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Here, we briefly describe the real-time fMRI data that is provided for
testing the functionality of the open-source Python/Matlab frame-
work for neurofeedback, termed Open NeuroFeedback Training
(OpenNFT, Koush et al. [1]). The data set contains real-time fMRI runs
from three anonymized participants (i.e., one neurofeedback run per
participant), their structural scans and pre-selected ROIs/masks/
weights. The data allows for simulating the neurofeedback experi-
ment without an MR scanner, exploring the software functionality,
and measuring data processing times on the local hardware. In
accordance with the descriptions in our main article, we provide
data of (1) periodically displayed (intermittent) activation-based
feedback; (2) intermittent effective connectivity feedback, based on
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dynamic causal modeling (DCM) estimations; and (3) continuous
classification-based feedback based on support-vector-machine
(SVM) estimations. The data is available on our public GitHub
repository:

https://github.com/OpenNFT/OpenNFT_Demo/releases.
& 2017 The Authors. Published by Elsevier Inc. This is an open access

article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
Specifications Table
ubject area
 Neurosciences

ore specific
subject area
Neuroimaging, Real-time fMRI, Neurofeedback
ype of data
 Data repository

ow data was
acquired
Siemens 3 T MR scanners Trio and Prisma
ata format
 Raw, anonymized DICOMs, NIFTIs

xperimental
factors
Approved by the local ethics committee
xperimental
features
Real-time functional MRI
ata source
location
Geneva, Switzerland
ata accessibility
 The data is available under public GitHub repository: https://github.com/
OpenNFT/OpenNFT_Demo/releases
Value of the data

� The data allows for testing software functionality of OpenNFT and other neurofeedback software.
� The data allows for assessing the timing of (pre)processing steps for different feedback estimation

schemes.
� The data can be used for testing the own neurofeedback setting.
1. Data

The three real-time fMRI data runs were acquired using (1) intermittent activation-based feedback;
(2) intermittent effective connectivity feedback; and (3) continuous classification-based feedback. The
interested reader can download the anonymized experimental data and re-run it using OpenNFT [1]. All
participants gave written informed consent to participate in the experiment, which was approved by the
local ethics committee. In addition to the data, we also provide files containing the OpenNFT settings,
experimental protocol and experimental design modelled in SPM (http://www.fil.ion.ucl.ac.uk/spm).
2. Experimental design, materials and methods

2.1. Case study 1: intermittent activation-based feedback

The participant performed one fMRI localizer run to delineate bilateral primary visual cortices and
a subsequent neurofeedback run to learn control over these ROIs. The localizer run consisted of eight
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20 s baseline blocks that were interleaved with seven 20 s regulation blocks. During the regulation
blocks, the participant was asked to perform visual-spatial imagery at a location that was indicated by
a circle presented at the center of the visual field. During the baseline blocks, the participant was
asked to look at the center of the screen. The neurofeedback run consisted of eight 16 s baseline
blocks that were interleaved with seven 20 s regulation blocks, followed by 4 s neurofeedback display
blocks. The activation-based feedback signal consisted of the scaled average activity level of the two
visual ROIs. The experiment was performed at the Brain and Behavior Laboratory (University of
Geneva) on a 3T MR scanner (Trio Tim, Siemens Medical Solutions, Germany). Functional images were
acquired with a single-shot gradient-echo T2*-weighted EPI sequence with 150 scans (32 channel
receive head coil, TR¼1970 ms, volume size¼74×74×36 voxels, isotropic 3 mm voxel, flip angle
α¼75°, bw¼1572 Hz/pixel, TE¼30 ms). The first five EPI volumes were discarded to account for T1
saturation effects.
2.2. Case study 2: intermittent effective connectivity feedback

The participant performed one neurofeedback run that consisted of seven trials. Each neuro-
feedback trial was composed of four 12 s regulation blocks interleaved with five baseline blocks of the
same duration. During baseline, images of neutral objects were presented and participants were
asked to passively look at them. During regulation blocks, moderately positive social images were
presented and the participant was asked to experience the depicted positive social situation. The
change between the conditions was indicated with the words ‘POS’ and ‘NEUT’. The feedback signal
was based on a comparison of how well two alternative DCMmodels fitted the data acquired during a
trial. The difference between the target and the alternative model dominance was computed as the
difference between their logarithmic model evidence, i.e. the log of the Bayes factor (for more details,
see [2,3]). The target model represented top-down modulation from the dorsomedial prefrontal
cortex (dmPFC) onto the bilateral amygdala, and the alternative model represented the bottom-up
flow of information from the bilateral amygdala onto the dmPFC. The amygdala and the dmPFC ROIs
were updated adaptively after each trial using an incremental GLM. The experiment was performed at
the Brain and Behavior Laboratory (University of Geneva) on a 3T MR scanner (Trio Tim, Siemens
Medical Solutions, Germany). Functional images were acquired with a single-shot gradient-echo T2*-
weighted EPI sequence with 1050 scans (32 channel receive head coil, TR¼1100 ms, volume
size¼120×120×18 voxels, isotropic 1.8 mm3 voxel size, flip angle α¼70°, bw¼1540 Hz/pixel,
TE¼30 ms). The first 10 EPI volumes were discarded to account for T1 saturation effects.
2.3. Case study 3: continuous classification-based feedback

The participant first performed two fMRI runs to provide data to train an SVM classifier using the
PRONTO toolbox [4]. A single fMRI run consisted of seven 20 s regulation blocks that were interleaved
with seven 20 s baseline blocks. The participant was asked to perform visual-spatial imagery during
the regulation blocks, and to look at the center of the screen during the baseline blocks. Next, the
participant was asked to perform a similar real-time fMRI run with a similar design (10 regulation and
11 baseline blocks), where feedback was provided as expanding circle placed at the center of the
screen. The feedback signal was computed using the dot product between the pre-trained classifier
weight vector and the current data vector extracted from the classification mask [5,6]. The experi-
ment was performed at the Campus Biotech (Geneva) on a 3 T MR scanner (Prisma, Siemens Medical
Solutions, Germany). Functional images were acquired with a single-shot gradient-echo T2*-weighted
EPI sequence with 210 scans (32 channel receive head coil, TR¼2020 ms, volume size¼100×100×35
voxels, isotropic 2.2 mm3 voxel size, flip angle α¼74°, bw¼1565 Hz/pixel, TE¼28 ms). The first 5 EPI
volumes were discarded to account for T1 saturation effects.

For more details about the applied analyses, see the associated research article [1].
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