum gain
that a full NLC scheme can achieve compared to an EDC receiver. Fig. 3.4 illustrates
such variation as a function of the number of transmitted channels and transmission
distance. The contour lines in Fig. 3.4 show the weak variation of GDBP on the number
of transmitted channels, except in the case where the number of channels is low. For
instance, for distances smaller than 4000 km the full-field DBP gain stays approximately
constant from 11 channels up to 151 channels. A stronger variation can be appreciated
with respect to the transmission distance, where a 5 dB/decade drop can be found in
accordance with Eq. (3.18).

Such a drop in gain is to be attributed to the increasing amount of signal-ASE NLI
as a function of Ns, (see Eq. (2.76)).
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Figure 3.4: Contour plot of DBP SNR gain (GDBP) in dB, as a function of the number of transmitted
channels and transmission distance.

3.4.3 Intermediate bandwidth DBP

The case of full nonlinearity compensation often represents an ideal case for WDM
systems, as jointly applying DBP over the entire transmitted bandwidth is an unrealistic
task due to the limited receiver bandwidth and processing resources. Moreover, in
networking scenarios, only a limited amount of channels will co-propagate along the
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same path between two network nodes. This makes DBP effective only over a limited
portion of the WDM spectrum. It is, therefore, of great interest to understand what can
be achieved by using DBP over a limited bandwidth.

To illustrate the dependence of DBP gain as a function of the compensation band-
width BDBP we again resort to a perturbational approach. To a first order approximation,
DBP will cancel only the NLI generated within the spectral components that are cap-
tured by the receiver, while keeping the residual NLI unmodified [21]. This leads to a
very simple estimation of the performance of partial bandwidth NLC using DBP, where
the SNR after DBP can be expressed as

SNRDBP =
P

PASE_tot +[η(B)−η(BDBP)]P3N(1+ε)
s +3ηζPASEP2

. (3.21)

In the assumption that DBP is operated over a compensation bandwidth BDBP much
smaller that the full-field bandwidth B, Eq. (3.21) can be approximated as

SNRDBP ≈
P

PASE_tot +[η(B)−η(BDBP)]P3N(1+ε)
s

. (3.22)

In order to fully understand the efficacy of NLC schemes it is important to relate the
reduction of the signal-signal NLI to the increment in the optimum launch power and
in the optimum SNR. We can recognise two regions of operation: the case BDBP <<

B, where Eq. (3.22) holds; BDBP ≈ B where Eq. (3.22) does not hold and another
approximation has to be used in order to find simple closed-form scaling rules. In the
first case, the form of Eq. (3.22) is analogous to Eq. (3.9) where η is now replaced by
the residual nonlinearity factor after DBP η−η(BDBP). Thus, the analysis performed in
section 3.4.1 also holds here but using the residual nonlinearity factor. From Eq. (3.12)
it can be seen that for BDBP� B

GDBP ∝ 3

√
η(B)

η(B)−η(BDBP)
(3.23)

where

ρ ,
η(B)

η(B)−η(BDBP)
(3.24)

is a coefficient indicating to what extent nonlinearity is suppressed by DBP. The
same scaling can be observed for the increase in optimum launch power ∆P∗ from
Eq. (3.11). The relationship in Eq. (3.23) indicates for that if DBP reduces PSStot by 3
dB (half of the original NLI power) the expected optimum SNR gain will be 1 dB.

In the second case, for the NLC bandwidth BDBP varying in a neighbourhood of
the full-field bandwidth B, PSNtot becomes dominant compared to PSStot and Eq. (3.22)
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can be approximated by Eq. (3.13). However, the accuracy of this approximation for a
given BDBP close to B depends on the amount of PSNtot which is in turn dependent on the
transmission distance and ASE noise power, as shown by Eq. (3.7).

The dependence of GDBP on the NLI suppression is illustrated in Fig. 3.5. The
plot shows GDBP vs. ρ for three transmission distances. The asymptotic behaviour of
GDBP is also highlighted for the two DBP operation regions: BDBP� B (small NLC
compensation bandwidth) and BDBP ≈ B (full-field DBP region). It can be observed
that, for small NLC bandwidths, GDBP increases by 0.33 dB/dB of NLI suppression,
as predicted by Eq. (3.23). Such asymptotic behaviour is independent on both the
transmission distance and the PSNtot as in such region it is negligible compared to PSStot.
For large NLI suppression factors the gain saturates to a value which is dependent on
the amount of signal-ASE noise and, thus, on the transmission distance.

Making the relationship with the transmitted WDM bandwidth B explicit, as in
Eq. (3.20), we obtain

GDBP ∝ 3

√
arcsinh(aB2)

arcsinh(aB2)− arcsinh(aB2
DBP)

, (3.25)

where a = π2

2 L′eff.
The dependency of the DBP gain on the compensation bandwidth described by

Eq. (3.25) is illustrated in Fig. 3.6. In Fig. 3.6a GDBP is plotted as a function of the
normalised NLC bandwidth defined as the fraction of the transmitted bandwidth BDBP/B

over which DBP is applied. These graphs are shown for a 151 channel transmission
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Figure 3.5: DBP SNR gain as a function of the NLI suppression factor (ρ) for different transmission
distances.
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Figure 3.6: DBP SNR gain as a function of (a) the NLC bandwidth for different transmission distances,
and (b) required NLC bandwidth as a function of the overall transmitted bandwidth B for different DBP
SNR gains.

corresponding to B≈ 5 THz and for the three transmission distances 10x80 km, 40x80
km and 100x80 km also shown in Fig. 3.5. It can be observed that in order to obtain
a 3 dB gain in SNR the amount of compensation bandwidth BDBP has to be at least
50% of the transmitted one or higher, depending on the transmission distance. As BDBP

approaches the transmitted bandwidth B, the gain slope increases and achieves its peak
in the surrounding of BDBP = B. The faster gain increase for compensation bandwidths
close to the full-field bandwidth can be explained due to the full cancellation of the
signal-signal NLI and the residual signal-ASE term which is typically much smaller.
This is confirmed by the behaviour of the three curves for the different transmission
distances in Fig. 3.6: at shorter distances, where the signal-ASE NLI is smaller, the
gain increase close the full-field compensation bandwidth appears more abrupt.

Because of the nonlinear relationship between BDBP, B and GDBP, shown in
Eq. (3.25), the trend illustrated in Fig. 3.6a cannot be generalized to any transmit-
ted bandwidth B. In order to better understand the impact of B, in Fig. 3.6b the
relationship between B and BDBP is plotted for fixed values of GDBP. As it can be seen,
the percentage of the transmitted bandwidth that we require to backpropagate to achieve
gains for instance of 1 or 3 dB is significantly larger when such bandwidth is smaller.
However, for higher values of GDBP (e.g. see GDBP=6 dB in Fig. 3.6b) the fraction of
required BDBP stays approximately constant regardless of the transmitted bandwidth B.
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Figure 3.7: Schematic diagram of the system adopted for the numerical simulation of DBP performance:
(a) transmitter, and (b) fibre block followed by receiver structure.

3.5 Numerical results on DBP performance

In order to validate the previously introduced analytical expressions and evaluate their
accuracy, a comparison with numerical results obtained using SSFM simulations is
presented in this section.

3.5.1 Numerical setup

Numerical simulations were performed based on the schematic diagram presented in
Fig. 3.7. 2NWDM different sequences of integer numbers (between 0 and 15), where
NWDM is the number of WDM channels transmitted were first generated. As a result
a different independent data sequence was produced for each of the two orthogonal
polarisations on each WDM channel. The integer sequences were then mapped onto a
16QAM constellation which were then shaped using an ideal frequency-domain RRC
filter. A PM-WDM multiplexer then encoded each analogue signal onto a polarisation
channel at a specified WDM wavelength.

The so-obtained WDM signal is first rescaled to match the specific launch power
requirement and then fed into a SSF block emulating the optical fibre propagation.
Specifically, such block numerically implements the Manakov equation in Eq. (2.34).
The step distribution was selected adaptively to the transmitted power and following the
log-step approach described in section 2.6.2. At the end of each fibre span an ideally
linear EDFA is added, whose parameters are shown in table 3.1.

The first block of the receiver part is an ideal electro-optical front end which selects
the signal at the fibre output over the specified bandwidth BDBP using a brick-wall filter.
The filtered signal is then passed to a resampling block which adjusts sampling rate to
Fs = 2BDBP, i.e. two times the Nyquist rate. Such operation makes sure the sampling
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Table 3.2: Parameters used in numerical simulations for the results presented in this chapter.

Parameter Name Value
Transmitted symbols 218

SSF sampling rate 2B
SSF step size Adaptive log-step

DBP sampling rate 2BDBP
DBP step size Adaptive log-step

rate is always adapted to the compensation bandwidth. Thus, as discussed in section
3.6.2, the complexity of the DBP algorithm is reduced while maintaining its highest
accuracy. Before going into the DBP block the signal is properly rescaled to match
the exact signal power (per channel) exhibited at the fibre output. In order to ideally
operate the DBP algorithm, the inverse of the Manakov equation is implemented using
the same step size distribution used in the forward propagation emulation. The signal is
then passed to a matched filter to select the central channel and further down-sampled
at 1 sample/sym.

The SNR in Eq. (3.9) is numerically calculated using a fully data-aided approach.
Such approach consists in isolating each symbol’s noisy cloud based on the knowledge
of transmitted sequence. Firstly, for each noisy cloud, the expected value si for i =

1,2, ...,M is first estimated, where M is the constellation cardinality. Secondly, the
variance of the residual noise σ2

i is calculated (additive noise assumption). The average
SNR is then calculated as

SNR =
∑M

i=1 s2
i

∑M
i=1 σ2

i
. (3.26)

The accuracy of such estimation, which depends on the number of transmitted
symbols, was found to be very high in the SNR region of interest. The parameters of the
numerical simulations performed for the results in this chapter are shown in table 3.2.

3.5.2 EDC SNR performance

In order to test the accuracy of Eq. (3.9) in Fig. 3.8 numerical results on the SNR are
shown for a transmission over a 40x80 km link and for 5x32 Gbaud and 31x32 Gbaud
channels. The discrepancy between the values of the optimum SNR calculated from the
closed-form expression and SSFM is ≤ 0.5dB and always results in an underestimation
of the SNR for the closed-form formula. As already discussed in 2.5, this behaviour is
due to the GN approximation of the signal as a Gaussian stochastic process which dis-
regards the properties of the transmitted modulation format (16QAM in this case). The
difference between the analytically predicted SNR and the numerical results increases
to up to 0.6 dB at optimum launch power and 1 dB in the nonlinear regime. Such a gap
represents the ratio between the NLI coefficient predicted by the GN and the actual one.
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Figure 3.8: EDC receiver SNR as a function of the transmitted power per channel P in the absence of
NLC and for a 5×32 Gbaud transmission over 40x80 (3200) km distance.

A more accurate analytical prediction of the η can be given by the EGN-model and the
model discussed in 2.5. For both of them, unfortunately, closed-forms are not available
and only numerical integration is possible. The scaling rules of the optimum transmitted
power and the optimum SNR shown in Eq. (3.10) can also be checked from Fig. 3.8.
In this case, as can be seen from Eqs. (3.11) and (3.12), the accuracy of the GN-model
does not impact the accuracy of the scaling rule, provided that the NLI coefficient η
remains the same. As for the bandwidth variation, it can be observed that the optimum
launch power decreases by 1 dB going from 5 channels to 33 channels. Following
Eq. (3.13) this corresponds to an increase of 2 dB in the η factor. The same trend is
confirmed for a different transmission distance.

3.5.3 DBP SNR performance

In Figs. 3.9 and 3.10 the SNR vs. transmitted power per channel P is shown, when DBP
is operated over different compensation bandwidths. Two different scenarios are shown:
Fig. 3.9 shows the case of 5 WDM transmitted channels whereas in Fig. 3.10 the case of
31 channels is shown. In both cases the DBP compensation bandwidth BDBP is varied
from 1-channel DBP up to the full-field bandwidth B. The EDC performance is also
shown as a reference.

Fig. 3.9 shows the 5 transmitted channels case. Solid lines represent the analytical
expressions in Eqs. (3.9) and (3.21), whereas the circle markers represent the numerical
results. In 3.9a the SNR vs. launch power per channel is shown as the NLC bandwidth
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Figure 3.9: DBP SNR performance for a transmission of 5x32 GBaud PM-16QAM channels over 3200
km: (a) SNR as a function of P for EDC and DBP over different NLC bandwidths; (b) DBP SNR gain as
a function of NLC bandwidth; (c) optimum transmitted power (P∗DBP) as a function of NLC bandwidth.

is varied between 1 channel and 5 channels by steps of two channels at a time. The
agreement between analytics and numerics is within 0.5 dB for the optimum SNR for
all curves shown. As already discussed for Fig. 3.8, the EDC SNR performance is
underestimated by the GN-model as we enter the nonlinear regime. Although the error is
lower, this is also the case for the SNR when DBP is applied. It can also be noticed that,
for the full-field DBP case, again the SNR is underestimated, indicating a modulation
format dependency of the ηSN factor. However, the optimum SNR discrepancy as
the full-field bandwidth is approached can be attributed to two reasons: there is a
difference, albeit small, between the ηSN and 3ηSS factors (see appendix); both ηSS and
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ηSN are different from the η predicted by the GN-model, as they both are modulation
format-dependent.

In Figs. 3.9b and 3.9c the DBP gain and the optimum launch power are shown as a
function of the NLC bandwidth, respectively. Again, a good agreement between the
analytical expressions and the numerical results can be observed. It can also be seen
that the DBP gain is overestimated by the GN-model, whereas the optimum launch
power is underestimated, as it can be expected from an overestimation of η factor.

The accuracy of the analytical model was also tested in the context of a large
bandwidth transmission scenario. Numerical results on the DBP performance were
obtained for 31x32 GBaud channels with an overall transmitted optical bandwidth of
approximately 1 THz and are shown in Fig.3.10.

In Fig. 3.10a the SNR vs. launch power is shown for the EDC case and for different
NLC bandwidths spanning from 1 channel up to 31 channels (full-field bandwidth).
Again the analytical curves are in good agreement with the numerical results with
the model underestimating the SNR in the nonlinear regime, as already discussed
for the 5-channel scenario above. The only inaccuracy in the SNR prediction can be
still attributed to the modulation format-dependent missing term (see discussion in
chapter 2), which appears to be independent on the transmitted optical bandwidth. This
inaccuracy is not reflected in the GDBP vs. BDBP plot in Fig. 3.10b, where it can be seen
that the numerical results are in perfect agreement with the analytical results. This is
due to the fact that the underestimation of the optimum SNR given by the GN-model
is roughly equal for all the NLC bandwidths, except for the full-field bandwidth case.
Higher inaccuracy can be observed for the optimum launch power shown in Fig. 3.10c
as a function of the BDBP. The optimum power is underestimated by up to 1 dB for
1-channel DBP. As BDBP increases the agreement between numerics and analytical
predictions improves.

Overall, the good predictions provided by the closed-form expressions shown in
Fig. 3.10 confirm the validity of the model in the large bandwidth transmission scenario,
where numerical validation is computationally intense.

Finally, the scaling law of DBP SNR performance as a function of the transmission
distance was numerically studied. Fig. 3.11 shows the DBP gain GDBP as a function
of the transmitted distance for the 5-channel transmission scenario already studied in
Fig. 3.9. The numerical results (circle markers) are compared with the closed-form
expression in Eqs. (3.12) and (3.18) (solid lines) for three NLC bandwidths. The
results in Fig. 3.11 show that a very good agreement is found between the scaling laws
described in Eqs. (3.12) and (3.18) for the transmission distance and the numerically
evaluated SNR at all NLC bandwidths presented. Particularly, the gain for the partial
NLC bandwidths cases (i.e. 1-channel and 3-channel DBP shown by the blue and the
green curve, respectively) is substantially flat across all distances. The only variation at
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Figure 3.10: DBP SNR performance for a transmission of 31x32 GBaud PM-16QAM channels over
3200 km: (a) SNR as a function of P for EDC and DBP over different NLC bandwidths; (b) DBP SNR
gain as a function of NLC bandwidth; (c) optimum transmitted power (P∗DBP) as a function of NLC
bandwidth.

short distances is given by the slight variation in the ε coefficient that is dependent on
the NLC bandwidth. Such discrepancy disappears for large transmission distances. In
the full-field case (red curve), the DBP gain decreases approximately as the square root
of the transmission distance. Numerical results clearly confirm such a trend, although an
underestimation of the gain can be noticed in general, due to the η factor overestimation
of the GN-model previously discussed.
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Figure 3.11: DBP SNR gain as a function of the transmission distance for a 5-channel system and for
three different NLC bandwidths.

3.6 Practical limitations on DBP performance

The performance of DBP investigated in the previous sections of this chapter assumes
an ideal implementation of the algorithm. We refer to DBP implementation as ideal

when the algorithm is performed with a number of iterations (steps) and at sampling
rate high enough to guarantee the required accuracy and, thus, to perform an ideal
signal-signal NLI cancellation within the NLC bandwidth.

This implementation often implies a, currently unfeasible, computational demand
on the DSP at the receiver. The impossibility of providing such resources has therefore
driven research to investigate the trade-off in performance vs. computational complexity.
Also, the analysis of the limitations of DBP performance due to pragmatic constraints
provides an insight on why, in many experimental results, due to the reduced DSP
complexity, DBP has shown significantly lower gains than the ones promised by the
theory [9, 10, 49].

In this section we will discuss the performance/DSP complexity trade-off for mul-
tichannel DBP. Particularly the analysis will focus on the two main DSP parameters
impacting the complexity of the algorithm, such as number of steps and sampling rate.
Numerical results will be shown for a 5 channel transmission. However, it is argued
that qualitatively similar results can be obtained as the number of transmitted channels
is increased.
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3.6.1 Number of iterations in DBP algorithm

As discussed in section 3.1, the conventional DSP implementation of the DBP algorithm
involves a number of iterations. Each iteration includes two FFTs, and two point-wise
complex multiplications (see Fig. 2.15). As each iteration is equally complex, the
complexity of the DBP algorithm scales linearly with the number of steps required.
On the other hand, in section 2.6.1 it was shown how the accuracy of the numerical
integration of Eq. (2.34) scales quadratically on the step size, and as a result on number
of steps used for the integration of a finite section of fibre. These two opposite require-
ments highlight a stringent trade-off between the performance and maximum number
of iterations allowed for a fixed implementation complexity.

The impact of employing a limited number of iterations was first studied in [8] for
the single-channel DBP case. However, as the DBP is applied to larger bandwidths, in
order to correctly capture faster dispersion phenomena, a finer spatial discretisation is
needed [11]. Particularly, it was suggested that the accuracy scales quadratically with
the bandwidth [40].

In order to characterise the impact of the spatial resolution and the number of
iterations required for a given NLC bandwidth, numerical results are shown in Fig. 3.12
for a 5-channel transmission over 3200 (40x80) km. The plot shows the DBP gain
as a function of the number of steps utilised per fibre span for three different NLC
bandwidths (1, 3 and 5 channels). As expected, larger NLC bandwidths require a larger
number of iterations to achieve the ideal gain predicted from the theory for that given
DBP bandwidth (see section 2.6.1). The minimum required number of steps to achieve
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Figure 3.12: DBP SNR gain as a function of the number of steps per span used in the algorithm. The
results are for a 5-channel system after transmission over 3200 km.
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the ideal gain is 4, 40 and 80 for a single-channel, 3-channel, and 5-channel DBP,
respectively. It can also be noticed that for a limited complexity (number of available
iterations) increasing the DBP bandwidth is not always beneficial and instead it can be
detrimental for the SNR performance. For instance, in this scenario, using full-field
DBP starts to be beneficial (compared to lower NLC bandwidths) only when using
more than 20 steps/span. Also, surprisingly, a penalty (negative gains in Fig. 3.12) can
be incurred compared to an EDC receiver if a 3-channel or 5-channel NLC bandwidth
is used with less than 4 or 20 steps/span, respectively. On the contrary single-channel
DBP is more robust to a reduction in the number of steps/span, as going down to 1
single step per span reduces the SNR gain only by 0.5 dB. This can be attributed to the
relatively small NLC bandwidth.

Usually, when DBP is used in a real transmission scenario, an additional issue is
represented by the imperfect knowledge of the fibre parameters that are required to
ideally reverse the fibre propagation. As discussed in section 3.1, these parameters are
the fibre attenuation (α), the GVD coefficient (β2) and the nonlinearity coefficient (γ).
The knowledge of α is generally very accurate as it can be obtained through attenuation
measurements and, for EDFA-amplified systems, the power profile is well-known to be
exponentially decaying. However, in real systems, both the β2 and γ parameters used in
the DBP algorithm need to be properly tuned. We exclude the impact of the β2 variation
from the study as this parameter can be accurately tuned operating EDC in the linear
regime. The impact of the variation of the γ parameter used in the DBP algorithm is
presented in Fig. 3.13. Here, for each of the three NLC bandwidths mentioned above,
a contour plot of the SNR performance degradation is shown as a function of both γ
used in the DBP algorithm (referred to as γDBP) and the number of steps/span. The
fibre nonlinear parameter γ used for these numerical results is the same of the reference
system shown in table 3.1, i.e. 1.2 W−1km−1. When single-channel DBP is used 3.13a
the SNR penalty, compared to the ideal value, is limited to a maximum of 1 dB even for
values of γDBP considerably off from the fibre γ parameter (e.g. γDBP = 1.6W−1km−1).
For larger NLC bandwidths such as 3-channel DBP 3.13b and 5-channel DBP 3.13c, it
can be observed how most of the SNR penalty is due to the reduction of the number of
steps per span. However, when a suboptimal number of steps is utilised the performance
can be improved using a γDBP which does not match the γ parameter of the fibre.
Particularly, using a γDBP ≤ γ results in a better performance in the region where the
number of steps is low. This suggests that an undercompensation of the nonlinearity
per step is beneficial when the step size is too coarse to accurately account for the
interaction between dispersion and nonlinearity.
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Figure 3.13: Contour plots of the SNR degradation after DBP as a function of number of algorithm
iterations and the nonlinearity parameter γDBP for (a) single-channel DBP, (b) 3-channel DBP, and (c)
5-channel DBP.

3.6.2 DBP sampling rate

Another important DBP implementation parameter is the sampling rate at which the
algorithm is operated. The complexity of the algorithm scales superlinearly with the
number of samples per second Ns (complexity is dominated by the fast Fourier transform
which scales as O(Ns log2(Ns)) such that its reduction is advisable. A lower bound
on the sampling rate is given by the need to correctly reproduce the signal waveform
without aliasing. While this is sufficient if we want to preserve the information of the
analog signal in the digital domain when performing linear DSP, it may be insufficient
if a nonlinear processing is performed. To explain this, let x(t) be the analog signal
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to be backpropagated and Xn , x(nTs) its sampled version at time instants t = nTs,
where Fs =

1
Ts

represents the sampling rate. We call BP{·} the operator performing
backpropagation in the analog domain and B̃P{·} the equivalent operator performed
on sequences of samples. These 2 operators can be described as a repetition of a two-
stage operation: (i) multiplication in the frequency domain by the inverse of dispersion
frequency response; (ii) multiplication in the time domain by an instantaneous nonlinear
phase shift. An ideal inversion of the NLSE performed in the analog domain would
generate the sequence of samples Yn:

Yn =
∫ ∞

−∞
δ(t−nTs)

{
BP{x(t)}

}
dt. (3.27)

Since DBP is performed digitally, we have the sequence

Ỹn = B̃P
{

Xn
}

(3.28)

In general Yn 6= Ỹn because BP{·} is not linear and swapping the sampling operator
with BP{·} results in a different output. Specifically, in both BP{·} and B̃P{·}, the
multiplication of the signal by an instantaneous phase shift generates new frequency
components that in Eq. (3.28) can introduce aliasing if the sampling rate is too low.
Therefore Eq. (3.27) and Eq. (3.28) can be considered equivalent when Fs is sufficiently
large. By setting Fs to a sufficiently higher value than the Nyquist frequency the digital
spectrum will have a guard band between the replicas of the original spectrum (red
spectra), thus allowing new DBP-generated out-of-band frequency components to be
correctly represented.

The SNR gain versus the oversampling ratio (relative to the Nyquist rate) is plotted
in Fig. 3.14. It is shown that for each backpropagated bandwidth there is a threshold
sampling rate needed to obtain the optimal gain that corresponds to oversampling the
backpropagated bandwidth by a factor of approximately 1.3. In our case, in order to
observe the full advantage of the full-field backpropagation we need to use a sampling
rate greater than 200 GSamples/s. Backpropagation of the entire spectrum of 5 channels
sampled at the Nyquist rate (165 GSamples/s) results in a performance worse than
backpropagating just 3 channels at the same sampling rate. Therefore, as shown in [29],
backpropagating an oversampled smaller bandwidth can result in better performance
compared to a larger backpropagated bandwidth sampled at Nyquist rate. These results
provide a criterion for the choice of the bandwidth (or the number of channels) to be
backpropagated when the sampling rate is a system constraint.
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Figure 3.14: DBP SNR gain as a function of the sampling rate for different NLC bandwidths. The results
are for a 5-channel system after transmission over 3200 km.

3.7 Impact of PMD

In addition to the effects of the choice of DSP parameters on the system performance
as discussed above, another system parameter which has a significant effect on the
performance of DBP is PMD [25, 29, 36].

As discussed in Sec 2.2 PMD is a linear phenomenon due to the inherent fibre
birefringence. However, the interaction between the SOPs evolution and the fibre
nonlinearity can also have a noticeable impact on the total NLI generated during optical
fibre transmission. More importantly, it can have an even more significant impact on
the performance of NLC schemes such as DBP.

This detrimental effect is due to the lack of knowledge of the polarisation evolution
of the optical signal propagating through an optical fibre link and, as such, DBP can only
perform an imperfect nonlinear cancellation. This concept is illustrated in Fig. 3.15. The
signal launched into the optical fibre is here represented in the frequency domain. As
seen in section 2.2, due to PMD the different frequency components of the transmitted
signal encounter a different polarisation state evolution. The FWM product generated
at a generic fibre section by any triple of frequency components f1, f2 and f3 will be
strongly dependent in both phase and magnitude on the specific polarisation state of
each of these frequencies, as schematically illustrated in Fig. 3.15.

On the other hand, DBP uses as an input a snapshot of the (frequency dependent)
polarisation states captured at the receiver section of the fibre. As illustrated in Fig. 3.16,
the conventional DBP approach will then statically backpropagate such a snapshot,
i.e. the polarisation states of the signal are not (to the first order) altered by the DBP
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Figure 3.15: Schematic diagram of the SOPs evolution in a birefringent optical fibre and corresponding
FWM generation.

algorithm. As a result, the FWM products generated in the backward direction by DBP
do not match the ones in the forward propagation, effectively leaving the signal after
DBP with a residual uncompensated NLI.

Various works have previously analysed the performance of DBP in the presence
of PMD both numerically and (in a limited amount) analytically. In the following the
results of our numerical study on the impact of PMD on DBP will be presented.

Freq.
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z1

z

DBP

Figure 3.16: Illustration of the mismatch between forward and virtual backward (DBP) signal SOPs
evolution.
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3.7.1 Numerical evaluation of DBP performance in the presence of
PMD

The parameters involved in the full characterisation of the performance of DBP in the
presence of PMD are: the fibre PMD parameter, the average accumulated DGD, the
transmitted bandwidth and the NLC bandwidth.

A comprehensive numerical study involving all these four parameters is prohibitive,
as accurate Monte-Carlo simulations of PMD are in general computationally intense
(see 2.6.3), particularly if DBP is also taken into account. In the following, results are
shown aiming to capturing significant sections of the full parameters space.

As described in section 2.6.3, numerical results shown in this section are obtained
through Monte-Carlo simulations of multiple PMD realisations using an hybrid method
merging the log-step SSFM and the wave-plate approach. For each realisation the
output SNR is measured and stored for subsequent statistical characterisation of the
PMD effects on the performance of the system. DBP was implemented following the
conventional algorithm described in 3.1, i.e. without any attempt of reversing the PMD
evolution.

To characterise the impact of the fibre PMD parameter, in Fig. 3.17, the average
DBP SNR gain is shown as a function of such parameter. The system considered
in this case is a 5-channel WDM system over a transmission distance of 3200 km,
using single-channel (blue curve), 3-channel (green curve) and 5-channel (red curve)
DBP. The ideal DBP gains are shown by the black dashed lines as a reference. Ten
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Figure 3.17: DBP SNR gain as a function of the fibre PMD parameter and different NLC bandwidths,
for a 5-channel system and transmission over 3200 km.
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independent PMD realisations were simulated and the error bars are shown in the plot
to specify the standard deviation of the calculated SNR values.

The figure shows that the PMD parameter has a strong impact on the performance
of DBP, especially as the NLC bandwidth is increased. Indeed, for large values of this
parameter, (≥ 0.1 ps/

√
km) the advantage of using full-field DBP (red curve) compared

to a 3-channel DBP almost entirely vanishes due to the effect of PMD. For modern
fibres, more realistic values of the PMD parameter are in the range 0.02–0.1 ps/

√
km.

However, in this range, still a significant reduction of the full-field DBP gain compared
to the ideal gain can be observed. Conversely, single-channel DBP is less affected by
the PMD parameter across the all range of investigated values, with a penalty of only
0.3 dB going from a PMD parameter of 0.01 ps/

√
km to one of 1 ps/

√
km. In all NLC

bandwidth cases, however, it can be noticed that the PMD phenomenon introduces
an abrupt loss in SNR even at very low values of the PMD parameter. According to
these results, PMD reduces the effectiveness of DBP particularly when it attempts to
compensate NLI generated by frequencies far away from the channel of interest.

In order to confirm this behaviour and have a better understanding of the impact
of PMD on the performance of wide-band DBP, additional results were obtained for a
31-channel WDM system and for a fixed PMD parameter of 0.1 ps/

√
km. In this case

the transmitted power per channel was fixed to 5 dBm but the transmission distance
was varied to study the role of the accumulated DGD. Fig. 3.18 shows (red curves) the
average SNR after 50 PMD realisations as a function of the NLC bandwidth BDBP, for
800 km distance (Fig. 3.18a) corresponding to an average accumulated DGD τ̄=2.83
ps, and 3200 km distance (Fig. 3.18b) corresponding to τ̄=5.66 ps. The blue curves
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Figure 3.18: Average SNR performance of multi-channel DBP as a function of BDBP with and without
PMD and for P=5 dBm. In (a) for an average DGD τ̄=2.83 ps (800 km distance), and in (b) for an average
DGD τ̄=5.66 ps (3200 km distance).
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represent instead the DBP gain in the absence of PMD. The results show that the
presence of PMD induces a strong saturation of the multi-channel DBP performance
when used in a wide-band (1 THz) transmission scenario. Such saturation behaviour
appears to be independent on the transmission distance as, for instance, the penalty
incurred by full-field DBP (BDBP=31 channels) is equal to 15 dB in both cases.

A closer comparison between the SNR curves for the two transmission distances
is shown in Fig. 3.19. Here the DBP SNR gain GDBP compared to the EDC SNR (at a
fixed transmitted power of 5 dBm) is shown as a function of BDBP for the two average
DGD cases of τ̄ = 2.83 ps (800 km) and τ̄ = 5.66 ps (3200 km). The plots show that,
depending of the τ̄ value, GDBP will behave differently. Specifically, a lower DGD
value will result in a slower saturation of GDBP. For τ̄ = 2.83 ps, to achieve a gain 0.8
dB smaller from maximum gain the required NLC bandwidth is BDBP=5 channels, as
opposed to BDBP=7 channels for τ̄ = 5.66 ps. Also, a slight decrease in the maximum
GDBP (DBP gain for full-field DBP) can be noticed for larger values of the average DGD
(0.15 dB lower gain for τ̄ = 5.66 ps compared to τ̄ = 2.83 ps). The results in Fig. 3.19
suggest that when the fibre PMD parameter is fixed, the average DGD has only a weak
impact on the performance of DBP.

Although the average SNR measured over multiple realisations is an effective
measure to summarise of the impact of PMD, it does not convey the whole picture. In
most cases, a system designer is rather interested in the worst-case scenario performance
or in the system performance that can be guaranteed with a certain probability of outage.
It is therefore useful to complement the average SNR picture with an histogram of the
SNR values obtained for the different PMD (or fibre) realisations. In Fig. 3.20, two
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Figure 3.19: DBP SNR gain relative to BDBP=1 as a function of BDBP in the presence of PMD for P=5
dBm.

106



Chapter 3. Digital backpropagation: theoretical gains and practical limitations

of such histograms are shown to show the SNR statistical behaviour for different fibre
realisations and for two NLC bandwidths: single-channel DBP (blue) and full-field DBP
(red). Interestingly, it is shown that the two histograms overlap. This does not mean
that full-field DBP can potentially perform worse than the single-channel case as the
fibre realisations for which the overlapping happens are different. However, statistically,
operating DBP over a large NLC bandwidth could result, for a bad fibre, in a lower
SNR than the single channel case operated with a good fibre. Also, the SNR values
after full-field DBP is applied, are more statistically spread (larger standard deviation)
compared to the single channel case. The SNR range of variation for the full-field DBP
case spans from as little as 11 dB for a bad realisation to as much as 31 dB for a very
good one.

This behaviour can be explained due to PMD inducing a larger decorrelation of the
polarisation states of frequency components spaced far away from each other. This, in
turn, translates into an ineffective mitigation of the NLI generated by these components
of the signal spectrum.

In conclusion, it was shown that PMD is a major source of impairment of the
performance of DBP, especially for wide-band scenarios where the NLC bandwidth
needs to be extended to achieve the gain given by the full nonlinearity compensation.
Although additional numerical results would help to gain more insight on the impact of
PMD on DBP performance, due to the already mentioned computational complexity
of accurate Monte-Carlo simulations, a properly validated analytical model would
represent a much more powerful tool. Recent works [37, 39] have instead tackled the
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Figure 3.20: Histograms of SNR values obtained for BDBP=1 and BDBP=31 channels at 800 km transmis-
sion distance (τ̄=2.83 ps).
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problem of mitigating the penalties due to PMD, through modified DBP schemes with
some knowledge on the fibre PMD. This is discussed in more detail in chapter 6.

3.8 Conclusions

In this chapter, a comprehensive study of the performance of the DBP algorithm
for optical fibre transmission systems using coherent detection was presented, with
particular focus on its application over multiple channels to compensate for both intra-
channel and inter-channel nonlinear impairments. Theoretical gains compared to an
EDC receiver were analysed using an analytical closed-form expressions derived from
the GN-model. This analysis was validated by means of numerical results obtained
from simulations of optical fibre transmission based on the SSFM.

DBP showed substantial beneficial effects on the receiver SNR due to its ability
to undo the signal-signal NLI, which is a major source of SNR deterioration in the
region of interest for high-SE optical fibre systems. For instance, up to 10 dB SNR
gain can be achieved for a 1000 km transmission of 5 channels, where full-field DBP
was applied. DBP gain was found to be a decreasing function of both the overall
transmitted bandwidth and transmission distance, due to the growing impact of signal-
ASE NLI, which cannot be compensated. In particular, when full-field DBP is used,
DBP gain depends weakly on the transmitted bandwidth (∝ arcsinh(B)−1/6), and a
stronger dependence on the transmission distance given by N1/2

s . In more pragmatic
scenarios, where DBP is applied only over a portion of the transmitted bandwidth,
the SNR gain was found to increase the quickest for the first compensated channels,
where the gain slope is 1 dB every 3 dB of NLI suppression. Saturation of the SNR
gain was observed as the signal-ASE NLI becomes dominant compared to the residual
signal-signal NLI. Since the signal-ASE increases with transmission distance, the DBP
gain was shown to saturate earlier for longer distances than for shorter ones. The SNR
showed instead an abrupt increment as the NLC bandwidth approached the full-field
bandwidth.

Ideal DBP implementation often represents an unrealistic task. Thus, limitations
of the algorithm performance due to more realistic system scenarios, such as receiver
DSP with limited computational complexity and PMD, were also analysed. As for
the computational complexity, number of iterations (or steps) and sampling rate of
operation play an important role in the performance of DBP, particularly as the NLC
bandwidth was increased. For example, in a 5-channel transmission scenario, full-field
DBP was shown to bring no improvement compared to lower NLC bandwidths (single
channel or 3 channels), if operated with less than 20 steps/span. Unexpectedly, when
less than 10 steps/span were used, NLC bandwidths in excess of a single channel are
not only ineffective but also detrimental to DBP performance. This is due to the higher
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required spatial accuracy in the numerical integration performed by the SSFM, as the
signal bandwidth increases.

Finally, PMD was identified as a major source of impairment of DBP perform-
ance even with infinite complexity available at the receiver. The results showed that
typical fibre PMD prevents the compensation of inter-channel effects due to the lack
of knowledge of the polarisation states evolution of the transmitted signal through
the optical fibre. For a typical fibre PMD parameter of 0.1 ps/

√
km and a 5-channel

transmission, the difference between the DBP gain for a 3-channel DBP and 5-channel
(full-field) DBP is smaller than 0.5 dB, whereas the DBP gain increased by more than 1
dB going from single-channel DBP and 3-channel DBP. This indicates a saturation of
DBP gain as NLC bandwidth is increased. Such saturation was confirmed in a wideband
transmission scenario of 1 THz optical bandwidth. In this case, DBP gain was observed
to reach a value 0.8 dB below the full-field bandwidth maximum for an NLC bandwidth
between 16% (5 channels) and 23% (7 channels) of the total bandwidth (31 channels),
depending on the amount of accumulated DGD.
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4
Optimum detection for the nonlinear

optical fibre channel

The properties of the optical fibre channel described in chapter 2 are clearly very
different from the classical additive white Gaussian noise (AWGN) channel ones well
studied in communication theory. The main difference lies in the fact that the channel
properties change considerably based on the signal that is transmitted through it. Also,
effects such as chromatic dispersion (CD) and its interaction with nonlinear propagation
effects introduce memory in channel which in most cases cannot be entirely removed by
equalisation schemes applied at the receiver, such as electronic dispersion compensation
(EDC).

The properties of the channel are crucial to devise a proper signal detection scheme
at its output. By detection we can broadly define the strategy put in place to guess which
signal was transmitted in a set of M signals, when an observation is given at the output
of a noisy channel. Although the optical fibre channel shows features that are quite
divergent from the AWGN channel, the most typical detection scheme used in current
optical fibre systems is still the conventional matched filter (MF)/sampler approach
followed by symbol-by-symbol decision. This approach, which is well-known to be the
optimum for the AWGN case [1], is not in general the best for channels with memory,
and particularly for nonlinear channels.

In the context of coherent detection systems, only a relatively small number of
works have so far investigated the problem of optimising the detection process for the
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optical fibre channel. The explanation for this can be found in three main arguments:
i) historically, coherent optical systems have always been operated in a linear (or
pseudo-linear) region of transmitted powers which results in the MF approach being
the optimal one; ii) fibre transmission impairments such as CD or Kerr nonlinearity are
in general considered to be detrimental and therefore the most widespread approach
consists in attempting to undo them using zero-forcing equalisation scheme such as
digital backpropagation (DBP). By doing that, the assumption is to recover a perfectly
linear channel whose detection is thus optimal when using the MF strategy; iii) a
comprehensive and satisfactory knowledge of the statistical properties of the optical
fibre channel, required for the design of a tailored detection scheme, is still missing.

As a matter of fact, sophisticated detection schemes were already adopted in pre-
coherent era, when techniques such as maximum-likelihood sequence detection (MLSD)
were used to mitigate the effect of CD in intensity-modulation direct-detection (IMDD)
systems. For many years MLSD has represented the reference for such systems, as
the compensation of CD through DSP was not a viable option due to the loss of phase
information caused by squared-law detectors [2–4]. When coherent detection was
introduced in the mid-2000s, the MF and symbol-by-symbol approach was never really
questioned until [5], where MLSD was utilised for the first time to mitigate nonlinear
fibre impairments. In this work, approximated statistical models were proposed to
account for the channel memory with or without prior application of DBP. Based on
this model branch metrics for the Viterbi algorithm [6] were derived.

An alternative detection method called stochastic backpropagation [7, 8] proposed
to reconstruct the channel statistical law based on the received channel samples. In
order to do that, the received noisy samples were backpropagated and the optimal
detection rule was derived through the use of message-passing algorithms.

The previous methods both tackled the problem of detecting in a multi-span system
environment where signal-ASE interaction plays a significant role and needs to be
factored in for the design of the optimal decision strategy.

In [9], an MLSD strategy was instead applied to the unrepeatered (single-span) fibre
channel where the signal-ASE term is absent or at least negligible. As discussed in
section 2.3.1, unrepeatered systems are used for a wide variety of applications but their
performance is strongly affected by fibre nonlinear distortions. Thus, increasing trans-
mission rates and extending their reach represents a crucial and challenging research
topic. More importantly, devising optimal detection strategies for more complex sys-
tems, such as multi-span fibre systems, requires a clear statement of the problem, which
is easier to do for a simplified version thereof. In this sense, single-span systems repres-
ent the main building blocks of multi-span systems, and solving the detection problem
in such a scenario represents the first necessary step to tackle the more sophisticated
detection problem regarding multi-span systems.
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The main aim of the study in [9] was showing that for a single-span system, properly
designed MLSD strategies can be claimed to be optimum for that specific channel.
Furthermore, it was shown that performance similar to the AWGN channel can be
arbitrarily approached if the complexity constraint is removed. This chapter is based on
the work performed on this topic.

4.1 Properties of the nonlinear single-span optical fibre
channel

The interaction of CD and nonlinearity during the propagation of lightwave pulses in an
optical fibre generates a nonlinear distortion with memory [10]. This means that the
received waveform associated to a symbol transmitted at a given time slot is affected
by the transmitted symbols surrounding that time slot 1. Such property is mainly to be
attributed to the CD phenomenon. Indeed, in section 2.1.2 CD was observed to cause a
spread of the transmitted pulse over multiple time slots. This pulse spreading destroys
the pulse orthogonality when multiple of them are transmitted next to each other. Let us
assume that the transmitted signal is given by

s(t) =
∞

∑
k=−∞

xk p(t− kTs) (4.1)

where xk is the transmitted symbol at time-slot k, p(t) is the modulation pulse and Ts is
the symbol period. Then the (noiseless) signal affected by CD can be written as

y(t) =
∞

∑
k=−∞

xkq(t− kTs) (4.2)

where
q(t) =

∫ ∞

−∞
p(τ)h(t− τ)dτ (4.3)

and h(t) is the impulse response associated with CD. The effect of the pulse q(t) on other
pulses on time slots k 6= 0 is typically referred to as (linear) inter-symbol interference
(ISI). However, because of the interaction between CD and nonlinear propagation
effects, the received signal y(t) cannot be in general written in the form of Eq. (4.2), i.e.
the ISI acting on one pulse cannot be expressed as superposition of pulses located at
different time-slots. An illustration of this is given in Fig. 4.1 that shows the impact
of the interplay between CD and nonlinear effects on the transmitted waveforms. Two
QPSK 5-symbol sequences modulated with rectangular pulses at a symbol rate of 32

1Symbols transmitted at future time slots can also have an impact on the output at the present time
slot. This is due to the delayed time frames between input and output typically adopted when analysing
NLSE or Manakov equation.
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GBaud are shown at an instantaneous power of 10 dBm and after propagation over a 300
km SSMF span and full CD compensation. The transmitted sequences shown are the
waveforms associated with the QPSK symbols (−1− j,1− j,1+ j,−1+ j,1− j) and
(−1+ j,−1− j,1+ j,1− j,1+ j) for Figs. 4.1a, 4.1b, and 4.1c, 4.1d, respectively. It
can be observed that: i) each received pulse is temporally confined but a unique received
pulse shape cannot be identified; ii) a comparison of the middle pulses between the
two sequences (sharing the same middle symbol) shows that the received pulse shape
depends not only on the transmitted pulse but also on the surrounding ones; iii) the
imaginary part of the received pulse shape depends also on what is transmitted on the
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Figure 4.1: Transmitted (red) and received (blue) waveforms after a 300 km fibre span, for two 5-symbol
QPSK sequences. In (a) and (b), the waveforms corresponding to the symbol sequence 13203 (in decimal
notation and using Gray mapping) are shown in their real and imaginary part, respectively. In (c) and (d),
the waveforms corresponding to the symbol sequence 01232 are shown in their real and imaginary part,
respectively.
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real part (and vice versa), due to the nonlinear effects (see e.g. Figs. 4.1c, 4.1d). This
interaction between pulses is referred to as nonlinear ISI [5, 11, 12] and it represents
one of the main properties of the optical fibre channel.

Since the memory is introduced by the fibre CD, it is limited (see discussion
in [13]) and it varies depending on the channel bandwidth and transmission distance
(see section 2.1.2). The channel memory also depends on the specific transmission
scenario as different configurations of an optical fibre transmission system can show a
significantly different behaviour.

In this chapter, as a preliminary study, the focus was put on the single-span fibre
channel illustrated in Fig. 4.2a. It can be noticed that the booster amplifier is here
discarded compared to the conventional single-span channel shown in Fig. 2.5. This
simplification is based on the realistic assumption that the OSNR at the fibre input
is very high. On the other hand, this allows to simplify the detection problem as the
signal-ASE NLI is entirely removed and the only source of impairment is given by the
signal-signal NLI. As the signal-ASE NLI statistical distribution is not known (at least
not analytically), devising an optimal receiver represents a much harder problem.

Fibre span

TX G EDC Detector

Preamplifier

s(t) r(t)

(a)

s(t)

Nonlinear operator with memory

EDC × +

G

n(t)

y(t) r(t)

(b)

xk Nonlinear ISI +
yk

nk

rk

(c)

Figure 4.2: Schematic diagrams of a single-span optical fibre channel where (a) represents the physical
channel, (b) represents the equivalent continuous-time model, and (c) is the equivalent discrete-time
model.
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As it can be seen from Fig. 4.2a, at the receiver the first block is assumed to be an
EDC filter followed by a detector. The EDC filter cannot entirely remove the channel
memory because of the interplay between CD and nonlinear effects. However, it can
significantly reduce it (the memory of zero-th order solution is undone). Furthermore,
since the EDC block is a linear all-pass filter, it has no impact on the properties of
the Gaussian noise added by the EDFA amplifier. Because of this reason, the EDC
block has no effect on the optimality of the detection process at the channel output, as
a sufficient statistic can be equally collected at the block output. As a result, it can be
considered as a fixed block in the receiver and hence absorbed as part of the channel
itself. The physical channel in Fig. 4.2a can be equivalently represented by the block
diagram in Fig. 4.2b. The channel is here modelled as the cascade of the optical fibre
nonlinear operator and the EDC block. As mentioned before, the linearity of the EDC
block allows switching its position before the AWGN addition without changing the
properties of the channel. A scaling block G implements the amplification gain before
the AWGN process n(t) is added.

A possible quantification of the memory of the continuous-time channel in 4.2b
can be given through the calculation of the auto-correlation function on the noiseless
output signal y(t) [14]. However, from the receiver standpoint, the relevant quantity
is the memory shown by the channel observations. Such observations are a discrete
set rk of samples that the receiver extracts from the received waveform r(t) in order
to estimate the transmitted data xk. Thus, a discrete-time channel model can be then
derived and is illustrated in Fig. 4.2c. Although the optimal way to extract such set
of samples will be discussed in the next section, a possible option is represented by
the combination of a MF and sampler (1 Sa/sym). Following this approach, Fig. 4.3
shows the memory effect on the received samples rk. The three scatter plots in Fig. 4.3
are obtained by transmitting all possible sequences of 3 (Fig. 4.3a), 5 (Fig. 4.3b) and
7 (Fig. 4.3c) QPSK symbols through a 350 km fibre span at a transmitted power of
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Figure 4.3: Nonlinear ISI as observed at the output of a MF. The ISI is observed on a fixed central
symbol and varying all possible sequences of (a) 3, (b) 5, and (c) 7 symbols.
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15 dBm. The points in the diagram show the nonlinear ISI on the (noiseless) middle
sample yk as the surrounding symbols are varied. The effect of the nonlinear ISI
consists in a movement of the constellation point onto different locations, depending on
the surrounding symbols. Furthermore, it can be seen that adding more surrounding
symbols increases the number of ISI locations due to the additional memory effect
coming from the outermost symbols. Such symbols affect the ISI on the middle symbol
more weakly the further away in time from this symbol they are located. This can be
understood by looking at the filling effect in Figs. 4.3a, 4.3b, and 4.3c as the number of
the symbols in the sequence is increased. This vanishing effect is a sign of the finite
memory of the channel which is quantified in Fig. 4.4.

Fig. 4.4 shows the normalised variance of the NL ISI illustrated in Fig. 4.3 as a
function of the transmitted power and the number of symbols surrounding the central
one. The normalised NLI variance increases in all cases with a rate of approximately 2
dB/dB as predicted by the models discussed in chapter 2. A gap in the NLI variance
between the 3-symbol transmission and the 5-symbol (or 7-symbol) transmission of 0.45
dB can be observed. However, no significant difference in the variance can be observed
between the 5-symbol and 7-symbol case. This indicates a small influence in the NLI
variance of the symbols located three time-slots away from the symbol of interest. In
this sense, the memory of the channel can be quantified in 5 symbols. However, it is
worthwhile mentioning that such measure of the channel memory, although providing an
intuitive understanding of the channel properties, is not necessarily an indication on how
much memory a well-performing receiver should account for. Rather, the performance
of receivers operating on channels in which the noise is AWGN, such as the one in
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Figure 4.4: Normalised NLI variance over the central symbol as a function of power and varying number
of transmitted symbols.
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Fig. 4.2b, is determined by the minimum Euclidean distance (in the asympotically high
SNR regime) between the interference points shown in Fig.4.3. This quantity is not
necessarily related to the NLI variance in Fig. 4.4.

4.2 Improving detection for the optical fibre channel

A precise definition of the concept of memory for discrete-time channels can be found
in communication and information theory. Let (X1,X2, . . . ,Xn) and (R1,R2, . . . ,Rn) be
transmitted and received sequences in a channel, and (x1,x2, . . . ,xn), (r1,r2, . . . ,rn) their
respective realisations. A discrete-time channel is said to have memory if, the received
sample at present time rn is statistically dependent on the present but also on a certain
number of past inputs (xn−1,xn−2, . . . ,xn−2p) and outputs (rn−1,rn−2, . . . ,rn−2q) [15].
This means that the full description of the channel is given by the conditional pdf2

p(rn|xn,xn−1, . . . ,xn−2p,rn,rn−1, . . . ,rn−2q) ∀n≥ 2p≥ 2, (4.4)

and the channel memory can be defined as

2m , max(2p,2q). (4.5)

As a result, a channel can be considered memoryless if and only if

p(rn,rn−1, . . . ,r1|xn,xn−1, . . . ,x1) =
n

∏
k=1

p(rk|xk). (4.6)

Under the above definition, the family of channels with memory includes several
kind of specific channels 3. Particularly, for the channel discussed in the previous
section and illustrated in Fig.4.2c the present output rn statistically depends only on the
present and past inputs, but not on the past outputs. Therefore such channels are fully
described by

p(rn|xn,xn−1, . . . ,xn−2p) ∀n≥ 2p≥ 2, (4.7)

and are referred to as ISI channels.
The question addressed in this section is: what is the optimal detection strategy

for an ISI channel? We refer to optimum detection strategy as the rule that minimises
the probability of wrongly estimating a generic parameter of interest θ, which for a
communication channel is either a transmitted symbol or a sequence of transmitted
symbols. Such strategy can be devised following two steps [17, Ch. 7], [1, Ch. 4]:

2For simplicity of notation the indication of the random variable is dropped in the pdf subscript.
3In turn, channels with finite memory can be considered as a subset of a larger family of channels

called finite-state channels [16].
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i. extracting a sufficient statistic r = (r1,r2, . . . ,rn) on the parameter θ from the ob-
servation of the noisy received waveform r(t) (see Fig. 4.2b)

ii. implementing the rule that maximises the a-posteriori probability

θ̂ = argmax
θ

p(θ|r) (4.8)

hence called maximum a-posteriori probability (MAP) rule.

A sufficient statistic on the parameter θ and for the observation of r(t) can be defined
as a set of samples r = (r1,r2, . . . ,rn) such that for any statistics r′ = (r′1,r

′
2, . . . ,r

′
n)

extracted from r(t) it is verified [18], [19], [1, Ch. 4]

p(r′|r,θ) = p(r′|r) (4.9)

i.e. when knowing the sufficient statistics r, any other statistics r′ is independent on
the parameter to estimate. This is equivalent to have

p(r′|θ) = f (r′)q(r|θ) (4.10)

which is known as Fisher-Neyman factorisation [18] criterion and indicates that r
contains all the information that is needed to perform an estimation on θ.

Because of the memory in Eq. (4.7), it is clear that a sufficient statistic to estimate,
e.g., the symbol xk at time-instant k has to be collected over different time-slots depend-
ing on the memory of the channel. Also in order for Eq. (4.9) to be verified, a necessary
condition is that the samples yk of the noiseless waveform y(t) (see Fig.4.2b) need to
be a complete representation of y(t) (over the observation time), i.e. yk and y(t) need
to be in a one-to-one relationship. For instance this can be obtained by projecting r(t)

onto an orthonormal basis of signals [1]. For our specific channel, such a method is also
sufficient to obtain a sufficient statistic r because n(t) is assumed AWGN [1, 17].

Let us now assume that r = (r1
1,r

2
1, . . . ,r

N
1 , . . . ,r

1
n, . . . ,r

N
k )

4 are samples obtained by
the projection of r(t) over a complete (for y(t)) orthonormal set of N signals and over
an observation time long enough to include the channel memory. Such samples can
be considered sufficient for the estimation of a single xk but also for a sequence of
transmitted symbols x = (x1,x2, . . . ,xn). Indeed, for n large enough, the observations r
can be considered (approximately) statistically independent from transmitted symbols
outside of the sequence x and, as a result, detection can be performed optimally by
applying the rule

4Superscripts indicate the signal index within the orthonormal basis whereas subscripts indicate the
discrete-time index.
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x̂ = argmax
x

p(x|r). (4.11)

In most cases, sequences of transmitted symbols are all equally likely and the rule
in Eq. (4.11) can be rewritten as [20, Ch. 5]

x̂ = argmax
x

p(r|x) (4.12)

which is referred to as MLSD and will be used in the next sections.
It is worth mentioning that the MLSD strategy is optimal in the minimum error

probability on the estimated parameter which is in this case the sequence x. Optimum
strategies in the minimum symbol error probability sense are also possible based
on the criteria discussed earlier in this section. However, as is known (e.g. [21]),
optimal symbol-by-symbol receiver for ISI channels are considerably more complex
than MLSD receivers and their performance is in general very similar. For this reason,
in the following only sequence detection will be discussed.

4.3 Bank-of-correlators receiver

The most natural way to apply the criteria discussed in the above section to a single-
span fibre channel is detecting different sequences by applying the minimum Euclidean
distance criterion on the waveform channel in 4.2b. Indeed, for times T = nTs that are
much longer than channel memory, the waveform r(t) can be written as

r(t) =
∞

∑
k=−∞

s(t− kT,x)+n(t) (4.13)

where s(t− kT,x) is a set of waveforms with support in kT ≤ t ≤ (k+1)T , associated
with the sequence of transmitted symbols x ∈ {x1,x2, ...,xM2m+1}, and n(t) is a white
complex Gaussian process with power spectral density equal to 2No. Eq. (4.13) assumes
that each waveform s(t − kT,x) is determined only by the transmitted sequence of
symbols x within a time T . Thus any inter-sequence interaction is assumed to have
a negligible effect on the shape of the entire sequence waveform. For long enough
sequences (large T ), this approximation can be considered true. Detecting by sequences
allows then to avoid the nonlinear ISI observed in Fig.4.3, which is due to the fact that
the actual waveform associated with a given transmitted symbol varies depending on
the channel state.

The minimum Euclidean distance criterion over all possible waveforms s(t− kT,x)
is well-known to represent the optimal detection strategy for the channel in 4.2b,
when n(t) is AWGN [1]. Such a strategy effectively consists in maximising the log-
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likelihood [22, Sec. 2.6]

Λk =
2

No
Re

∫
r(t)s∗(t,xk)dt− 1

No

∫
|s(t,xk)|2dt. (4.14)

A receiver implementing (in continuous-time) such a detection strategy is referred
to as a bank-of-correlators (BC) receiver and is illustrated in Fig. 4.5. The reason for
this name is due to the set of parallel correlators calculating the scalar products (in the
complex signal space)

lk =
∫ ∞

−∞
Re [r(t)s∗(t−T,xk)]dt (4.15)

between the received signal r(t) and the waveforms s(t−T,xk) for k = 1, ...,M2m+1

where xk represent a specific element in the ensemble of all possible transmitted
sequences of length n. The signal correlations are then offset by a quantity that is
proportional to the signal energy to account for the case where different signals s(t−
T,xk) have unequal energies.

The number of required correlators is equal to the number of possible waveforms
which is in turn equal to the number of possible transmitted sequences M2m+1. Although
the correlation calculations can be performed in parallel, still M2m+1−1 comparisons
are required in order to find the most likely symbol sequence. This imposes a stringent
constraint on the length of the sequences if a manageable receiver complexity is to be

r(t)

∫
Re [ ·s∗(t,x1)]dt

∫
Re [ ·s∗(t,x2)]dt

...

∫
Re [ ·s∗(t,xM2m+1)]dt

argmax
xi

(·)

l1
+

l2
+

lM2m+1
+

−1
2
∫ |s(t,x1)|2dt

−1
2
∫ |s(t,x2)|2dt

−1
2
∫ |s(t,xM2m+1)|2dt

...

x̂

Figure 4.5: Schematic diagram of a BC receiver.
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preserved.
The performance of the BC receiver were numerically analysed in Fig. 4.6 where

the BER after detection is shown for different correlator lengths 2m+1. The system
parameters used for this numerical study are shown in table 4.1 As a reference, the BER
of a QPSK transmission in an AWGN channel and the BER of a MF/symbol-by-symbol
receiver are also shown.

The length of the correlators is varied between 3 and 7 symbols which yields a
number of correlators varying between 43 and 47. It can be observed that at a distance
of 300 km, the BER of a BC receiver is substantially improved compared to the MF
case. This improvement is increased as the sequence length is extended up to 7-symbol
sequences. This is due to the progressive reduction of the nonlinear ISI discussed before.
On the other hand, as the power increases the beneficial effects of the BC receiver
are less evident which can be attributed to the increasing inter-sequence interactions
that are not taken into account by the receiver. However, it is interesting to note that
applying ML detection over small sequences extends the region of powers where the
performance of the AWGN channel can be closely approached. This behaviour can be
clearly extended by increasing the correlators’ length which jointly allows to account for
a longer memory and to detect over longer sequences. However, the exponential scaling
of the complexity with m makes the implementation of receiver rapidly infeasible.

The BC receiver structure can be considerably simplified if an orthonormal
basis is used for the signal space generated by all possible signals s(t,xk), with
k = 1,2, ...,M2m+1 . Based on the 2BT -theorem (see e.g. [22, Ch. 2]), the number
of dimensions of this vector space increases only linearly with the number of symbol
periods spanned by the s(t,xi), which instead are in a number growing exponentially
with the number of symbols. A significant number of correlators can then be saved.
However, the main contribution for the complexity of the structure in 4.5 comes from
the argmax block which needs to perform M2m+1−1 comparisons every M detected

Parameter Name Value
Transmission Parameters

Modulation Format QPSK
Symbol Rate 32 GBaud

Number of WDM channels 1
Fibre Channel Parameters

Attenuation Coefficient (α) 0.2 dB/km
GVD (β2) -21.66 ps2/km

Nonlinearity Parameter (γ) 1.2 1/(W·km)
Span Length 350 km

EDFA NF 3 dB

Table 4.1: System parameters used the numerical study performed in this chapter.
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Figure 4.6: BER as a function of the transmitted power (P) for BC receivers with different correlator
lengths and transmission distance L=350 km.

symbols, regardless of the number of vector components lk at its input.
In the next section, the well-known Viterbi algorithm will be employed to solve this

problem and arbitrarily increase the sequence length without incurring an exponentially
scaling detection complexity.

4.4 Optimum MLSD for the nonlinear fibre channel

In order to avoid interaction between sequences, detection should be performed on
sequences significantly longer than the channel memory. This can be done without
incurring in an exponentially growing detection complexity by resorting to the well-
known Viterbi algorithm [6, 23]. The Viterbi algorithm, allows to find the most likely
sequence without having to compare all of them which would represent an infeasible
task due to their exponential growth. The complexity increases only linearly with the
length of the detected sequence and remains constant on per-detected-symbol basis.

Let us assume x = (x1,x2, . . . ,xn) is the sequence of transmitted symbols and
r = (r1,r2, . . . ,rn) is the sequence of channel observations on the waveform r(t). A
necessary condition to use the Viterbi algorithm is the factorisation of the sequence
likelihood as

p(r|x) =
n

∏
k=1

p(rk|xk,σk) (4.16)
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where
σk = (xk−m, . . . ,xk−1,xk+1, . . . ,xk+m) (4.17)

is the channel state and 2m is the channel memory. Such factorisation is possible for the
discrete-time channel in Fig. 4.2b only when the rk are extracted in some specific ways
from the waveform r(t). For instance, when the rk are obtained as the output of a MF
followed by a sampler at 1 Sa/sym (see Fig. 4.7a,b), the noise samples nk are Gaussian
and uncorrelated [17, Ch. 5], and as a result they are also statistically independent. Thus,
Eq. (4.16) is verified as long as the 2m is equal or larger than the channel memory.

As discussed in section 4.2, in order to optimise the detection strategy rk also
needs to cover a sufficient statistic. For the channel considered in this chapter, rk is a
sufficient statistic if and only if the sequence of samples yk is a complete representation
of the waveform y(t)5. For a MF/sampler receiver this is not in general the case as we
have seen that a transmitted sequence is not in general representable as in Eq. (4.1).
This can also be understood by considering that the received signal bandwidth is in
general expanded compared to the transmitted one because of the strong nonlinear
effects. Thus, the MF cannot be used as basis function for the representation of the
received signals. A simple way to obtain a sufficient statistic is instead based on the
sampling theorem [22, Ch. 2]: sampling the received signal at a rate Fs > 2B guarantees
a complete representation of the waveform y(t) of bandwidth B over a sequence period
T .

In order to understand the impact of using a sufficient statistic on the receiver BER
performance, three different receiver schemes shown in 4.7 are compared in the follow-
ing: a typical MF/symbol-by-symbol receiver (4.7a); a MF/Viterbi processor (4.7b); a
receiver filtering r(t) over the bandwidth B of the received signal y(t) (rectangular low-
pass filter (RLPF)) with a subsequent Viterbi processor (4.7c). The Viterbi processor
implements MLSD over arbitrarily long sequences without incurring the unbearable
complexity of the BC receiver approach. Both receiver schemes in Figs. 4.7a, 4.7b
represent suboptimal approaches as, albeit in different ways, they do not produce es-
timates based on sufficient statistics. In the third option the receiver instead attempts
to estimate sequences of symbols based on a sufficient statistic and therefore it can be
claimed optimal as long as the receiver memory matches that of the channel.

In Fig. 4.8, the BER as a function of the transmitted power is shown for the three
receiver schemes in Fig. 4.7. The MF/MLSD receiver (4.7b) is implemented using
6-symbol states, whereas the RLPF/MLSD receiver (4.7c) uses either 2-, 4-, or 6-
symbol states. The SNR axis is shown as a reference for the performance of the AWGN
QPSK transmission.

All MLSD schemes show a significant improvement with respect to the MF/symbol-

5For instance in channels where n(t) is not AWGN this condition might not be sufficient.
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Figure 4.7: Schematic diagram of the MLSD receiver schemes analysed in this chapter.

by-symbol scheme (black line), demonstrating the effectiveness of sequence detection
(as already shown for the correlators receiver). However it is interesting to note that,
despite its 6-symbol states, the MF/MLSD receiver performs worse than all other RLPF
schemes. This reflects the loss of information due to the suboptimal statistics used in
the receiver in 4.7b. RLPF/MLSD receivers show a significantly better performance
even for the reduced-state cases (2- and 4-symbol states), which can be attributed
to the fact that they all operate on sufficient statistics. Particularly, the 6-symbol
state RLPF receiver can closely approach the AWGN performance up to 22 dBm of
transmitted power and shows a monotonically decreasing BER for the investigated
range of transmitted powers. The reduced-state RLPF receivers instead show minimum
BER at around 25 dBm. This behaviour is due to their reduced-memory states which
do not allow the factorisation in Eq. (4.16). The BER floor observed for the 6-symbol
state RLPF receiver also suggests that such state length is not sufficient to cover
the actual channel memory. The BER floor could be also explained by assuming a
minimum Euclidean distance between sequences which decreases with the transmitted
power. Since the minimum Euclidean distance between received sequence waveforms
dominates the sequence error probability and, as a result, the BER [6], [22, Ch. 7],
this could result in a non-decreasing BER. However, non-increasing (as a function of
transmitted power) minimum Euclidean distances between sequence waveforms were
not observed in a preliminary investigation performed using the Viterbi trellis. However,
further investigation on this topic is desirable.

In conclusion, in this section we have numerically tested the detection principles
discussed in section 4.2 in a single-span optical fibre channel modelled as in Fig. 4.2.
The results show remarkable BER gains when detection is performed by taking into
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Figure 4.8: BER as a function of P for different detection strategies and transmission distance L=350
km.

account the channel memory and using a sufficient statistic on the data to be estimated.

4.5 Summary

In this chapter, receiver schemes, alternative to the zero-forcing nonlinear equalisation
approach such as DBP, were investigated. In particular, the structure of the optimal
receiver was studied when the channel is characterised by nonlinear ISI which is a
peculiar characteristic of the unrepeatered fibre channel, due to the need to operate in
the deep nonlinear regime of transmitted powers.

In such systems, due to the low receiver OSNR, zero-forcing equalisers incur a
strong noise enhancement. When signal-ASE interactions can be neglected, it was
shown that optimum receivers need to be based on MLSD schemes in order to properly
account for the channel memory.

Different MLSD strategies were discussed and numerically implemented. The BER
results show significant gains obtained by such improved receiver strategies compared
to the conventional MF/symbol-by-symbol receiver. In particular, a receiver based on
a bank-of-correlators was shown to attain a BER 2.5 times lower that a conventional
MF/symbol-by-symbol receiver, when 47 correlators are employed. Close-to-optimum
MLSD schemes, such as the RLPF/Viterbi detection with 6-symbol states, closely
approach the AWGN performance up to very high transmitted powers (22 dBm) with a
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BER saturating beyond that power. The minimum BER of the RLPF/Viterbi receiver
was shown in this case to be more than one order of magnitude lower than the minimum
BER achieved by a MF/symbol-by-symbol receiver. For the cases where the state length
was reduced (4 or 2 symbols) the BER reached a minimum value between 4.3 and 1.5
times lower than that of a MF/symbol-by-symbol receiver.

Finally, the importance played by the collection of a sufficient statistic for the
detection of the transmitted symbols was highlighted. Indeed, a MF/sampling receiver
does not collect a sufficient statistic even when MLSD detection is performed. Using
suboptimal statistics yields a markedly deteriorated performance compared to a MLSD
receiver with the same number of states but using instead a sufficient statistic.

Despite their poor complexity scaling, MLSD receivers were shown to perform
extremely well in single-span transmission scenarios, even with a relatively low number
of states. Therefore, they represent a valid alternative to conventional receiver schemes
(MF/symbol-by-symbol detection) or nonlinear equalisers for systems operating at very
low OSNR.

MLSD techniques can also potentially be extended to multi-channel scenarios, with
or without the knowledge of the other transmitted channels, and to multi-span systems.
The major challenge in this case is still represented by the complexity, as the channel
memory is significantly increased. Thus, ways to substantially reduce the number of
states without compromising the performance are of great research interest. Finally, in
systems where the signal-ASE noise cannot be neglected, such as a multi-span system,
optimum detection strategies still need to be devised due to the incomplete knowledge
of the signal-ASE noise statistical properties.
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5
Achievable information rates

In the previous chapters, two receiver-side strategies aimed at improving the perform-
ance of optical fibre communication systems were presented. The performance of such
schemes was analysed based on two different metrics: the SNR in the case of EDC/DBP
schemes, and the uncoded BER for the MLSD schemes. However, both metrics are,
in general, unsuitable to predict the performance of receivers using forward error cor-
rection (FEC) [1, 2]. As discussed in this chapter, the performance of a coded system
can be much more accurately predicted by means of the tools provided by information

theory, a discipline founded by Shannon as a result of his 1948 celebrated paper “A

mathematical theory of information” [3]. In this paper, mathematical quantities such
as the mutual information (MI) and the channel capacity were defined and proved
to be central in the description of the limits of information transmission through any
communication channel.

It is the aim of this chapter to introduce the basic elements of information theory,
in order to characterise the performance of coded optical fibre systems employing
receiver schemes such as the ones discussed in chapters 3 and 4, i.e. EDC receivers,
multi-channel DBP receivers and MLSD receivers. In particular, it is of paramount
interest to quantify at which information rates transmission is possible with an arbitrary
low BER after FEC decoding is performed (error-free transmission). In this chapter
AIRs are discussed and quantified for each receiver scheme analysed in chapters 3 and
4.

The performance of each receiver scheme was studied within a specific channel
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configuration: long-haul WDM systems for EDC/DBP receivers and single-span, single-
channel system for MLSD receivers. As for EDC/DBP schemes, a comprehensive
study of the coded performance of long-haul spectrally-efficient WDM optical fiber
transmission systems with different coded modulation decoding structures is described.
AIRs were also calculated for three different square PM-MQAM formats, such as
PM-16QAM, PM-64QAM, and PM-256QAM.

The AIRs performance of pragmatic encoder/decoder implementations were also
considered. The four cases analysed combine hard-decision (HD) or soft-decision
(SD) decoding together with either a bit-wise (BW) or a symbol-wise (SW) demapper,
the last two suitable for binary and nonbinary codes, respectively. These quantities
represent true indicators of the coded performance of the system for specific decoder
implementations and when the modulation format and its input distribution are fixed.

As for the MLSD receivers, AIRs were quantified for the specific transmission scen-
ario analysed in chapter 4, i.e. single-polarisation, single-channel, QPSK transmission
in a single-span system.

5.1 AIRs for long-haul fibre systems using pragmatic
FEC decoders

Next-generation long-haul transceivers will use powerful FEC and high-SE modulation
formats, a combination known as coded modulation (CM). In order to provide reliable
transmission, a FEC encoder maps blocks of information bits into longer blocks of
coded bits that are sent through the channel at a nominal transmission rate. As a result,
the information rate is, in general, lower than the nominal one by an amount that depends
on the redundancy added by the FEC encoder, which in turn needs to be adjusted based
on the quality of the channel. A key performance parameter is then the maximum
rate at which an optical communication system can operate whilst maintaining reliable
transmission of information.

To have an estimate of this rate, a widely used approach in the optical communication
literature is based on identifying a pre-FEC BER threshold, for which a specific high-
performance FEC code can guarantee an error-free performance after decoding. The
code rate of such a coding scheme, multiplied by the raw transmission data rate, is
used to quantify an AIR for that specific system configuration. On the other hand,
information theory, founded by Shannon in his seminal paper [3], shows that quantities
such as the MI can precisely indicate what is the maximum information rate at which a
code can ensure an arbitrarily small error probability [4, 5]. Moreover, several recent
works have shown that both the MI and the generalized mutual information (GMI) [6, 7]
are more reliable indicators than the pre-FEC BER of the performance of coded optical
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fiber systems, regardless of the specific channel used for transmission [1, 8–13].
The channel MI (i.e., the MI including the channel memory) represents an upper

limit on the AIRs for a given channel when a given modulation format is used along
with an optimum decoder. In most cases, FEC codewords are equally likely, and
thus the optimum decoder performs a maximum likelihood estimation on the received
codewords. However, the implementation of such a decoder is in general prohibitive,
both for complexity reasons and due to the lack of knowledge of the channel law. Instead
of the optimum decoder, more pragmatic CM decoders are usually employed. Typical
CM decoder implementations used in optical communications neglect the channel
memory [11] and are, thus, suboptimal. Furthermore, their design involves two degrees
of freedom. Each degree of freedom presents two options: hard-decision (HD) vs.
soft-decision (SD) decoding and bit-wise (BW) vs. symbol-wise (SW) demapping,
effectively producing four different design options.

These structures are representative of pragmatic decoders for FEC schemes em-
ployed in optical communication systems and comprehensively studied in the previous
literature. SD-SW FEC schemes have been discussed in the context of optical commu-
nications for example in [10], [14, Sec. III-E]. SD-BW decoders are a more widespread
choice for SD FEC and are typically used with binary low-density parity-check codes
(see for example [1, 8, 9, 14–16]). As for HD FEC schemes, HD-SW decoders have
been employed for Reed-Solomon codes which were adopted by the standard ITU-T
G.975.1 [17] within the implementation of the so-called super-FEC scheme. Finally,
HD binary FEC schemes such as extended Hamming codes and BCH codes were also
adopted by the ITU-T G.975.1 standard. Alternative HD-BW schemes that have been
recently considered for optical communications include staircase codes [18] and other
types of so-called generalized product codes [19].

The channel MI is not in general an AIR for any of the four suboptimal schemes
discussed above. Indeed, the adopted decoding strategy has a major impact on the
AIRs, which can potentially be significantly lower than the channel MI. A common
approach to calculate AIRs for specific decoder implementations is based on two steps:
i) the memory of the optical fiber channel is neglected and the MI is calculated for an
equivalent memoryless channel; ii) the mismatched decoder principle is used [20–23].
As discussed later in Sec. 5.3, each of these two methods results in a lower bound on
the channel MI.

In [24] the memoryless MI was studied for coherent optical fibre systems using ring
constellations. In [8, 9], the same quantity was used in an experimental scenario as
a system performance metric for an SD coded system. In [11] and [1, Fig. 6], it was
shown that when BW decoders are used, the GMI is a better metric to predict AIRs than
the MI. The GMI has also been used to evaluate the performance of experimental optical
systems in [25–27]. The memoryless MI and the GMI were also shown to be good
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post-FEC BER predictors for SD-SW (nonbinary) and SD-BW decoders, in [10] and [1]
respectively. Finally, a study comparing SD-SW and HD-BW AIRs for polarization
multiplexed (PM) quadrature-amplitude modulation (QAM) formats (PM-16QAM and
PM-64QAM) was presented in [28], where electronic dispersion compensation (EDC)
or digital backpropagation (DBP) are used at the receiver for a given transmission
distance.

In the following, a comprehensive comparison of the AIRs of optical fibre trans-
mission systems for different CM decoder implementations and for all transmission
distances of interest for mid-range/long-haul terrestrial and transoceanic optical fiber
links. The AIRs are also compared for different equalization techniques and over
different PM-MQAM formats with nominal SE above 4 bits/sym per polarization such
as PM-16QAM, PM-64QAM, and PM-256QAM. The results in this chapter show the
design trade-offs in coded optical fiber systems where, for a given distance requirement,
a compromise between transmission rates and transceiver complexity (modulation
format, equalization, and decoding) must be found. To the best of our knowledge, this
is the first time such an extensive study is performed for optical fiber communication
systems.

5.2 Coded modulation for optical fibre systems

We consider the schematic diagram in Fig. 5.1, representing a generic multispan optical
fiber communication system. Although in this work PM (4D) modulation formats are
considered, for simplicity of the mathematical treatment in section 5.3, we neglect in
our channel model any statistical dependence between the data transmitted on the two
polarizations. Under this assumption, and for the modulation formats studied in this
work (PM-16QAM, PM-64QAM, and PM-256QAM), the system under analysis can be
reduced to a single-polarization (2D) one. At the transmitter, a CM encoder encodes
a stream of Nb information bits BNb = [B1,B2, . . . ,BNb] into a sequence of Ns symbols
XNs = [X1,X2, . . . ,XNs], each drawn from a set of M complex values S = {s1,s2, ...,sM},
where M is a power of 2.1 The rate at which this operation is performed (in bits per
symbol) is therefore given by

R =
Nb

Ns
. (5.1)

In our analysis, we only consider the case where the symbols Xn forming a codeword XNs

are independent, identically distributed (i.i.d.) random variables with equal probability
1/M.2

1Throughout this chapter, boldface uppercase variables (e.g., XN) denote random vectors where the
superscript indicates the size of the vector. Calligraphic letters (e.g., S ) represent sets.

2However, once a codebook is selected, symbols within codewords will appear as statistically
dependent.
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Figure 5.1: General schematic of the optical communication system analyzed in this work.

Although all CM encoders are inherently nonbinary encoders, the encoding process
described above can be implemented in two different ways, as shown in Fig. 5.2. In
the first implementation, shown in the top part of Fig. 5.2, the sequence of information
bits is encoded using a binary FEC code and subsequently a memoryless mapper Φ
is used to convert blocks of log2 M bits into symbols of the constellation S .3 This
implementation is naturally associated with CM decoders based on a demapper and
a binary FEC decoder. The second implementation is shown in the bottom part of
Fig. 5.2, where bits are first mapped into a sequence of nonbinary information symbols,
which are then mapped into sequences of nonbinary coded symbols by a nonbinary
FEC encoder [14, Sec. III-E], [10]. In this case, the decoding can be performed by a
nonbinary FEC decoder.

We do not consider here cases where symbols are not uniformly distributed, i.e.,
when a probabilistic shaping on S is performed [31–36]. Moreover, in this study, we
focus our attention on high SEs (>2 bits/sym/polarization), and thus the constellation S
is assumed to be a square MQAM constellation where M ∈ {16,64,256}.

The symbols Xn are mapped, one every Ts seconds, onto a set of waveforms by a
(real) pulse shaper p(t), generating the complex signal

s(t) =
Ns

∑
n=1

Xn p(t−nTs). (5.2)

The signal s(t) propagates through Nsp spans of optical fiber (see Fig. 5.1), optically
amplified at the end of each span by an erbium-doped fiber amplifier (EDFA). At the
end of the fiber link, the signal is detected by an optical receiver. As shown in Fig. 5.1,
the first part of the receiver includes an equalizer and a matched filter (MF), which are
assumed to be operating on the continuous-time received waveform r(t).4 The equalizer
performs a compensation of the most significant fiber channel impairments, either the
linear ones only, as in the case of EDC, or both linear and nonlinear, as with DBP.
The equalized (but noisy) waveform y(t) represents the input of the detection stage

3Throughout this chapter, it is assumed that the mapping is done via the binary reflected Gray
code [29, 30].

4The equalizer typically operates in the digital domain, but for a large enough sampling rate, the two
representations are equivalent.
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Figure 5.2: Two different implementation alternatives for the CM encoder in Fig. 5.1.

and can be therefore effectively considered as the output of the so-called waveform

channel [37, Sec. 2.4]. Such a channel is formed by the cascade of the physical channel
and the equalization block at the receiver, as shown in Fig. 5.1. The physical channel
(i.e., fiber spans and amplifiers), also referred to as the nonlinear Schrödinger channel
in [38], is described by the nonlinear Schrödinger equation [39, Sec. 2.3].

The receiver estimates the transmitted bits based on a set of observations Y Ns ,

{Yn}Ns
n=1 where

Yn =
∫ +∞

−∞
y(τ)p(τ−nTs)dτ (5.3)

are samples extracted from the signal y(t) using a MF matched to the transmitted pulse
p(t). As discussed in Chapter 4, and shown in [40, 41], Eq. (5.3) does not necessarily
represent the optimum approach to reduce this particular waveform channel to a discrete-
time one. Also, in all scenarios where residual correlated phase-noise is present due
to fiber nonlinearities [23, 42], a phase-noise estimation block would improve the
system performance, as shown for example in [43]. However, the focus of the following
sections is on the performance of the CM encoder and decoder blocks, operating on
the input and output of the discrete-time channel, regardless of the suboptimality of the
observations Y Ns .

In the following section, we discuss AIRs of the four decoding strategies shown in
Fig. 5.3, representing different implementations of the CM decoder. The importance
of these structures lies in the fact that they cover all the main options employing a
memoryless demapper. Each BW configuration (see Figs. 5.3(b) and (d)) is character-
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BW LL
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Soft Binary
FEC Decoder
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FEC Decoder

Demapper Hard Binary
FEC Decoder

SD

HD

SW BW
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Figure 5.3: The four CM decoder implementations analised in this work.
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ized by a CM decoder formed by two blocks: a memoryless demapper and a binary
FEC decoder. The SW strategies (see Figs. 5.3(a) and (c)) are instead characterized by
the adoption of a nonbinary decoder operating directly on symbol level metrics derived
from the samples Yn. Each of the HD schemes (see Figs. 5.3(c) and (d)) operates a
symbol/bit level decision before the FEC decoder, which as a result operates on discrete
quantities (hard information). In the SD case (see Figs. 5.3(a) and (b)), the decoder
instead produces codeword estimates based on BW or SW log-likelihood (LL) values5,
which are distributed on a continuous range (soft information).

5.3 Information-theoretic preliminaries

5.3.1 Capacity and achievable rates

Consider an information stable, discrete-time channel with memory as defined in [44],
and characterized by the sequence of probability density functions (PDFs)6

pY N |XN (yN |xN), N = 1,2, . . . (5.4)

The maximum rate at which reliable transmission over such a channel is possible is
defined by the capacity [44, eq. (1.2)]

C = lim
N→∞

sup
pXN

1
N

I(Y N ;XN) (5.5)

where pXN is the joint PDF of the sequence XN under a given power constraint. When
pXN is fixed, the quantity

I(XN ;Y N) = E

[
log2

pY N |XN (Y N |XN)

pY N (Y N)

]
(5.6)

in Eq. (5.5) is the MI between the two sequences of symbols XN and Y N , and

Imem = lim
N→∞

1
N

I(XN ;Y N) (5.7)

is the average per-symbol MI rate [4, 23], which has a meaning of channel MI. For a
fixed N, Eq. (5.7) represents the maximum AIR for the channel in Eq. (5.4), and can
be achieved by a CM encoder generating codewords XNs according to pXN , used along

5For the binary case, LL ratios are typically preferred for implementation reasons.
6Throughout this paper, pY |X (y|x) denotes a joint conditional PDF for the random vectors Y and X ,

whereas a marginal joint PDF is denoted by pX (x).
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with an optimum decoder.7 Such a decoder uses the channel observations yNs to produce
codeword estimates XNs

DEC based on the rule

XNs
DEC = argmax

xNs∈SNs
pY Ns |XNs (yNs|xNs) (5.8)

where the codeword likelihood pY Ns |XNs is calculated based on the knowledge of the
channel law Eq. (5.4).

The expression of the channel law Eq. (5.4), for N large enough to account for the
channel memory, remains so far unknown for the optical fiber channel despite previous
attempts to derive approximated [45, 46] or heuristic [47] analytical expressions. On
the other hand, brute-force numerical approaches appear prohibitive. An immediate
consequence is that the exact channel MI for a given modulation format cannot be
calculated. The second consequence is that the optimum receiver potentially achieving
a rate R = Imem cannot be designed. However, using the mismatched decoder approach,
it is still possible to calculate nontrivial AIRs for the optical fiber channel in Fig. 5.1,
when suboptimal but practically realizable CM encoders and decoders are used, such as
the ones described in section 5.2 (see Fig. 5.3).

The method of the mismatched decoder to calculate AIRs for specific decoder
structures originates from the works in [20], later extended to channels with memory
in [21] and recently applied to optical fiber systems in, e.g., [22, 23, 28]. This approach
consists in replacing, in the calculation of the channel MI, the unknown channel law
with an auxiliary one, obtaining a lower bound. Moreover, such a bound represents an
AIR for a system using the optimum decoder for the auxiliary channel. The tightness of
such a lower bound depends on how similar the auxiliary channel is to the actual one.
On the other hand, no converse coding theorem is available for the bound obtained using
a given auxiliary channel. In other words, even when a mismatched decoder is used, the
estimated rate is not necessarily the maximum achievable rate. Counterexamples have
been shown, e.g., in [48].

Nevertheless the AIRs calculated via the mismatched decoder approach still rep-
resent an upper bound on the rates of most, if not all, coding schemes used in practice.
Furthermore they are a strong predictor of the post-FEC BER of such schemes, as
shown in [1, 8–10].

5.3.2 AIRs for SD CM decoders

Since each of the CM decoders presented in section 5.2 neglects the memory of the
channel in Eq. (5.4), a first decoding mismatch is introduced. In what follows, we

7The channel can be seen as block-wise memoryless, and thus, codewords should be constructed using
blocks of N symbols drawn independently from pXN .
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discuss this mismatch using the SD-SW case (see Fig. 5.3(a)) as a representative
example of all other CM decoders.

For the SD-SW, the nonbinary decoder requires SW likelihoods pYn|Xn , with n =

1,2, . . . ,N. These N PDFs can be derived for each n by marginalizing the joint PDF in
Eq. (5.4). For simplicity, however, practical implementations use a single PDF across
the block of N symbols. We choose the PDF in the middle of the observation block, i.e.,
at time instant n = n̂ = dN/2e. The marginalization of Eq. (5.4) in this case gives

pYn̂|Xn̂(yn̂|xn̂) =
∫

CN−1
pY N |Xn̂

(yN |xn̂)dỹN−1 (5.9)

where C denotes the complex field, ỹN−1 , [y1, . . . ,yn̂−1,yn̂+1, . . . ,yN ], and the condi-
tional PDF pY N |Xn̂

in Eq. (5.9) can be expressed as

pY N |Xn̂
(yN |xn̂) =

1
MN−1 ∑

x̃N−1∈SN−1

pY N |XN (yN |xN) (5.10)

where x̃N−1 , [x1, . . . ,xn̂−1,xn̂+1, . . . ,xN ].
The choice for the single PDF to be the one in the middle of the observation block

is arbitrary. However, this choice is justified by the fact that pYn̂|Xn̂(yn̂|xn̂) will be a good
approximation of all other PDFs pYn|Xn(yn|xn) with n = 1,2, . . . ,N when N is large.

The demapper is then assuming a channel that is stationary across the block of N

symbols.8 This channel is fully determined by a PDF pY |X(y|x) defined as

pY |X(y|x), pYn̂|Xn̂(y|x). (5.11)

When i.i.d. symbols are transmitted, the MI for this auxiliary memoryless channel is
given by

ISD-SW =
1
M

M

∑
i=1

∫

C
pY |X(y|si) log2

pY |X(y|si)

pY (y)
dy. (5.12)

The SD-SW MI in Eq. (5.12) is an AIR for the SD-SW decoder structure in
Fig. 5.3(a), where the demapper computes LLs log pY |X(y|x), and the FEC decoder
estimates each transmitted codeword using Eq. (5.8) with a codeword likelihood given
by

pY Ns |XNs (yNs|xNs) =
Ns

∏
n=1

pY |X(yn|xn). (5.13)

In most cases, the channel law pY N |XN is unknown and therefore pY |X(y|x) is not
available in closed form to the receiver. Also, numerical estimations of pY |X(y|x) are
often prohibitive. As a result, practical implementations not only ignore the memory of
the channel (first mismatch), but also make an a priori assumption on the PDF pY |X(y|x).

8Here we refer to wide-sense stationarity [49, Sec. 3.6.1].

142



Chapter 5. Achievable information rates

This assumption introduces a second mismatch, which we discuss in what follows.
Most receivers assume a circularly symmetric Gaussian distribution for Eq. (5.11).

In this case, an AIR is given by [28, eq. (2)]

ĨSD-SW =
1
M

M

∑
i=1

∫

C
pY |X(y|si) log2

qY |X(y|si)

qY (y)
dy (5.14)

where

qY |X(y|x) =
1

πσ2 exp
(
−|y− x|2

σ2

)
(5.15)

represents the auxiliary Gaussian channel with complex noise variance σ2, which
accounts for the contributions of both ASE and nonlinear distortions.

As shown in [50, 51], the marginal PDF for the optical fiber channel is in most
practical cases well approximated by a circularly symmetric Gaussian distribution.9

This near-Gaussianity property can be attributed to the central limit theorem, as it is the
result of the accumulation of many random nonlinear interference contributions.

Therefore, as pointed out in [28], we generally have

ĨSD-SW ≈ ISD-SW. (5.16)

In this case, as discussed in section 5.3.4, the AIRs of SD-SW decoders can be quite
accurately estimated using the MI expression for the AWGN channel and the effective
signal-to-noise ratio (SNR) at the MF output

SNR =
E
[
|X |2

]

σ2 . (5.17)

In the SD-BW implementation (see Fig. 5.3(b)), for each received symbol Y the
demapper generates log2 M BW LLs [7, Ch. 3], [1]. These LLs are usually obtained
assuming no statistical dependence between bits belonging to the same transmitted
symbol. When such LLs are calculated based on a memoryless channel law pY |X(y|x),
the relevant quantity for the coded performance is the GMI [7, eq. (4.54)], [1, eq. (24)]

ISD-BW =
log2 M

∑
k=1

I(Bk;Y ) (5.18)

where Bk denotes the k-th bit of X and I(Bk;Y ) denotes the MI between transmitted bits
and received symbols.

When the LLs are calculated using the auxiliary channel in Eq. (5.15) instead of the

9A deviation from a circularly symmetric Gaussian PDF can be observed, e.g., in the following cases:
amplification schemes different from EDFA (such as Raman amplifiers) [45], dispersion-managed links
(see for instance [23]), and for very high transmitted powers.
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true channel, the GMI is lower-bounded by

ĨSD-BW =
1
M

log2 M

∑
k=1

∑
b∈{0,1}

∑
i∈I b

k

∫

C
pY |X(y|si)gk,b(y)dy (5.19)

where I b
k is the subset of indices of the constellation S having the k-th bit equal to

b ∈ {0,1} and

gk,b(y), log2

∑ j∈I b
k

qY |X(y|s j)

1
2 ∑M

j=1 qY |X(y|s j)
. (5.20)

Similarly to the SD-SW case, for the optical fiber channel in Fig. 5.1 we have ĨSD-BW ≈
ISD-BW.

5.3.3 AIRs for HD CM decoders

As illustrated in Figs. 5.3(c) and (d), the HD decoders are preceded by a memoryless
threshold device casting the channel samples Y Ns into a discrete set of values. In the
SW case (Fig. 5.3(c)), such a device provides a sequence of hard SW estimates X̂Ns that
are passed to a nonbinary decoder.

The channel
PX̂N |XN (x̂N |xN) (5.21)

will in general show memory across multiple symbols X̂n. However, in analogy with
Eq. (5.9), we can replace Eq. (5.21) with an equivalent memoryless channel defined by

PX̂ |X(x j|xi), pi j for i, j = 1,2, ...,M (5.22)

where the pi j are the SW crossover probabilities. Using the same argument on the
channel memory used for the SD-SW case, the quantity

IHD-SW =
1
M

M

∑
i=1

M

∑
j=1

pi j log2
pi j

1
M ∑M

p=1 pp j
(5.23)

represents an AIR for the HD-SW CM decoder in Fig. 5.3(c).10

When the HD decoder structure is preserved but a binary decoder is instead used
(Fig. 5.3(d)), the threshold device needs to be followed by a symbol-to-bit demapper
producing a sequence of pre-FEC bits estimates B̂Nb . Again, although the resulting
binary channel might show memory, the HD FEC decoder typically neglects it and the
most likely codeword is calculated based on each single detected bits. The auxiliary

10The rate IHD-SW in Eq. (5.23) is achievable with a nonbinary FEC decoder that is matched to the
channel transition probabilities pi j, but not necessarily with a standard nonbinary FEC decoder based on
minimizing the Hamming distance.
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channel law PB̂k|Bk
(b̂|b) can be in this case represented by a set of log2 M pairs of

transition probabilities

PB̂k|Bk
(b̂|b) =

{
pk for b = 0, b̂ = 1
qk for b = 1, b̂ = 0

(5.24)

for k=1,2,. . . ,log2 M, where pk and qk are the crossover probabilities for the bits B̂k and
Bk in k-th position within the symbols X̂ and X , respectively. The quantity

IHD-BW =
log2 M

∑
k=1

I(Bk; B̂k), (5.25)

where I(Bk; B̂k) is given, after some simple algebra, by

I(Bk; B̂k) = 1+
1
2

[
log2

(1− pk)(1−qk)

(1− pk +qk)(1−qk + pk)

+pk log2
pk(1− pk +qk)

(1− pk)(1−qk + pk)

+qk log2
qk(1−qk + pk)

(1−qk)(1− pk +qk)

]
, (5.26)

represents an AIR for an HD-BW CM decoder as in Fig. 5.3(d).11

5.3.4 Relationships between AIRs

The relationships between the above discussed AIRs are summarized by means of the
graph in Fig. 5.4. Nodes that are connected in the graph indicate the existence of an
inequality between the quantities in each of the nodes. The direction of the arrows show
which quantity is upper-bounding the other.

For any given input distribution, the rate Imem upper-bounds all other quantities. In
particular, we have

Imem ≥ ISD-SW ≥ ĨSD-SW, (5.27)

where the first inequality can be proven using the chain rule of the MI (see [5, Sec. 2.5.2],
[24, Sec. IV], [52]). The second inequality instead reflects the additional mismatch
caused by a memoryless demapper based on Eq. (5.15) rather than on Eq. (5.9). The
proof of this inequality follows from the definitions Eq. (5.12) and Eq. (5.14) and is
given in [21, Sec. VI]. Due to the assumption of independent bits within each transmitted

11An average binary symmetric channel (BSC) could be used instead of Eq. (5.24) as an auxiliary
channel. This would result in the well-known BSC capacity which might be a pessimistic AIR for generic
HD-BW decoders. However, such a quantity is a more suitable AIR for HD-BW decoders that disregard
both bit position and channel asymmetry.
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symbol in the calculation of Eq. (5.18), it can also be shown that [7, Sec. 4.4]

ISD-SW ≥ ISD-BW ≥ ĨSD-BW. (5.28)

Again, the second inequality reflects the loss of information of a mismatched demapper
calculating BW LLs based on Eq. (5.15) rather than on Eq. (5.9).

Due to the data-processing inequality [5, Sec. 2.4] and the mismatch of the illustrated
HD decoders to the potential channel memory, we have

ISD-SW ≥ IHD-SW, (5.29)

ISD-BW ≥ IHD-BW. (5.30)

Finally, similarly to the SD case, we have

IHD-SW ≥ IHD-BW. (5.31)

In general, nothing can be said on the relationship between ISD-BW and IHD-SW. Also,
no systematic inequality holds between the mismatched versions of the SD AIRs (ĨSD-SW,
ĨSD-BW) and the HD AIRs (IHD-SW, IHD-BW). However, as already discussed in section 5.3.2,
for the optical fiber channel the mismatched AIRs are expected to be very close to the
AIRs obtained with perfect knowledge of the channel marginal PDF in Eq. (5.9).

When the channel is indeed AWGN, clearly

Imem = ISD-SW = ĨSD-SW, (5.32)

ISD-BW = ĨSD-BW. (5.33)

In this case, as illustrated in 5.4, ISD-SW and IHD-SW are the maximum AIR for SD-SW and

Imem

ISD-SW

ĨSD-SW

ISD-BW

ĨSD-BW

IHD-SW

IHD-BW

Figure 5.4: Graph showing relationships between the information-theoretic quantities presented in this
chapter. Lines between nodes indicate an inequality, where the arrows point towards the upper bound.
Dotted arrows indicate inequalities which become equalities for the AWGN channel.
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Figure 5.5: AIRs as a function of the SNR for different modulation formats in an AWGN channel.
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HD-SW decoders, respectively [3], since each demapper is matched to the channel.12

Conversely, for BW decoders, rates higher than ISD-BW and IHD-BW are still achievable (see,
e.g., [48]).

In order to better illustrate the relationships discussed above, the four AIRs in
Eqs. (5.12),(5.18), (5.23), and (5.25) were calculated for the AWGN channel. In
Fig. 5.5, ISD-SW, ISD-BW, IHD-SW, and IHD-BW are shown vs. the SNR in Eq. (5.17) for the
three MQAM formats analised in this chapter: 16QAM, 64QAM, and 256QAM. For
16QAM, the HD AIRs are below both of the SD AIRs. It should be noted that for SD
decoders, a negligible penalty is incurred by using a BW structure. As the modulation
order is increased, and for low enough SNR values, it can be observed that the HD-SW
AIRs match or exceed the SD-BW AIRs. Also, in this regime, the performance of
these two decoders are comparable to the SD-SW one. This behaviour is clearer for
a 256QAM modulation format, for which a more significant penalty is incurred by
using BW demapping in an SD CM decoder, whereas the HD-SW structure performs
as well as the SD counterpart. When the modulation format cardinality increases, a
HD-BW decoder incurs, in general, significant penalties in AIR. Finally, the inequalities
in Eqs. (5.28)–(5.31) can be seen to hold for all modulation formats shown, as expected.

5.4 AIRs using EDC receivers

In this and in the following section, numerical results based on SSFM simulations of
long-haul optical fiber transmission are presented. As shown in Fig. 5.1, the simulated
system consists of an optical fiber link comprising multiple standard single-mode fiber
spans (parameters shown in Table 5.1), amplified, at the end of each span, by an EDFA
which compensates for the span loss. At the transmitter, after the CM encoder, PM
square MQAM formats (PM-16QAM, PM-64QAM, PM-256QAM) were modulated
using a root raised cosine (RRC) filter p(t). For each polarization of each WDM
channel, independent sequences of 218 symbols were transmitted. At the receiver, in
order to obtain ideal equalization performance, the sampling rate at which the equalizer
was operated was the same as the fiber propagation simulation (512 GSa/s).

After the MF (see Fig. 5.1) and sampling at 1 Sa/sym, AIRs calculations were
performed based on the schemes shown in Fig. 5.3. In particular, we used Eqs. (5.14)–
(5.15), (5.19)–(5.20), (5.23), and (5.25) to evaluate ĨSD-SW, ĨSD-BW, IHD-SW, and IHD-BW, re-
spectively. For the calculation of ĨSD-SW and ĨSD-BW in Eqs. (5.14) and (5.19), Monte-Carlo
integration was performed [53], using the 218 channel samples (transmitted symbols)
to estimate the variance σ2 of qY |X(y|x). In order to calculate IHD-SW and IHD-BW, a Monte
Carlo estimation [54, Sec. 5.6.1] of the probabilities pi j and p was performed using the
pairs of sequences (XNs , X̂Ns) and (BNb , B̂Nb), respectively.

12In the HD-SW case, the channel seen by the nonbinary FEC decoder is the one in Eq. (5.22).
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Table 5.1: System parameters

Parameter Name Value
Transmitter Parameters

WDM Channels 5
Symbol Rate 32 Gbaud
RRC Roll-Off 0.01

Channel Frequency Spacing 33 GHz
Fibre Channel Parameters

Attenuation (α) 0.2 dB/km
Dispersion Parameter (D) 17 ps/nm/km
Nonlinearity Parameter (γ) 1.2 1/(W·km)

Fibre Span Length 80 km
EDFA Gain 16 dB

EDFA Noise Figure 4.5 dB
Numerical Parameters

SSF Spatial Step Size 100 m
Simulation Bandwidth 512 GHz

In Figs. 5.6, three sets of results are shown for an EDC receiver. Each set shows the
AIR vs. transmission distance for PM-16QAM, PM-64QAM, and PM-256QAM with
the four CM decoder structures discussed in section 5.2. For each distance, equalization
scheme, and CM decoder investigated, the transmitted power was optimized, resulting
in different optimal powers. The investigated link lengths span the typical distances of
mid-range to long-haul terrestrial links (typically 1000–3000 km), long-haul submarine
(3000–5000 km), and transoceanic links (6000–12000 km).

For PM-16QAM (Fig. 5.6a), SD decoders significantly outperform the HD ones,
particularly for long distances. SD-BW decoders incur small penalties compared to the
SD-SW implementation at all distances of interest. This can be explained by observing
Fig. 5.5a, where the performance of PM-16QAM differs for SD-SW and SD-BW
decoders only for very small SNR values (≤2 dB). As shown in Fig. 5.6b, for PM-
64QAM, SD decoders show a significant advantage over their HD counterparts (see [28]
for SD-SW vs. HD-BW) and again SD-BW decoders have identical performance as
the SD-SW ones at short distances. However, as the distance is increased, the AIRs
of the HD-SW schemes match the SD-BW ones (see filled red circles in Fig. 5.6b and
5.6c), significantly outperforming the HD-BW rates. This trend is even more prominent
for PM-256QAM (Fig. 5.6c). For this format, a crossing between the SD-BW and
HD-SW AIRs can be observed at around 2300 km distance (filled red circles). More
importantly, in the long distance regime, the HD-SW scheme matches the performance
of the SD-SW one, with no significant penalty observed. Also, it can be noted that the
HD-BW scheme shows a significant penalty (>3 bits/sym for long distances) compared
to all other implementations.
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Figure 5.6: AIRs as a function of the transmission distance for EDC.
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5.5 AIRs using DBP receivers

In the case where single-channel DBP is applied (Fig. 5.7), rather small AIR gains can
be noticed in general, as compared to the EDC case (Fig. 5.6). This can be attributed
to the fact that the compensation of the nonlinearity generated by only one channel
out of the five transmitted gives only a marginal improvement of the optimum SNR
at each transmission distance. However, performance differences can be noticed for
higher order formats and long distances. Specifically, the distance at which the HD-SW
transceiver matches the performance of the SD-BW one for PM-64QAM is increased
from 10000 km to 12000 km (filled red circles in Fig. 5.6b and Fig. 5.7b), and for
PM-256QAM the crossing point between HD-SW and SD-BW is moved from 2300 km
to 3000 km (filled red circles in Fig. 5.6c and Fig. 5.7c).

Finally, when full compensation of signal–signal nonlinear distortion is performed
via full-field DBP (Fig. 5.8), a remarkable increase in the AIRs compared to the other
equalization schemes can be observed for all decoding strategies and all modulation
formats. Fig. 5.8a shows that, for PM-16QAM, the full nominal SE (8 bits/sym) can
be achieved up to a distance of approximately 6000 km and by only using an HD-BW
decoder (squares). This rate drops by only 0.5 bits/sym at 12000 km if SD decoders
are used, and by an additional 0.5 bits/sym (to 7 bits/sym) when HD decoders are
adopted. Fig. 5.8a also shows that when PM-16QAM is used in conjunction with
full-field DBP, switching from a binary to a nonbinary scheme does not result in any
significant AIR increase, as long as the same FEC decoding strategy (HD or SD) is
maintained. Higher rates can be achieved using PM-64QAM (Fig. 5.8b) and PM-
256QAM (Fig. 5.8c) in conjunction with SD decoders. Again, binary and nonbinary
SD schemes perform identically. For these higher order modulation formats, HD-BW
decoders incur significant penalties compared to SD decoders. For PM-64QAM, this
penalty becomes larger than 0.5 bits/sym for distances larger than 4000 km whereas for
PM-256QAM, they become larger than 0.5 bits/sym already for distances longer than
1500 km. At long distances, the penalty increases to up to 1.6 bits/sym for PM-64QAM
and 2.5 bits/sym for PM-256QAM. An improvement can be obtained by using HD-SW
decoders, particularly in the long-distance regime. For PM-64QAM, the AIR gap
from SD decoders is reduced to 0.5 bits/sym at 12000 km. For PM-256QAM, HD-
SW decoders in general largely outperform HD-BW decoders and show performances
similar to SD decoders beyond distances of 7000 km, also outperforming SD-BW
decoders beyond 8000 km.
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Figure 5.7: AIRs as a function of the transmission distance for single-channel DBP.
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Figure 5.8: AIRs as a function of the transmission distance with full-field DBP.
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5.6 Optimised AIRs

In order to highlight the performance of each decoding structure vs. the transmission
distance L, in Fig. 5.9, we show the modulation format optimized AIRs, defined as

AIR∗(L) = max
M∈{16,64,256}

AIR(L,M) (5.34)

for EDC, single-channel DBP, and full-field DBP.
We observe that the set of curves shown for each equalization scheme appears as

a shifted version (across the distance axis) of the other ones. This behavior is another
confirmation of the fact that dispersion-unmanaged and EDFA-amplified optical fiber
systems can be well described by an equivalent AWGN channel and their performance
is strongly correlated to the effective SNR at the MF output. Since this SNR includes
nonlinear effects as an equivalent noise source, it is improved by nonlinear compensation
schemes. In the EDC case (Fig. 5.9a), except for short distances (≤1000 km), HD-SW
decoders have comparable performance to SD-BW and SD-SW schemes. The optimal
format for both SW strategies (SD and HD) is PM-256QAM (green) at all distances,
whereas for the BW schemes, PM-256QAM performs worse both for short and middle
distances, where PM-64QAM (blue) is preferable, as well as in the long/ultra-long
haul region, where PM-16QAM (red) is optimal. Very similar behavior is observed for
single-channel DBP in Fig. 5.9b, where the optimality of PM-64QAM for BW receivers
is extended to longer distances compared to their EDC counterparts.

Finally, for full-field DBP (Fig. 5.9c), rates of up to 12 bits/sym can be targeted
up to 5000 km, and for all decoding strategies, the optimal modulation format is PM-
256QAM up to 4000 km. Also, in the ultra-long haul regime, rates above 8 bits/sym
can be achieved by using PM-64QAM in conjunction with SD-BW systems without
significant loss in performance compared to SD-SW or HD-SW with PM-256QAM.
Overall, Fig. 5.9 also shows that HD-BW decoders perform significantly worse than
all other schemes, confirming the results in [28]. Nevertheless, they can be considered
as a valid low-complexity alternative for short distances or when high SNR values are
available at the receiver.
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Figure 5.9: AIRs as a function of the transmission distance for the optimal PM-MQAM format, indicated
by red (M = 16), blue (M = 64) and green (M = 256).
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5.7 AIRs of MLSD receivers

In chapter 4, the performance of MLSD receivers was characterised in terms of the
uncoded BER as a function of the transmitted power for a given transmission distance.
As discussed in the previous sections, the uncoded BER p can be mapped one-to-one
to an AIR when HD-BW decoders are adopted. In this section, in order to better
understand the significance of the BER gains shown in chapter 4, the latter is quantified
in terms of AIRs.

In Fig. 5.10, the AIRs for the correlators receiver discussed in 4.3 is shown as a
function of the span length L. The correlators’ length is varied from 3 to 7 symbols
and the MF receiver AIR is shown as a reference. The calculation of the AIRs is
performed using the optimum BER at any given L and converting this value to an AIR
for an HD-BW decoder using Eq. (5.26) for the specific case where an average binary
transition probability p over all bit positions and transmitted bits is used. In this case,
the AIR is given by the well-known binary symmetric channel BSC capacity

IHD-BW , I(Bk; B̂k) = log2(M) [1+ p log2(p)+(1− p) log2(1− p)] . (5.35)

The AIR is then expressed in bit/s using

AIR = IHD-BWRs (5.36)
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Figure 5.10: AIRs as a function of the span length L of a 32 GBaud QPSK transmission using MLSD
receivers and HD-BW decoders.
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where Rs=32 GBaud is the symbol rate.
The results in Fig. 5.10 show that the BER improvement observed in Fig. 4.6

translates into a substantial gain in AIRs when ML detection is performed accounting
for the channel memory. For instance, the gain obtained using a 3-symbol bank of
correlators compared to a MF symbol-by-symbol receiver is a 35% higher AIR at 350
km distance or a 14 km span length increase at the same reference distance. A similar
beneficial effect is observed by increasing the correlators length up to 7 symbols. For
such a correlator length, the AIR gain and the transmission length increase by 69% and
up to 26 km, respectively.

As discussed in chapter 4, for a fixed correlators length the border effects eventually
determines an optimum BER which decays as a function of L. This, in turn, causes
the AIR to decay as a function of L, regardless of the transmitted power used. The
alternative is represented by the MLSD receiver based on the Viterbi algorithm that was
discussed in its different variants in chapter 4.

In Fig. 5.11, the AIRs are shown as functions of the span length L for the receiver
schemes illustrated in Fig. 4.7, i.e. a MF followed by an MLSD receiver, and the
RLPF-MLSD scheme. Both MLSD schemes considered here use a Viterbi processor
with 7-symbol long states.

The black dashed line represents the reference for a receiver implementing optimum
detection at every transmitted power, assuming an asympotically increasing minimum
Euclidean distance between sequences. Indeed, in this case, an arbitrary low BER can
be obtained and as a result the nominal bit rate Rs log2 M=64 Gbit/s is by definition
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Figure 5.11: AIRs as a function of the span length (L) of a 32 GBaud QPSK transmission using MLSD
receivers and HD-BW decoders.
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achievable. The red curve represents the net bit rate for a MF filter receiver with
detection performed on a symbol-by-symbol level. The two blue curves represent the
net bit rate achievable using MLSD receivers in the two variants shown in Fig. 4.7(b)
and (c). Significant rate increase for the MLSE receivers can be observed throughout
the range of distances investigated. The MF-MLSD scheme achieves a gain increase
in distance at 350 km compared to the MF symbol-by-symbol receiver. Interestingly,
by comparing Fig. 5.10 and Fig. 5.11 it can be noticed that the MF-MLSD scheme
achieves AIRs similar to the 3-symbol correlators approach, but using a longer memory.
As explained in chapter 4, this similar performance can be attributed to the suboptimal
statistics captured by the MF. Indeed, by using a (quasi) sufficient statistic, the RLPF-
MLSD scheme is able to increase the transmission rate by 125% and the span length
by 50 km with the same state length than the MF-MLSD receiver. Overall, the RLPF-
MLSD receiver, shows significant AIRs improvements compared to all other schemes
investigated, combining the MLSD approach to the optimised statistics extraction.

The AIRs shown in Figs. 5.10, 5.11 only applies to HD-BW decoders. There-
fore improved AIRs can be obtained for instance using SD decoders. Specifically,
using receivers with memory allows naturally to calculate the pdf in Eq. (5.4) which
is typically done by either modifying the Viterbi algorithm in a soft-output Viterbi
algorithm [55] or alternatively using the well-known Bahl, Cocke, Jelinek and Raviv
or BCJR algorithm [56]. Such receivers can approach the optimal (matched) receiver
for the channel with memory represented in Eq. (5.4) as their state length matches the
memory of the channel. In this case, the channel MI (see eq. (5.7)) can be achieved
and the calculation of Eq. (5.7) can be performed using the approach in [21]. This
calculation is left for future work (see section 6.2).

5.8 Summary

In this chapter an analysis of the performance of optical fibre systems employing the
receiver schemes discussed in chapters 3 and 4 was performed from an information-
theoretic perspective.

The MI is a useful measure of the performance of a coded system and represents
an upper bound on the AIRs when a given modulation format is used and optimum
decoding is performed at the receiver. Conversely, the AIRs of pragmatic transceiver
schemes are dictated by the specific implementation of the CM decoder. A detailed
numerical study of the AIR performance for high-SE long-haul optical communication
systems when these pragmatic decoders and equalization schemes, such as EDC and
DBP, are employed. AIRs for MLSD schemes were also investigated for single-span
systems, in the case of HD-BW FEC decoders.

The results in this chapter lead to multiple interesting conclusions on the perform-
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ance of coded optical fiber communication systems using PM-MQAM modulation
formats. In long-haul systems, when the equalizer enables high SNR values (through
the use of full-field DBP), an SD decoder is not the only alternative to achieve high
rates at long distances. On the contrary, HD nonbinary FEC schemes can, in principle,
achieve similar information rates across all distances of interest. For SNR values in
the low to medium range (EDC or single-channel DBP), SD decoders outperform HD
ones up to medium-SE formats (PM-64QAM). However, for high-SE formats (PM-
256QAM), HD-SW CM decoders can outperform SD-BW decoders. In the SD case,
BW decoders do not incur significant penalties as compared to their SW counterparts,
suggesting that there is no need to employ nonbinary FEC schemes. Finally, HD-BW
transceivers are never desirable for high-SE systems. Nevertheless, they can represent
the implementation of choice for either short-distance systems or ultra long-haul low-SE
systems whenever high order modulation formats cannot be used.

In single-span systems, where nonlinear effects are the dominant cause of trans-
mission impairment, MLSD receivers accounting for the nonlinear channel memory
can significantly improve the AIRs of the system compared to the EDC case. This
result, which follows from the BER results obtained in chapter 4, can be attributed to
the quasi-optimality of the detection process, which avoids the generation of additional
signal-ASE NLI, typical of a nonlinear zero-forcing equalisation schemes such as DBP.
Thus, in principle, arbitrary high transmission rates could be achievable for every trans-
mission distance, like for the AWGN channel case. As discussed in chapter 4, such
receivers are limited by their poor complexity scaling with the receiver memory and the
cardinality of the transmitted constellation. However, using only a limited amount of
memory (3 symbols) already yields remarkable AIRs gains of up to 125%, and reach
extensions of up to 50 km (≈ +14%). Additionally, in scenarios where the linear SNR
is particularly low such as the long-distance single-span transmission, the target AIRs
need to lower accordingly, thus making low-cardinality modulation formats a good
candidate to achieve them. This renders the implementation of (reduced-state) MLSD
receivers feasible.
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6
Conclusions and future work

6.1 Conclusions

Optical fibres systems, as they are currently designed, are rapidly approaching a sat-
uration of their transmission resources. The potential to maximise transmission rates
up to their fundamental limits strongly relies on the design of new digital receivers
matching the properties of the nonlinear fibre channel. Such receivers will either aim to
equalise the received signal from channel impairments or they will adapt to the property
of the channel by optimising data detection. The research work described in this thesis
investigated two specific instances of these two alternative receiver strategies: digital
back-propagation (DBP) and maximum-likelihood sequence detection (MLSD).

For the first time, the performance of multi-channel DBP was analysed in the context
of long-haul wideband transmission systems comparing analytical expressions and nu-
merical results obtained through the SSFM. Closed-forms expressions for the estimation
of the DBP signal-to-noise ratio (SNR) gains were derived using the Gaussian-noise
model. Good agreement was found for all the regimes of interest for optical fibre
systems, including large bandwidth transmission scenarios. This enables a quick assess-
ment of the DBP SNR performance without the need to run computationally intense
numerical simulations.

DBP benefit was found to be, in general, substantial compared to receivers com-
pensating only for chromatic dispersion, with an SNR gain in excess of 10 dB for
transmission distances around 1000 km. The dependence of DBP gain on the com-
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pensation bandwidth was also highlighted, showing that SNR increases faster as DBP
compensation bandwidth approaches the entire transmitted bandwidth.

Although studying ideal DBP benefits is key to understand the full potential of this
algorithm, real-world demonstrations often show significantly lower gains. This is due
to practical constraints in the algorithm implementation or in the system characterist-
ics. Specifically, limited digital-signal processing (DSP) computational resources and
polarisation-mode dispersion (PMD) were identified as a major cause of performance
impairment. Ideal implementation of DBP requires a high computational complex-
ity, which is impractical for the current state-of-art of the electronics. As a result,
reduced DSP complexity is mandatory for real-world systems. However, the increase of
DBP compensation bandwidth required a higher number of DBP iterations (steps) to
guarantee ideal performance or a contained penalty from the ideal performance. For
instance, for a 5-channel transmission (165 GHz optical bandwidth) it was found that
full-field DBP outperformed 3-channel DBP only if more than 20 steps/span were used,
and single-channel DBP if more than 18 steps/span were used. Below 10 steps/span,
single-channel DBP gave the best performance.

PMD impact on DBP was numerically analysed using a novel method which merges
the logarithmic split-step Fourier method and the conventional wave-plate Monte Carlo
approach. This method allowed to efficiently characterise PMD effects in wideband
nonlinearity compensation scenarios, which would otherwise be prohibitive in terms of
complexity. It was shown that using the conventional DBP algorithm in the presence
of typical fibre PMD (0.1 ps/

√
km) prevents the achievement of the gains predicted by

ideal full nonlinearity compensation. Furthermore, unlike the ideal case, PMD results
in a saturation of the SNR as a function of the compensation bandwidth. As an example,
for a 1 THz transmission scenario and a PMD parameter of 0.1 ps/

√
km, the SNR

was shown to reach a value 0.8 dB below the full-field DBP gain for a compensation
bandwidth of between 5 and 7 channels.

These results show that DBP current performance bottleneck lies mainly on its
complexity, but that in order to unlock its full potential the PMD issue should be
tackled by, for instance, designing adaptive DBP receivers able to cleverly guess the
arrangement of the PMD sections along the transmission fibre. This topic is discussed
in section 6.2.

As an alternative to DBP, improved detection schemes for optical fibre nonlinearity
were investigated. Detection theory was applied to unrepeatered fibre systems to devise
an optimal receiver strategy. Optical fibre nonlinear distortions feature a significant
amount of memory even after chromatic dispersion compensation is applied. As a
result, the single-span fibre channel can be modelled as a nonlinear ISI channel with
additive white Gaussian noise (AWGN). In this thesis, receivers implementing detection
strategies which account for the channel memory, were demonstrated, for the first time,
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to markedly outperform a conventional matched-filter symbol-by-symbol receiver.
Two alternative instances of maximum likelihood sequence detection (MLSD)

receivers were numerically evaluated in the case of a quaternary phase shift keying
(QPSK) modulation format. In the first case, a bank-of-correlators was used to detect
waveforms corresponding to sequences of symbols. Despite the correlators’ length
extending over a small number of symbols compared to the expected channel memory,
such receiver was demonstrated to achieve a BER 2.5 times lower than a matched filter
receiver when using a 7-symbol long correlators.

In the second implementation, longer sequences were detected using a Viterbi
processor. This was done to avoid inter-sequence interference while preserving a
reasonable detection complexity. The role of sufficient statistics in the detection process
was highlighted by assessing the performance of two variants of the Viterbi receiver:
the first one using samples at the output of a matched filter while the second one
using samples after a rectangular low pass filter (RLPF) which encloses the entire
received signal bandwidth. The latter scheme, which employs a sufficient statistic,
approaches the optimal detection strategy when the number of states in the Viterbi trellis
matches the channel memory. The (quasi)-optimum Viterbi receiver using 6-symbol
states outperformed both conventional matched filter detection and MLSD-Viterbi
detection using a matched filter with a sampler at 1 Sa/sym and the same number
of states. In particular, the RLPF-Viterbi receiver achieved a BER 15 times lower
than the matched filter symbol-by-symbol receiver and 10 times lower than a matched
filter-Viterbi receiver. Furthermore, the RLPF-Viterbi scheme closely approaches the
AWGN performance of a QPSK modulation format up to a value of transmitted power
of approximately 22 dBm, and a monotonically decreasing BER over the entire range
of investigated transmitted powers. The BER floor observed at high transmitted powers
can be explained due to the insufficient amount of memory used at the receiver. Further
increasing the receiver memory is a challenging task which is ultimately discouraged
by the exponential scaling of the detection complexity.

Finally, both DBP and MLSD performance was analysed in the coded regime using
information theory to quantify achievable information rates (AIRs). In particular, an
extensive comparative study was for the first time presented on AIRs for pragmatic
coded modulation schemes, used in combination with DBP and MLSD. The coded
modulation schemes studied involve three different cardinalities of the quadrature-
amplitude modulation (QAM) format and four different demapper/decoder structures
such as: soft-decision (SD) bit-wise (BW) (or binary), and symbol-wise (SW) (or
nonbinary), and hard-decision (HD) binary and nonbinary .

The results for long-haul transmission show the AIRs gains of more than 2 bit/sym
can be obtained using full-field DBP, as opposed to an electronic dispersion compens-
ation (EDC) receiver. Single-channel DBP was instead shown to have smaller AIRs
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gains for a fixed transmission distance. However, fixing a target AIR, single-channel
DBP was shown to extend the transmission distance by up to 1000 km. Furthermore, it
was shown that when full-field DBP used SD decoders significantly outperformed HD
decoders due to higher attainable SNR values. For lower SNRs, i.e. when either EDC or
single-channel DBP are adopted, HD-SW decoders can closely approach the perform-
ance of SD receivers, particularly for high cardinality modulation formats (64QAM,
256QAM), and in some cases SD-BW receivers can be outperformed.

AIRs of MLSD schemes were also studied for QPSK and HD-BW decoders. For a
bank-of-correlators receiver, transmission rate increases of 35% and 69% were achieved
at a 350 km distance with 3-symbol and 7-symbol correlators, respectively. Alternatively,
a span length increase of 14 km and 26 km was observed at the same distance for the
two receiver implementations, respectively. Employing a Viterbi processor should bring
an improvement by avoiding most of the inter-sequence interference. However, in
the case where the Viterbi processor was fed with samples at the output of a matched
filter and used 6-symbol states, a similar performance to the bank-of-correlators was
observed. Indeed, a 50% increase in transmission rate and 20 km reach extension at 350
km compared to a conventional matched filter, symbol-by-symbol receiver is achieved.
On the contrary, the quasi-optimum receiver strategy RLPF/Viterbi transmission rate
gain was increased up to 125%, with a reach extension of 50 km (≈ 15%) at the same
transmission distance, compared to a matched filter/symbol-by-symbol receiver. This
large improvement can be attributed to the bandwidth expansion experienced by signal
at high transmitted powers. As a result, a matched filter followed by a sampler at
1 Sa/sym is unable to collect a sufficient statistic, which can be instead obtained by
fast-sampling the received waveform. Collecting a sufficient statistic can be crucial for
the error rate performance of a detector, as was demonstrated, for the first time, in the
work described in this thesis.

The results described in this thesis reflect the detailed investigation of the perform-
ance of two main alternative strategies for the design of next-generation digital receivers,
aimed to maximise transmission rates in optical fibre communication systems. Both the
challenges and potential benefits have been highlighted, as well as theoretical insights
that should, hopefully, guide further development of these techniques. Future research
efforts in this area are supported by recent theoretical results, for example [1, 2], which
showed that fundamental limit in optical fibre transmission capabilities is still far from
being reached, and thus, fibre exhaust is some way away. Future work is most likely to
focus on techniques to approach these limit.
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6.2 Future work

In this section, some topics for further work are discussed, that naturally follow on from
the research described in this thesis.

6.2.1 Towards PMD-aware DBP receivers

In this thesis, PMD was shown to be a major source of impairment of the performance
of DBP. The conventional DBP algorithm disregards polarisation effects in the fibre
preventing the potential full cancellation of the NLI. The residual NLI after DBP is
a stochastic term depending on the specific PMD realisation and its entity can be
reduced by adopting modified DBP approaches [3, 4]. In particular, initial studies were
conducted in [3, 5, 6], in collaboration with Czegledi et al., where it was shown that by
assuming a particular distribution of PMD sections with the only knowledge of the total
Jones matrix of the fibre link, DBP SNR performance can, (on average), be improved.
This works proved that PMD effects, once considered to fundamental bottleneck for
nonlinearity compensation, can be at least mitigated.

Future research work on this topic could be then conducted along two main tracks:

i) Modelling of the nonlinear interaction between PMD and DBP

ii) Adaptive DBP schemes with tracking of the fibre polarisation evolution.

In order to gain full insight on how PMD interacts with fibre nonlinearity and how to
make DBP more robust to PMD, research efforts could be devoted to a novel analytical
model describing such interactions. The model in [7] could be extended to include
the effect of a partial NLC bandwidth and to highlight, possibly in an approximated
closed-form, the relationship between transmitted optical bandwidth, NLC bandwidth,
PMD parameter and average DGD.

Once analytical relationships are derived, the design of an adaptive DBP receiver
to track the fibre polarisation evolution should be considered. The fibre PMD sections
represent a stochastic process which evolves slowly with respect to the characteristic
transmission times. Thus, the design of a receiver, which estimates the distribution of
these sections, appears as a realistic task. A way to implement such receiver would be
via the optimisation of a cost function that achieves a global maximum (or minimum)
corresponding to the perfect alignment of the polarisation sections. Such optimisation
problem features as many optimisation variables as the number of PMD sections em-
ployed in the DBP algorithm. Thus, the main obstacle is represented by the complexity
in evaluating this function. This problem could be addressed with the help of the results
obtained from the analytical modelling of PMD, which could hopefully provide a cost
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function simple to compute and to optimise, such as a linear function on the optimisation
variables. An adaptive DBP algorithm converging to the correct alignment of the PMD
sections will perform ideal nonlinearity compensation as in the case of total absence of
PMD. Extensive numerical simulations are also needed to assess the performance of
such a novel algorithm.

6.2.2 Improved detection in the presence of signal-ASE noise

The detection schemes studied in this thesis were optimised for the single-channel,
single-span optical fibre channel. Future work could focus on extending these strategies
to the more general cases of multi-channel, multi-span systems. In such systems, in
order to ensure a good performance detector, the effects of intra-channel and signal-ASE
NLI need to be considered.

The effect of inter-channel NLI can be factored in by including, in the finite-state
channel model of the fibre, the additional effect of transmitted symbols on channels
surrounding the channel of interest. A receiver fully accounting for all channel states
would then be almost unfeasible, due to complexity reasons. However, future studies
on this topic could also involve possible options to reduce the number of states in the
receiver while preserving acceptable performance. This can be done, for instance, by
studying the topology of the received signals space when conditioned to a given channel
state, and particularly their minimum Euclidean distance.

Optimising detection strategies in multi-span scenarios requires the knowledge of
the stochastic properties of the signal-ASE NLI process. Results in [8] and [9] have
shown how better detection strategies can be devised by accounting for signal-ASE NLI
process. However, the gains compared to conventional matched filter symbol-by-symbol
receivers have been demonstrated to be marginal for dispersion-unmanaged systems.

Finally, improving the performance of suboptimal detection strategies such as the
matched filter, symbol-by-symbol detection is a task to be considered for future work.
Indeed, different linear filters could in principle perform better than the matched filter
in terms of minimum error probability. Despite the suboptimality of this approach
compared to MLSD schemes, possible benefits compared to a matched filter receiver
would be of particular interest as a low-complexity structure would be preserved.

6.2.3 Improved AIRs for optical fibre transmission

It seems clear that future research on exploring the limits of optical fibre communications
will need to deal with channels and receivers with memory. In order to obtain tighter
lower bounds on the capacity of the fibre, channel memory must be considered for the
computation of the MI. This requires auxiliary channels with memory and, in general,
intensive computational efforts. Future research work should be devoted to compute
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MI on channel models with memory which represents an AIR for receivers matching
the memory of the channel. This problem can be approached using finite-state machine
models for the optical fibre channel which can simplify the calculation of the MI [10].
One such model for the single-span case can be obtained through numerical simulations,
as the properties of the noise in the channel are analytically known (AWGN). Channel
models with memory in the multi-span system case should also be investigated.

Potentially improved AIRs compared to conventional memoryless AIRs, would lead
to testing actual implementations of demappers (with memory) and encoder/decoder
pairs in order to verify their potential to achieve such rates. Demappers accounting for
the channel memory are for instance based on the BCJR [11] or the soft-output Viterbi
algorithm [12]. Once the demapper is matched to the channel coding design tailored to
the properties of the channel could represent an interesting research direction leading to
potentially significant information rate gains compared to traditional coding techniques
(e.g. LDPC, product codes, etc.). The main challenges of this research area typically
consists of finding a good compromise between coding gains and decoding complexity.
Again, the mismatched decoding principles might be of help in devising good solutions
for this problem.
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A
Derivation of signal-ASE nonlinear

interference term

Let us assume S( f ) and N( f ) are the power spectral densities of the propagating signal
and ASE noise in a fibre span, respectively. The total power spectral density of the
optical field can be then expressed as

G( f ) = S( f )+N( f ). (A.1)

We also rewrite each term in (A.1) in terms of their normalised PSDs s( f ) and n( f )

as

S( f ) =
P
Rs

s( f ) (A.2)

N( f ) =
PASE

Rs
n( f ) (A.3)

where P is the transmit power of one channel, PASE is the power of the ASE noise over
the channel bandwidth, and Rs is the symbol rate which we assume for simplicity to be
exactly equal to the channel bandwidth (Nyquist rate).

Replacing (A.1) in (2.63) and expanding we obtain
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GNLI( f ) =
16
27

γ2
[

P3

R3
s

∫ ∞

−∞

∫ ∞

−∞
s( f1)s( f2)s( f1 + f2− f )θ( f1, f2, f )d f1 d f2

+
P2PASE

R3
s

(∫ ∞

−∞

∫ ∞

−∞
n( f1)s( f2)s( f1 + f2− f )θ( f1, f2, f )d f1 d f2

+
∫ ∞

−∞

∫ ∞

−∞
s( f1)n( f2)s( f1 + f2− f )θ( f1, f2, f )d f1 d f2

+
∫ ∞

−∞

∫ ∞

−∞
s( f1)s( f2)n( f1 + f2− f )θ( f1, f2, f )d f1 d f2

)
(A.4)

+
PP2

ASE
R3

s

(∫ ∞

−∞

∫ ∞

−∞
s( f1)n( f2)n( f1 + f2− f )θ( f1, f2, f )d f1 d f2

+
∫ ∞

−∞

∫ ∞

−∞
n( f1)s( f2)n( f1 + f2− f )θ( f1, f2, f )d f1 d f2

+
∫ ∞

−∞

∫ ∞

−∞
n( f1)n( f2)s( f1 + f2− f )θ( f1, f2, f )d f1 d f2

)

+
P3

ASE
R3

s

∫ ∞

−∞

∫ ∞

−∞
n( f1)n( f2)n( f1 + f2− f )θ( f1, f2, f )d f1 d f2

]
.

The integral multiplying P3

R3
s

is the signal-signal NLI term, whereas the residual
terms involve both signal and noise. Under the assumption that P� PASE, all the terms
proportional to PP2

ASE or P3
ASE can be neglected compared to the terms proportional to

P2PASE. It can be noticed that three different integrals contribute to the signal-ASE NLI
term proportional to P2PASE. We denote these double-integrals in their appearing order
as I1( f ), I2( f ) and I3( f ). Since (see (2.64))

θ( f1, f2, f ) = θ(( f1− f )2( f2− f )2) (A.5)

clearly
θ( f1, f2, f ) = θ( f2, f1, f ) ∀ ( f1, f2, f ) ∈ R3

s (A.6)

hence I1( f ) = I2( f ) ∀ f ∈ R . In order to check whether I3( f ) is equal to the
previous two terms, we apply the substitution

f1 + f2− f = f
′
1 (A.7)

which yields
f1 = f

′
1 + f − f2. (A.8)

As a result, the integral I3( f ) (A.4) becomes

I3( f ) =
∫ ∞

−∞

∫ ∞

−∞
n( f ′1)s( f2)s( f

′
1− f2 + f )θ(( f ′1− f2)

2( f2− f )2)d f ′1 d f2 (A.9)
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which is in general different from

I1( f ) = I2( f ) =
∫ ∞

−∞

∫ ∞

−∞
n( f1)s( f2)s( f1 + f2− f )θ(( f1− f )2( f2− f )2)d f1 d f2.

(A.10)
However, if we consider the specific case

s( f ) = rect
(

f
B

)
(A.11)

n( f ) = rect
(

f
Bn

)
(A.12)

where B, Bn are the WDM and the ASE noise bandwidth respectively, the integrals
become

I1( f ) = I2( f ) =
∫∫

D1( f )

θ(( f1− f )2( f2− f )2)d f1 d f2, (A.13)

I3( f ) =
∫∫

D2( f )

θ(( f1− f )2( f2− f )2)d f1 d f2. (A.14)

where

D1( f ) = {( f1, f2) : f −B/2≤ f1 + f2 ≤ f +B/2}
∩{−Bn/2≤ f1 ≤ Bn/2}∩{−B/2≤ f2 ≤ B/2}, (A.15)

D2( f ) = {( f1, f2) : f −Bn/2≤ f1 + f2 ≤ f +Bn/2}
∩{−B/2≤ f1 ≤ B/2}∩{−B/2≤ f2 ≤ B/2}. (A.16)

The two different integration domains D1 and D2 are illustrated in Fig. A.1 for f = 0.
Clearly, as the two regions are different, I1( f ) = I2( f ) 6= I3( f ) ∀ f ∈ [−Rs/2,Rs/2] and,
thus, follows

σ2
SN1 = σ2

SN2 =
∫ Rs/2

−Rs/2
I2( f )d f 6= σ2

SN3 =
∫ Rs/2

−Rs/2
I3( f )d f . (A.17)

The overall signal-ASE NLI power is therefore given by

σ2
SN = 2σ2

SN1 +σ2
SN3 (A.18)

However, in the specific case where B = Bn

σ2
SN = 3σ2

SN1 = 3ηSSPASEP2 (A.19)
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−Bn
2 −B

2
Bn
2

B
2

B
2

B
2

D1 D2

f1

f2

Figure A.1: Domains of integration D1 (blue) and D2 (red) for f = 0.

where

ηSS =
1

R3
s

∫ Rs/2

−Rs/2

∫ B/2

−B/2

∫ B/2

−B/2
θ(( f1− f )2( f2− f )2)d f1 d f2 d f . (A.20)

It is worth observing that for relatively large values of B and Bn, such as in the case
of C-band or C+L-band transmission, the differences between the two integrals (A.13)
and (A.14) are extremely small, due to the rapid decay of the modulus of θ( f1, f2, f ) for
typical dispersion values. Moreover, B = Bn is representative of a typical transmission
scenario, where WDM signal and ASE noise have the same bandwidth due to the in-line
optical filtering. Therefore, the approximation σ2

SN ≈ 3ηSSPASEP2 yields, in most cases,
a negligible, if not null, error.
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B
Viterbi algorithm for the optical fibre

channel

MLSD detection aims to find the most likely sequence of N transmitted symbols
x = [x0,x1, ...,xN−1] given a certain vector of observations r = [r0,r1, ...,rN−1]. This
corresponds to the rule in (4.12).

Let us assume the waveform channel in 4.2b. For this channel the received noisy
waveform can be written as

r(t) =
∞

∑
k=0

s(t,σk−1,σk)+n(t) (B.1)

where σk ∈ {Si}M
i=1 is the channel state at time k, defined as in (4.17), s(t,σk−1,σk) ∈

{s1(t− kTs),s2(t− kTs), ...,sM(t− kTs)} is a set of M waveforms of duration Ts associ-
ated with the state transition (σk−1,σk), and n(t) is a white Gaussian noise process at
least over an arbitrary bandwidth B. The channel state at time k is defined as in (4.17).

Let us assume that the sequence of samples r is obtained by applying the receiver in
Fig. 4.7c to the channel in Fig. 4.2c, where the rectangular filter has a (double-sided)
bandwidth B and the sampling rate Rs = B.

In this case, the output samples can be written as

rk = yk(σk−1,σk)+nk ∀ k = 0,1, ...,N−1 (B.2)
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where rk and nk are vectors of Ns samples defined as

rk , [rkNs+1,rkNs+2, ...,r(k+1)Ns], (B.3)

nk , [nkNs+1,nkNs+2, ...,n(k+1)Ns] ∀k = 0,1, ...,N−1. (B.4)

The sequences r and n can be clearly expressed as the concatenations

r = [r0,r1, ...,rN−1], (B.5)

n = [n0,n1, ...,nN−1]. (B.6)

It is worth noticing that the noise samples nk are jointly Gaussian complex random
variables with diagonal covariance matrix and same variance equal to N0. For this
reason and by looking at (B.2) the sequence likelihood can be factorised as

p(r|x) =
Ns

∏
k=1

p(rk|σk−1,σk) (B.7)

where

p(rk|σk−1,σk) =
1

(πN0)Ns
e−
||rk−yk(σk−1,σk)||2

No . (B.8)

The Viterbi algorithm then minimises the sequence log-likelihood

ΛN =
N

∑
k=1

λk(σk−1,σk) =
N−1

∑
k=0
||rk−yk(σk−1,σk)||2 (B.9)

using the following procedure:

1. Channel estimation

Estimation of the set of vectors yk(σk−1,σk) ∀ σk−1,σk ∈ {Si}M
i=1 using the

transmission of a (long) known sequence of a data.

2. Algorithm

• Initial state σ0 initialised to arbitrary value in the state space {Si}M2m

i=1 .

• Initial value of the survivor sequence metric Λ0 is set to 0.

• Time-index iteration: for k = 0,1, ...,N−1.
Λk+1 = 0.
Trellis k-th section iteration: for s = 1,2, ...,M2m.
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– Calculate for each survivor at state σk = Ss the updated metric Λtemp =

Λk +λk(σk−1,σk).

– If Λk+1 < Λtemp then Λk+1← Λtemp and store relative sequence.

• Choose sequence of states σ̂σσ = [σ̂0, σ̂1, ..., σ̂N−1] that minimises ΛN .

• Map σ̂σσ into corresponding sequence of input symbols x̂ = [x̂0, x̂1, ..., x̂N−1].
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C
Acronyms

ADC Analog-to-Digital Converter

AIR Achievable Information Rate

ASE Amplified Spontaneous Emission

AWGN Additive White Gaussian Noise

BC Bank-of-Correlators

BCH Bose-Chaudhuri-Hocquenghem

BCJR Bahl, Cocke, Jelinek and Raviv

BER Bit Error Rate

BPSK Binary Phase-Shift Keying

BW Bit-Wise

CD Chromatic Dispersion

CM Coded Modulation

CMA Constant Modulus Algorithm

CNLSE Coupled Non-Linear Schrödinger Equation
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CPE Carrier Phase Estimation

CW Continuous-Wave

DAC Digital-to-Analog Converter

DBP Digital Back-Propagation

DGD Differential Group Delay

DPSK Differential Phase-Shift Keying

DSP Digital Signal Processing

DP Dual-Polarisation

DP-QPSK Dual-Polarised Quadrature Phase-Shift Keying

DWDM Dense Wavelength Division Multiplexing

EDC Electronic Dispersion Compensation

EDFA Erbium-Doped Fibre Amplifier

FEC Forward Error Correction

FIR Finite Impulse Response

FWM Four-Wave Mixing

GMI Generalised Mutual Information

GV Group Velocity

GVD Group Velocity Dispersion

HD Hard-Decision

IMDD Intensity-Modulation Direct-Detection

IFFT Inverse Fast Fourier Transform

IQ In-phase Quadrature

ISI Inter-Symbol Interference

ITU International Telecommunication Union

LL Log-Likelihood
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LDPC Low-Density Parity-Check Code

LMS Least Mean Square

LO Local Oscillator

LPF Low-Pass Filter

LR Line Rate

M-PSK M-ary Phase-Shift Keying

M-QAM M-ary Quadrature Amplitude Modulation

MAP Maximum A-posteriori Probability

MF Matched Filter

MI Mutual Information

MLSD Maximum Likelihood Sequence Detection

MZM Mach-Zehnder Modulator

NRZ Non-Return-to-Zero

NLC Nonlinearity Compensation

NLI Non-Linear Interference

NLSE Non-Linear Schrödinger Equation

OOK On-Off Keying

OSA Optical Spectrum Analyser

OSNR Optical Signal-to-Noise Ratio

OFDM Optical Frequency Division Multiplexing

OTN Optical Transport Network

PD Photodiode

PDF Probability Density Function

PM Polarisation Multiplexed

PMD Polarisation-Mode Dispersion
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PRBS Pseudo-Random Binary Sequence

PSD Power Spectral Density

PSP Principal State of Polarisation

QAM Quadrature-Amplitude Modulation

QPSK Quadrature Phase-Shift Keying

RLPF Rectangular Low-Pass Filter

RRC Root-Raised Cosine

RZ Return-to-Zero

SD Soft-Decision

SE Spectral-Efficiency

SNR Signal-to-Noise Ratio

SOP State Of Polarisation

SPM Self-Phase Modulation

SSFM Split-Step Fourier Method

SSMF Standard Single Mode Fibre

SW Symbol-Wise

WDM Wavelength Division Multiplexing

XPM Cross-Phase Modulation
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