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ABSTRACT 

 

A subset of patients started on a selective serotonin reuptake inhibitor (SSRI) initially 

experience increased anxiety, which can lead to early discontinuation before therapeutic effects 

are manifest. The neural basis of this early SSRI effect is not known. Presynaptic dorsal raphe 

neuron (DRN) 5-HT1A receptors are known to play a critical role in affect processing. Thus we 

investigated the effect of acute citalopram on emotional processing and the relationship 

between DRN 5-HT1A receptor availability and amygdala reactivity. Thirteen (mean age 48±9 

years) healthy male subjects received either a saline or citalopram infusion intravenously (10 

mg over 30 minutes) on separate occasions in a single-blind, random order, cross-over design.  

On each occasion, participants underwent a block design face-emotion processing task during 

fMRI known to activate the amygdala. Ten subjects also completed a positron emission 

tomography (PET) scan to quantify DRN 5-HT1A availability using [11C]CUMI-101.Citalopram 

infusion when compared to saline resulted in a significantly increased bilateral amygdala 

responses to fearful vs. neutral faces (Left p=0.025; Right p=0.038 FWE-corrected). DRN 

[11C]CUMI-101availability significantly positively correlated with the effect of citalopram on the 

left amygdala response to fearful faces (Z=2.51, p=0.027) and right amygdala response to 

happy faces (Z=2.33, p=0.032). Our findings indicate that the initial effect of SSRI treatment is 

to alter processing of aversive stimuli, and that this is linked to DRN 5-HT1A receptors in line 

with evidence that 5-HT1A receptors have a role in mediating emotional processing. 

 

Key words: positron emission tomography (PET), serotonin (5-HT), Citalopram, SSRI, emotion, 

amygdala, neuroimaging, functional magnetic resonance imaging, 5-HT1A receptor, [11C]-CUMI-

101, face processing, dorsal raphe nucleus.  
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INTRODUCTION 

 

Selective serotonin reuptake inhibitors (SSRI) are the most commonly prescribed medications 

for anxiety and depressive disorders worldwide (Olfson & Marcus, 2009). However, despite 

being used to treat anxiety disorders, a subgroup of patients experience an initial increase in 

anxiety after initiation of SSRI treatment (Gollan et al., 2012; Sinclair et al., 2009). Whilst this 

generally ameliorates over a few weeks, it can be clinically problematic as these patients with 

high anxiety are less likely to reach remission (Gollan et al., 2012). The neural basis of this early 

effect of SSRIs on anxiety and subsequent heterogeneity in treatment response is not known.  

 

Serotonin, or 5-hydroxytryptamine (5-HT), is thought to be critical for affect regulation in the 

brain (Dayan & Huys, 2008), and SSRIs are thought to act primarily by altering 5-HT function. 

The administration of single doses of citalopram, a commonly used SSRI, in healthy human 

subjects is associated with enhanced startle responses and fear recognition (Browning, Reid, 

Cowen, Goodwin, & Harmer, 2007; Burghardt, Sullivan, McEwen, Gorman, & LeDoux, 2004; 

Grillon, Levenson, & Pine, 2007), and altered serotonin release (Selvaraj et al., 2012b). 

Functional magnetic resonance imaging (fMRI) studies have revealed that depressed patients 

have exaggerated amygdala reactivity as measured using blood-oxygen-level-dependent 

(BOLD) responses when presented with emotions of negative valence (fearful or sad faces) and 

8 weeks of SSRI treatment attenuates this to ‘normalise’ the amygdala responses (Sheline et 

al., 2001). Bigos et al (2008) using a double-blind balanced crossover study design, found that 

citalopram 20 mg infusion compared to saline in healthy male participants (N=8) caused 

concentration-dependent increases in human amygdala reactivity to aversive facial stimuli 

(Bigos et al., 2008). However, in contrast, Del-Ben et al used a covert (aversive) face emotion 

recognition task and found attenuated amygdala response to fear after a 7.5 mg citalopram 

infusion compared to saline in male volunteers (N=12) (Del-Ben et al., 2005).  

 

5-HT1A receptors are a key regulator of brain 5-HT activity through inhibitory autoreceptors 

located presynaptically on 5-HT dorsal raphe neurons (DRN), as well as on postsynaptic 

neurons in projection sites (Barnes & Sharp, 1999). Activation of the DRN 5-HT1A receptors 

causes hyperpolarization and reduces 5-HT neuronal firing which results in decreased 5-HT 

release from the 5-HT nerve terminals in the synapses. Acute SSRI administration increases 5-

HT by blocking 5-HTT which then activates raphe 5-HT1A autoreceptor and thus reducing 

neuronal firing. Raphe 5-HT1A activation causes internalization which immediately returns to 
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baseline level (Riad, Watkins, Doucet, Hamon, & Descarries, 2001) and this phenomenon is not 

observed in postsynaptic 5-HT1A receptors (Riad et al., 2001).  5-HT1A receptors have been 

consistently shown to modulate anxiety related behaviour in animal models. Specifically, 5-HT1A 

receptor knock-out mice exhibit increased fear-related behaviour (Ramboz et al., 1998; 

Richardson-Jones et al., 2011) and an altered fear response (Gross, Santarelli, Brunner, 

Zhuang, & Hen, 2000). A common functional variation (C(-1019)G) in the human 5-HT1A gene 

(HTR1A) is associated with increased 5-HT1A autoreceptor expression and decreased threat-

related amygdala reactivity (Fakra et al., 2009). Finally, psychotropic drugs such as buspirone 

and vilazodone with 5-HT1A receptor binding properties have been found to be clinically useful 

for anxiety symptoms (Akimova, Lanzenberger, & Kasper, 2009; Gommoll et al., 2015; Sramek, 

Hong, Hamid, Nape, & Cutler, 1999).  

 

An inverse relationship between 5-HT1A receptor binding in the dorsal raphe and amygdala 

reactivity has been reported in healthy human subjects (Fisher et al., 2006). In a combined fMRI 

and positron emission tomography (PET) imaging study using the 5-HT1A receptor tracer [11C]-

CUMI-101, we similarly found  DRN 5-HT1A receptor binding to be inversely related to amygdala 

BOLD responses to fear vs neutral faces (Selvaraj et al., 2014). The above findings suggest 

DRN 5-HT1A receptors may play a critical role in regulating amygdala reactivity during aversive 

emotion processing.    

 

Citalopram is one of the most selective SSRI compared to fluoxetine, paroxetine sertraline or 

fluvoxamine  and has high affinity to serotonin transporter (5-HTT) without any significant affinity 

for other serotonergic (5-HT1A, 5-HT1B, or 5-HT2A/C), adrenergic, cholinergic or other 

neurotransmitters and (Hyttel, 1994). A single administration of citalopram 1 mg/kg in rodents 

increases 5-HT levels in raphe but not in frontal cortex. A 10 mg/kg increases 5-HT release to 

400% in raphe but only 170% in frontal cortex (Invernizzi, Belli, & Samanin, 1992). This dose-

dependent and differential regional effect of SSRI on 5-HT release is consistent with 5-HT1A 

mediated negative feedback mechanism (Chaput, de Montigny, & Blier, 1986; Gartside, 

Umbers, Hajos, & Sharp, 1995; Riad et al., 2001). Thus, SSRI induced 5-HT release in 5-HT 

neuronal projection regions could be a balance of SSRIs ability to block 5-HTT at local neuronal 

terminals and to decrease DRN neuronal firing (Fuller, 1994; Gartside et al., 1995; Hjorth & 

Auerbach, 1996; Richardson-Jones et al., 2011). Interestingly, mice selectively engineered to 

express lower 5-HT1A autoreceptor levels compared to those with higher DRN 5-HT1A 

autoreceptor levels had increased raphe firing rate, greater 5-HT release in fronto-limbic regions 
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and produced robust response to SSRI in reducing the aversive behavior (Richardson-Jones et 

al., 2010). In addition to 5-HT1A autoreceptor mediated negative feedback, post synaptic 5-HT1A 

heteroreceptor and 5-HT1B mediate the inhibitory actions and 5-HT2A mediates the excitatory 

actions of 5-HT on target neurons in prefrontal and limbic cortices along with other 5-HT 

receptors such as 5-HT3, 5-HT4, and 5-HT7 and also regulate 5-HT neuronal firing and release 

through postsynaptic feedback (Sharp, Boothman, Raley, & Quérée, 2007). 

 

Citalopram is the only SSRI available in intravenous form and is relatively well tolerated by 

volunteers in clinical studies (Attenburrow, Mitter, Whale, Terao, & Cowen, 2001).  Intravenous 

citalopram 10 mg has been successfully used as a probe to study brain serotonin function in 

clinical studies (Attenburrow et al., 2001; Bhagwagar, Cowen, Goodwin, & Harmer, 2004). In 

addition, we have used intravenous citalopram in PET imaging studies to characterize the 

specificity of serotonin transporter radioligand [11C]DASB occupancy (Hinz et al., 2008) and to 

study serotonin displacement (Selvaraj et al., 2012b). 

 

In the present study, we aimed to investigate the effect of acute citalopram infusion on the 

neural processing of aversive emotional stimuli and to determine its relationship with DRN 5-

HT1A receptors as measured with [11C]-CUMI-101 in healthy human subjects.  We hypothesized 

that intravenous citalopram would increase amygdala reactivity to fear vs neutral faces. It is not 

known how the DRN 5-HT1A is related to the effect of acute citalopram on emotion processing. 

Based on our work and other studies (Richardson-Jones et al., 2010; Richardson-Jones et al., 

2011; Selvaraj et al., 2014; Selvaraj et al., 2012b), we hypothesized that subjects with higher 

DRN 5-HT1A receptor availability would show a greater increase in amygdala response to 

emotional facial expressions following intravenous citalopram infusion.  

 

MATERIALS AND METHODS 

A total of 13 healthy male participants took part in the citalopram and saline infusion fMRI study. 

All participants had undergone Structured Clinical Interview for DSM IV Disorders 

(SCID)(Spitzer, Williams, Gibbon, & First, 2004) screening interview administered by study 

investigators to ascertain past and current psychiatric and medical history. Inclusion criteria 

were male and female subjects, aged 35−65 years, in good physical health and capable of 

giving informed consent. Exclusion criteria were contraindication to PET scanning (pregnancy or 

breast feeding was an absolute contraindication), current or past history of major psychiatric 
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disorder, present or recent (previous 3 months) use of psychotropic medication, current 

significant illicit substance/alcohol misuse or current significant other co-morbidity and no MRI 

contraindications. Electrocardiogram (ECG) was carried out before the infusion to rule out any 

prolonged corrected QT (cQT) interval. All the subjects had urine drug screen on all scan days 

to check for illegal drug use. All subjects also completed validated subjective scales to assess 

mood and anxiety and also a visual analogue scale to quantify side effects, if any. The subjects 

were paid a small honorarium for taking part in the study. The study was approved by the local 

research ethics committee. The PET and fMRI scans were carried out at the MRC London 

Institute of Medical Sciences, Hammersmith Hospital, London, UK.  

 

Research Design 

Thirteen subjects first took part in a PET scan experiment in which healthy subjects 

received either a placebo (saline) infusion before a [11C]CUMI PET scan to index 5-HT1A 

receptor availability (Supplemental Figure 1). The results of this experiment are 

described in our previous publication (Selvaraj et al., 2012b).  Subjects then went on to 

participate in the new fMRI experiment reported here. Of the 13 subjects who took part in 

the PET experiment, 3 dropped out, leaving 10 subjects who completed the fMRI 

component as well and we recruited an additional 3 new subjects who only participated 

in the fMRI component. We used the data from the 5-HT1A [11C]CUMI PET placebo (saline) 

scan as an index of baseline DRN 5-HT1A availability (Supplemental Figure 1). 

In this new fMRI experiment, all participants received either saline or an intravenous infusion of 

10 mg citalopram over 30 minutes in a single-blinded (participants), random order cross-over 

design on alternate days. About 15-30 minutes after the end of infusion, the subjects underwent 

the fMRI emotion processing task (Selvaraj et al., 2012a). Blood samples were collected for 

citalopram levels at (t=0) and after the infusion (t=45 mins). Mood was assessed before and 

after each scans using visual analogue scales (VAS) to ascertain subjective affective responses 

on emotions (including anxiety, sadness, happiness, anger, and irritability) across sessions. 

VAS scale was divided into a ten point scale for each emotion. There was a gap of at least one 

week between the two scans (mean and standard deviation (SD) was 30 (42.9) days).  
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Measurement of neural response to emotional stimuli 

fMRI Data Acquisition 

MRI was performed on 3T scanner (3T Intera Philips Medical Systems (Best, The Netherlands) 

to acquire T2*-weighted transverse echoplanar images (EPI).A total of 132 whole-brain EPI 

volumes were collected with 44 slices acquired in an even-odd interleave in a descending 

direction (TR = 3 s; TE = 30 ms; slice thickness = 3.25 mm; 2.19 mm x 2.19 mm in-plane 

resolution; phase encoding direction = anterior  posterior; field of view = 280 mm2; matrix size 

128x128). Real-time reconstruction, z-shimming correction and a slice tilt of −30° to the anterior 

commissure–posterior commissure line were used to minimize orbitofrontal and temporal signal 

dropout as a result of magnetic field inhomogeneities due to air tissue susceptibility differences 

in these regions (Weiskopf, Hutton, Josephs, & Deichmann, 2006; Weiskopf, Hutton, Josephs, 

Turner, & Deichmann, 2007). A whole-brain 3D-MPRAGE scan was acquired (TR=9.6 ms, 

TE=4.5 ms, flip angle=8°, slice thickness = 1.2 mm, 0.94 mm × 0.94 mm in plane resolution, 150 

slices) after the EPI scans. 

 

fMRI task 

A well-characterized incidental facial emotional processing task was employed as described in 

our previous studies (O'Nions, Dolan, & Roiser, 2011; Selvaraj et al., 2014). Subjects were 

shown a series of faces on a projector screen and asked to respond by classifying if each face 

was male or female. Emotional faces representing a single emotion (i.e., happy, fearful, or 

neutral) were presented in 16 second blocks of eight faces, with a total of 12 blocks (4 per 

emotion). Subjects were instructed to fixate on a cross during a 16 second rest period between 

stimulus blocks.  

 

Measurement of 5-HT1A receptor availability 

PET scan acquisition 

All PET scans were performed on the GE Discovery RX PET/CT scanner with a PET axial field 

of view of 15.7 cm and 47 reconstructed transaxial image planes. [11C]CUMI-101 is a selective 

5-HT1A radioligand with high signal to noise ratio in the brain. CUMI-101 has higher affinity (Ki= 
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0.15 nM) and better selectivity for 5-HT1A receptor than 5-HT1A agonist 8-hydroxy-2-(di-n-

propylamino)tetralin (8-OH-DPAT) (Kumar et al., 2013; Kumar et al., 2007). It was initially 

developed as 5-HT1A partial agonist ligand with specific binding to high affinity 5-HT1A receptors 

and thus to be more sensitive to study 5-HT release than older antagonist radiotracers such as 

[11C]WAY-100635 (Milak et al., 2011). However, the exact nature of [11C]CUMI-101 intrinsic 

activity as 5-HT1A receptor agonist or antagonist is not clear (Hendry, Christie, Rabiner, Laruelle, 

& Watson, 2011; Kumar et al., 2013; Shrestha et al., 2014).  [11C]CUMI-101 was administered 

via injection into an antecubital vein as a smooth bolus over 30 s. The dynamic PET scan was 

acquired over 90 min in (simultaneous) frame and list mode (Selvaraj et al., 2012a).  

Graphical analysis of reversible radioligand binding together with the metabolite corrected 

plasma input function was used to quantify the binding potential BPND in ROIs (Selvaraj et al., 

2012b). The specific binding was quantified as BPND (37) where: BPND = (VT target region - VT 

reference region) / VT reference region VT is the volume of distribution (mL/cm3) defined as the 

ratio of the tracer concentration in the region to the metabolite corrected plasma concentration 

at equilibrium (Innis et al., 2007). 

 

fMRI Analysis 

The fMRI preprocessing and analysis were carried out in FSL using FEAT (Smith et al., 2004) 

and mirrored the analyses reported in our previous study (Selvaraj et al., 2014). Functional MRI 

data for individual runs were high pass filtered at 0.0078 Hz and motion corrected using a 6 

degree of freedom (DOF) rigid body transformation (MCFLIRT). Lastly, data were smoothed 

with an 8 mm FWHM Gaussian kernel prior to a two stage standard space transformation. fMRI 

data and individual high resolution T1 images were registered to a 2 mm MNI standard template 

using a 12 DOF linear transformation (FLIRT) followed by nonlinear warping of T1 images to 

standard space (FNIRT). Both linear and nonlinear transformations were concatenated and 

applied to first-level, native space statistical images before higher level analyses.  

Task regressors for happy, fearful, and neutral face blocks were modeled using a double-

gamma function convolved with a 16 second square wave. Motion parameter estimates were 

included in the model to account for residual motion artifacts. All regressors were temporally 

filtered to match fMRI data preprocessing parameters (Hallquist, Hwang, & Luna, 2013). Time 

series data were pre-whitened (FILM) prior to modeling. As per Selvaraj et al. (Selvaraj et al., 
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2014), three contrasts were calculated at this level to compare: (1) faces vs baseline; (2) fearful 

vs neutral faces; and (3) happy vs neutral faces. At the second level of analysis, each first-level 

contrast was submitted to a fixed effect analysis which computed a contrast estimate for each 

subject comparing citalopram vs placebo. Second level contrast estimates were submitted for a 

final mixed effect analysis using FSL’s FLAME2 tool which employs Bayesian estimation of 

mean contrast estimates to determine the group level effect of citalopram on face (average 

within contrasts 1, 2, and 3) and valence processing (contrast 2 vs. contrast 3).  

To constrain the number of simultaneous tests, we defined two spherical regions-of-interest 

(ROIs), in the left and right amygdala, by setting a 6 mm radius around the MNI coordinates 

[x=±21 y=-6 z= -15] adapted from our previous study (O'Nions et al., 2011; Selvaraj et al., 2014) 

using the same paradigm. This ensured an unbiased ROI definition. Voxelwise corrections for 

family-wise error inflation were applied using Gaussian random field (GRF)-theory-based height 

thresholding of Z-statistical maps at p < 0.05 (corrected). The values reported in the text 

represent the mean lower-level contrast estimates for citalopram and placebo extracted from 

voxels showing a significant citalopram vs. placebo difference, and thus represents a potential 

selection bias (Kriegeskorte, Simmons, Bellgowan, & Baker, 2009). Therefore, mean condition 

and contrast estimates across the independently-defined spherical amygdala ROIs are 

presented in Table 1.  

 

PET data analysis 

Subjects’ structural MRIs were segmented (into gray/white matter/cerebrospinal fluid) using the 

segmentation tool in SPM (www.fil.ion.ucl.ac.uk/spm) and were re-sliced (1 x 1 x 1 mm3) and 

co-registered to the corresponding subject’s denoised, head movement-corrected and summed 

PET image using SPM5. Amygdala, post-synaptic cortical regions and cerebellum were defined 

using a probabilistic brain atlas template (Hammers et al., 2003). The atlas was spatially 

normalized to the coregistered individual MRI scans with deformation parameters obtained from 

the normalization to the standard MNI T1 template in SPM. The normalized brain atlas was 

resliced to the individual’s PET space and fused with the individual grey matter map to obtain a 

grey matter template for the amygdala and post-synaptic cortical regions. These were then used 

to sample the dynamic PET to obtain the regional time-activity courses. The presynaptic DRN 

was manually defined as a fixed-size region (215 mm3) in the midbrain area on the summed 

PET images of each individual (Bose et al., 2011a; Selvaraj et al., 2014; Selvaraj et al., 2012b). 
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Finally, cerebellar grey matter was used as the reference region (Selvaraj et al., 2012b). See 

Selvaraj et al for further details of the [11C]CUMI PET analysis (Selvaraj et al., 2012b). 

 

Multi-modal PET-MR analysis 

The third level analysis described in the fMRI analysis above was repeated for the 10 subjects 

who had also completed the PET imaging protocol. To estimate the relationship between fMRI 

changes associated with citalopram and DRN 5-HT1A receptor availability, the [11C]CUMI-101 

binding potential (BND) values from the DRN were included as a continuous predictor variable 

in the analysis. Extracted data represents lower level contrast estimates summarizing mean 

parameter estimate differences as in the fMRI-only analysis. Correlation coefficients were 

computed between DRN [11C]CUMI-101 BPND and the citalopram vs placebo contrast 

estimates for the independent amygdala ROI (rAMYG) to display general strength and 

direction of association. Extracted Z-statistics represent the mean of significant Z-scores with 

corresponding GRF-theory based p-values (Beckmann, Jenkinson, & Smith, 2003; Jenkinson, 

Bannister, Brady, & Smith, 2002; Woolrich, Ripley, Brady, & Smith, 2001). Owing to the possible 

presence of an outlier (i.e., DRN [11C]CUMI-101 BND > 2.4 SD of mean; q.v., Fig 2 B&C), these 

analyses were repeated with FEAT’s outlier deweighting tool. Statistical results were identical. 

Furthermore, our review of the specific outlier case found that [11C]CUMI-101 availability in other 

brain regions (e.g., amygdala) and the first-level fMRI results were comparable to other 

participants’ PET/first-level results. We deemed the case to exhibit a real physiological effect 

and the final reported statistics reflect its inclusion. 

 

RESULTS  

Thirteen male subjects (mean (SD) age=48±9 years) completed the emotion processing task on 

both days. Study participants generally tolerated intravenous citalopram well with either no or 

minimal self-limiting adverse effects, which included mild nausea, hot flush, lightheadedness 

and tiredness. One subject reported mild nausea after saline (placebo). None of the subjects 

stopped the scan procedures or dropped out of study during the study day. There were no 

significant differences in behavioral measures between sessions on subjective VAS affective 

state measures (paired t tests, all Ps>0.1) especially no significant change in anxiety measures. 

The mean serum citalopram concentration at 45 minutes after the start of infusion is 757.45 
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µg/L (SD 802.75). There was no significant correlation was observed between serum citalopram 

concentration and citalopram effect on amygdala reactivity to fearful faces (p>0.1). 

 

Effect of citalopram on amygdala reactivity to aversive faces 

For the all faces vs baseline contrast, citalopram infusions resulted in a significantly increased 

BOLD response bilaterally in the amygdala with a larger cluster in the left hemisphere: right 

amygdala (k = 2, peak MNI coordinates: [x=16, y=-10, z=-18]; MPBO = 12.31, SDPBO = 110.48; 

MCITA = 82.32, SDCITA = 106.10), Z=2.46, p=0.039 (FWE-corrected); left amygdala (k = 11, peak 

MNI coordinates: [x=-20, y=-4, z=-12]; MPBO = 33.30, SDPBO = 94.71; MCITA = 75.06, SDCITA = 

81.33), Z=2.33, p=0.046 (FWE-corrected) (Fig 1 A,B). See Table 1 for individual condition and 

contrast parameter estimates across the spherical amygdala ROIs. 

To test the hypothesis that intravenous citalopram would specifically increase the response to 

fearful faces, we repeated the citalopram contrast analysis for the fearful vs neutral faces 

contrast estimates and again identified increased bilateral amygdala activation associated with 

citalopram. Statistical differences were identified in both the right amygdala (k = 14, peak MNI 

coordinates: [x=24, y=-6, z=-20]; MPBO = -7.31, SDPBO = 24.15, MCITA = 13.74, SDCITA = 25.65), 

Z=2.59, p=0.025 (FWE-corrected), and the left amygdala (k = 18, peak MNI coordinates: [x=-22, 

y=-6, z=-18]; MPBO = 4.25, SDPBO = 26.64, MCITA = 23.43, SDCITA = 50.89), Z=2.29, p=0.038 

(FWE-corrected) (Fig 1 A,C). There were no significant differences for the happy vs. neutral 

faces contrast in the left amygdala after citalopram; though a significant increase was observed 

in the right amygdala (k = 3, peak MNI coordinates: [x=24, y=-4, z=-16]; MPBO = -13.70, SDPBO = 

31.01, MCITA = 9.07, SDCITA = 16.27), Z=2.12, p=0.042 (FWE-corrected) (Fig 1 A,D). Despite 

qualitative hemispheric differences between the fearful and happy face response, a direct 

comparison only demonstrated a trend level effect of greater fearful face response modulation 

by citalopram compared to the happy face response in the left amygdala (k = 2, peak MNI 

coordinates: [x=-20, y=-10, z=-12]; MFEARFUL = 3.50, SDFEARFUL = 24.73, MHAPPY = -5.24, SDHAPPY 

= 18.42), Z=2.02, p=0.062.  

There was no significant correlation was observed between serum citalopram concentration and 

citalopram effect on amygdala reactivity to fearful faces (p>0.1). 

Relationship between citalopram induced changes in Amygdala reactivity and DRN 5-

HT1A receptor 
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Of the total of 13 subjects, ten completed the [11C]CUMI-101 PET imaging protocol as well. 5-

HT1A receptor BPND values from the DRN (Mean = 1.63, SD = 0.34) were included as a 

continuous predictor in the citalopram contrast model, and analyses were repeated within this 

subset to identify associations within the amygdala. There was a significant positive association 

between DRN 5-HT1A and the all faces vs baseline citalopram contrast in the right amygdala, (k 

= 1, peak MNI coordinates: [x=16, y=-8, z=-12]; MPBO = 36.57, SDPBO = 67.94, MCITA = 33.07, 

SDCITA = 56.66), rAMYG(10) = 0.05, Z=2.59, p=0.032, (FWE-corrected).  

A significant positive association was identified within the left amygdala for the fearful faces vs 

neutral faces contrast. The citalopram vs placebo difference in the response to fearful faces vs 

neutral faces was larger in participants with greater DRN [11C]CUMI-101 binding (k = 11, peak 

MNI coordinates: [x=-16, y=-10, z=-14]; MPBO = 0.74, SDPBO = 38.78, MCITA = 5.29, SDCITA = 

35.19), rAMYG(10) = 0.38, Z = 2.51, p = 0.027 (FWE-corrected) (Fig 2 A,C&E). There was a 

smaller positive association between DRN [11C]CUMI-101 binding and the citalopram vs 

placebo difference in response to fearful vs neutral faces in the right amygdala (k = 1, peak MNI 

coordinates: [x=24, y=-10, z=-14]; MPBO = 4.51, SDPBO = 27.91, MCITA = -8.51, SDCITA = 48.77), 

rAMYG(10) = 0.06, Z = 2.16, p = 0.042, FWE-corrected.  

For the happy vs neutral face contrasts, DRN values demonstrated positive associations in the 

right amygdala (k = 6, peak MNI coordinates: [x=24, y=-10, z=-14]; MPBO = -2.85, SDPBO = 28.63, 

MCITA = -12.60, SDCITA = 40.37), rAMYG(10) = 0.21, Z = 2.33, p = 0.032, (FWE-corrected)  (Fig 2 

A,B&D), and again, a smaller effect in the left amygdala (k = 1, peak MNI coordinates: [x=-16, 

y=-10, z=-14]; MPBO = -13.53, SDPBO = 60.41, MCITA = -7.38, SDCITA = 32.36), rAMYG(10) = 0.34, Z 

= 2.29, p = 0.033, (FWE-corrected). DRN [11C]CUMI-101 binding associations did not differ 

significantly between fearful and happy faces. Collectively, this pattern of results suggests 

greater [11C]CUMI-101 binding potential in the DRN is positively associated with the degree of 

increase in BOLD signaling to emotional faces induced by citalopram infusion. However, the 

specificity of the amygdala response to particular valences is still unclear.   

 

Discussion 

 

In this multimodal brain imaging study, we report the effect of acute intravenous citalopram on 

amygdala reactivity and its relationship with DRN 5-HT1A receptor availability (as indexed by 
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[11C]CUMI-101 PET) in healthy human male subjects. The main findings of this study are that: 

1) acutely citalopram increased the BOLD response bilaterally in the amygdala to fearful faces 

and in the right amygdala to happy faces with a trend-level left amygdala selectivity to fearful vs. 

happy faces; and 2) DRN 5-HT1A receptor availability is positively associated with the degree of 

increase in amygdala BOLD response to emotional faces (both fearful and happy vs neutral) 

induced by citalopram infusion. The current findings, when combined with other findings (Fisher 

et al., 2006; Richardson-Jones et al., 2010; Richardson-Jones et al., 2011; Selvaraj et al., 2014) 

support the critical role of presynaptic DRN 5-HT1A receptors in regulating emotion processing.  

 

Intravenous citalopram increased amygdala BOLD response bilaterally for fearful vs. neutral 

faces. This finding is consistent with our a priori hypothesis regarding amygdala reactivity to 

SSRI and in agreement with Bigos et al (Bigos et al., 2008) but not Del-Ben et al (Del-Ben et al., 

2005). The differences could be due to differences in the nature of emotion task paradigms of 

using covert or explicit emotion faces task. Curiously, voxels demonstrating significant increases 

in BOLD response were not positively active for the placebo in the fearful and happy faces vs. 

neutral contrasts (Fig 1C&D). One possibility for this result is that our analytical approach 

highlighted those voxels which were found to be maximally different between the two sessions 

rather than which voxels are maximally activated by the task per se. However, parameter 

estimates extracted from the condition regressors presented in Table 1 demonstrate consistent 

positive activation across all conditions, suggesting that the amygdala was sensitive to faces, 

but not uniquely sensitive to emotional faces during the placebo visit. Thus, only during the 

citalopram infusion were amygdala responses sensitive to affect. Another possibility is that the 

voxels responsive to emotional faces during the placebo visit were already active at ceiling and 

the voxels identified in the present analysis represent an increase in the spatial extent of 

activation (i.e. similar peak, but wider spread). Future investigations may consider varying the 

valence of affective stimuli to better address this question of state-based reactivity versus 

activation span.  

 

Our data provide evidence that variations in DRN 5-HT1A receptor availability are related to the 

SSRI effect on emotion processing. However, the mechanistic pathway of this relationship 

cannot be determined from the correlations we report. Our finding is however consistent with 

preclinical research on the role of presynaptic DRN 5-HT1A receptors. Preclinical studies show 

that stimulation of 5-HT1A receptors decreases the firing rate of 5-HT neurones (Sprouse & 
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Aghajanian, 1987) and 5-HT release (F. Bosker, Vrinten, Klompmakers, & Westenberg, 1997; F. 

J. Bosker et al., 2001). Mice selectively expressing high DRN 5-HT1A auto-receptors compared 

to low DRN 5-HT1A auto-receptors have decreased 5-HT cell firing and therefore reduced 5-HT 

tone in the projection sites such as the amygdala (Richardson-Jones et al., 2011). Acute SSRI 

induced increases in extracellular raphe 5-HT also activates 5-HT1A autoreceptors, thereby 

decreases 5-HT firing and release in projection sites (Auerbach, Lundberg, & Hjorth, 1995; 

Fuller, 1994; Gartside et al., 1995; Haddjeri, Lavoie, & Blier, 2004; Romero & Artigas, 1997). 

Thus high DRN 5-HT1A may be associated with low 5-HT in amygdala. Based on our findings, 

we speculate that individuals with high DRN 5-HT1A autoreceptors are more sensitive to the 

autoreceptor activation and thus show greater amygdala response when given acute dose of 

SSRI. However, acute citalopram treatment also increases 5-HT levels in the amygdala in 

rodent models (F. J. Bosker et al., 2001) and elevated 5-HT in amygdala increases fear learning 

and acquisition (Bocchio, McHugh, Bannerman, Sharp, & Capogna, 2016; Deakin & Graeff, 

1991). Furthermore, the net effect of synaptic 5-HT at projection sites may be influenced by 

regional variations in 5-HT transporters (Bose et al., 2011b). Finally, the modulatory effect of 5-

HT on anxiety response depends upon a balance of excitatory (5-HT2A) and inhibitory (5-HT1A 

and 5-HT1B) 5-HT signaling on cortical pyramidal and interneurons in the prefrontal and 

amygdala circuitry (Albert, Vahid-Ansari, & Luckhart, 2014; Fisher et al., 2011). Therefore 

multiple mechanisms may be involved in SSRI induced amygdala response.  

When taken together, these findings indicate that combined knowledge of 5-HTT and 5-HT1A 

autoreceptor density may have predictive value in understanding antidepressant response. 

Based on our preliminary findings in healthy volunteers, we speculate that patients with high 

DRN 5-HT1A receptor availability would be predicted to have more severe anxiety responses to 

SSRIs. Further research in patients with major depression might help clarify the contribution of 

this mechanism to the increase in anxiety levels reported by some patients after initiation of 

antidepressant treatment.  

This study has a number of limitations; first, we only studied male participants. Future studies 

should assess whether gender has an effect on the relationship between DRN 5-HT1A receptor 

and amygdala reactivity as some studies have reported associations between DRN 5-HT1A 

auto-receptor availability and sex (Parsey et al., 2002). Second, although N=13 is comparable 

to the size of similar studies (Bigos et al., 2008; Del-Ben et al., 2005), the sample size for the 

combined PET/fMRI experiment does not permit investigation of additional potential moderators 

(e.g. 5-HTT genetic polymorphisms) on the influence of the 5-HT1A receptors on amygdala 
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reactivity. This will have to be addressed in future larger studies. Furthermore, analysis of 

smaller sample sizes, as reported here, are known to provide inflated estimates of effect sizes 

(Button et al., 2013). As such, we have presented means and standard deviations from voxels 

showing significant differences and from our a priori amygdala ROI as a whole. A substantially 

larger sample (e.g., N > 78 for the fearful vs. neutral face citalopram contrasts; cf., 

fmripower.org; (Mumford & Nichols, 2008) will be required to establish well-powered effect size 

estimates. Therefore, we put forward our own results with caution to be interpreted as indicating 

the presence of an association rather than a specific magnitude of effect.  Third, correlation 

between DRN 5-HT1A receptor availability and amygdala BOLD response to emotional faces 

after citalopram does not prove causality.  Further experimental research studies will be needed 

to study the direct role of 5-DRN HT1A in emotion processing in humans.   Finally, the average 

interval between PET and fMRI data acquisition was 125 (SD 7.7) weeks (2.4 years). 

Although the PET and fMRI scans were performed at different time points, several lines 

of evidence indicate that the binding potential measures in this study would be stable 

over the time scale of the experiment. A previous 5-HT1A [11C]CUMI-101 study reported 

high test-retest reliability for raphe measurements, with an intraclass correlation 

coefficient of 0.8 (Milak et al., 2010), indicating that it can be reliably measured. A 

selective 5-HT1A receptor antagonist ligand (18F-MPPF) study that collected test-retest 

scans with a mean delay 27 weeks between scans in healthy volunteers, reported high 

reliability of dorsal raphe binding potential measurements (ICC 0.78) (Costes et al., 2007). 

This result suggests 5-HT1A PET measures from the dorsal raphe are reliable over time, 

albeit using a different tracer (18F-MPPF). In addition, PET studies report no significant 

decline of 5-HT1A availability (as indexed by [11C]WAY-100635) in pre or postsynaptic 

regions over time with age (age range of 24 to 53) years in a large cohort (N=61) (Rabiner 

et al., 2002), suggesting that ageing does not significantly affect 5-HT1A availability. Thus, 

brain 5-HT1A receptors availability in vivo using PET provides stable measure of 5-HT1A 

binding and the time interval between acquisitions of the PET/MRI scan data is less likely 

to have influenced the results. Nevertheless we cannot exclude variation over time, 

although this would, if anything, be expected to increase noise and weaken the results.” 

 

Conclusion 
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An acute intravenous administration of citalopram increased amygdala reactivity to aversive 

emotion, and this was positively associated with DRN 5-HT1A receptor availability. Our findings 

indicate that the initial effect of SSRI treatment is to alter processing of aversive stimuli, and that 

this is linked to DRN 5-HT1A receptors in line with evidence that 5-HT1A receptors have a role in 

mediating emotional processing. 
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Table 1. Condition and contrast parameter estimates to face stimuli during placebo (PBO) 

and citalopram (CITA) infusions in the amygdala. 

 
LEFT AMYGDALA – M (SD)  RIGHT AMYGDALA – M (SD) 

Condition PBO CITA 
 

PBO CITA 

      
Neutral Faces 17.98 (39.60) 13.89 (32.69)  15.73 (27.56) 20.08 (38.40) 
Fearful Faces 20.26 (35.23) 30.92 (30.59)  15.06 (41.77) 22.23 (32.38) 
Happy Faces 7.57 (37.08) 30.53 (53.00)  11.79 (35.13) 19.07 (22.35) 
      

Contrast (Level 1)      

      
All vs Baseline 50.61 (85.23) 77.72 (82.18)  46.79 (98.94) 66.56 (76.02) 
Fearful vs 
Neutral 

1.46 (25.78) 16.97 (37.33)  -1.88 (23.92) 3.11 (36.42) 

Happy vs 
Neutral 

-12.14 (54.84) 16.79 (60.70)  -5.40 (30.81) -1.54 (29.46) 
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Figure 1. Functional imaging reveals bilateral patterns of increased face-dependent activation 

with citalopram infusion. (A) Intravenous citalopram (CITA) significantly increased activation 

bilaterally for the all faces vs. rest (BLUE) and fearful vs neutral face (RED) contrasts when 

compared to placebo (PBO). Trend-level activation increases were also observed in the right 

amygdala for the happy vs neutral face contrast (YELLOW). (B; CYAN) Mean parameter 

estimates (± standard error of the mean; SEM) extracted across the voxels with significant 

differences in the second level contrasts (i.e., CITA – PBO). Within each hemisphere, the blood 

oxygen level dependent (BOLD) signal elicited by faces increased after CITA infusions 

compared to PBO (striped bars indicate PBO estimates). (C; RED) A similar pattern of activity 

was observed in the left hemisphere for the fearful vs neutral face contrasts as well; however, 

(D; YELLOW) the right hemisphere effects for fearful vs neutral and happy vs neutral faces are 

less clear owing to a task-related deactivation in the PBO condition.   

 

 

Figure 2. Dorsal raphe nucleus (DRN) 5-HT1A availability was positively associated with the 

degree of modulation induced by citalopram infusion in the amygdala. (A) PET [11C]CUMI-101 

binding estimates demonstrated a functionally lateralized positive association with activity in the 

left amygdala between the response to fearful faces and DRN 5-HT1A availability (RED)  and the 

right amygdala showing an association with happy faces (YELLOW). (B & C) Citalopram (CITA) 

minus placebo (PBO) differences show that individuals with greater DRN 5-HT1A availability 

have reduced citalopram-induced modulation of the amygdala to happy (YELLOW) and fearful 

(RED) faces in the right and left hemispheres, respectively. (D & E) Same as B & C, but with 

citalopram and placebo data presented separately. Whereas individuals with less DRN 5-HT1A 

availability show heightened amygdala responses during placebo infusions (CYAN), the 

association largely disappears with citalopram (MAGENTA) suggesting individual differences in 

the response of the amygdala to emotional content is associated with differences in DRN 5-HT1A 

availability.  
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