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Abstract 

Background: Deep brain stimulation (DBS) in patients with severe, refractory Tourette 

Syndrome (TS) has demonstrated promising but variable results thus far. The thalamus and 

anteromedial Globus Pallidus Internus (amGPi) have been the most commonly stimulated sites 

within the cortico-striato thalamic circuit, but an optimal target is yet to be elucidated.  

Objectives: This study of 15 patients with long-term amGPi DBS for severe TS investigated if a 

specific anatomical site within the amGPi correlated with optimal clinical outcome for the 

measures of tics, obsessive compulsive behaviour (OCB) and mood. 

Methods: Validated clinical assessments were used to measure tics, OCB, quality of life, anxiety 

and depression pre-DBS and at latest follow up (17-82 months). Electric field simulations were 

created for each patient using information on electrode location and individual stimulation 

parameters. A subsequent regression analysis correlated these patient-specific simulations to 

percentage changes in outcome measures in order to identify any significant voxels related to 

clinical improvement.  

Results: A region within the ventral limbic GPi, specifically on the medial medullary lamina in 

the pallidum at the level of the AC-PC was significantly associated with improved tics but not 

mood or OCB outcome.  

Conclusions: This study adds further support to the application of DBS in a tic-related network, 

though factors such as patient sample size and clinical heterogeneity remain as limitations and 

replication is required.  
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Introduction 

Deep brain stimulation (DBS) for Tourette Syndrome (TS) is emerging as a safe and efficacious 

treatment option for patients with severe treatment refractory tics. Out of nine targets within the 

brain hitherto chosen for DBS, the medial thalamus and Globus Pallidus Internus (GPi) regions 

have been the sites most consistently reported to lead to long term beneficial effects.  

Nonetheless, identification of the optimal target for chronic stimulation within a tic related 

cortical-subcortical basal ganglia-thalamic network is yet to be elucidated.  

 

The anteromedial or limbic GPi (amGPi) has yielded promising results as a DBS target for TS 

patients not only in a number of open label case series (1)(2)(3)(4)(5) but also in a recent 

randomised controlled trial (6). However, even among patients receiving bilateral amGPi DBS, 

there is considerable variability in response raising uncertainty regarding the optimal site for 

electrode placement even within this region.  

 

A potential approach to aid the identification of the optimal target within the limbic GPi in TS 

patients, is by comparison of the variation in clinical outcomes to patient-specific electric field 

(EF) simulations. The latter involves outlining the extent of current spread around the exact 

imaged location of DBS electrodes, taking into account stimulation parameters and individual 

anatomical variation, thus enabling mapping of the anatomical brain regions stimulated by DBS 

(7). Proof of concept of this approach has been previously demonstrated in a study that used the 

finite-element method to map current distribution in 5 TS patients targeted at the GPi (8).The 

comparison of this type of EF simulation to the long-term tic and co-morbidity improvement in 

larger numbers of patients should help elucidate the optimal anatomical target for electrode 

placement and a similar approach has been taken in patients with Parkinson’s disease (9). Our 

study therefore attempts to further address the feasibility of this approach by applying it in 15 

patients with severe, refractory TS who have had long term follow up after bilateral amGPi DBS.  

 

 

Methods 
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Clinical data 

The patients recruited to this study remain under follow up at the National Hospital of Neurology 

and Neurosurgery, Queen Square, London, UK and had all received bilateral DBS to the amGPi 

region for severe treatment refractory TS. Only patients with both pre and post-operative MR 

images and long term follow up (>12 months) clinical data were included. 

 

All patients were resistant to at least 3 different types of pharmacological therapies including 

dopamine blocking agents. Specific inclusion criteria included a diagnosis of stable severe 

refractory TS, a YGTSS score of greater than 35/55 for at least 12 months, lack of response to 3 

different classes of conventional medical treatment at therapeutic doses, unsuccessful or 

unstable behavioural therapy outcome, co-morbid symptoms optimally treated for at least 6 

months as well as compliance with surgical treatment plans or psychosocial interventions. 

Exclusion criteria comprised tic disorder attributed to another cause, presence of medical or 

psychiatric disorders that may increase the risk of procedure, or psychosocial factors impacting 

on postoperative care and research participation. 

 

Our surgical procedure has been previously described (11). The process for selecting the target 

within the amGPi was consistent across the course of the study. The target within the amGPi was 

determined by direct visual inspection using a stereotactic thin slice, proton density MRI 

sequence to directly visualize the pallidal anatomy (12). For the targeting we use commercially 

available planning software (Framelink, Medtronic, Minneapolis). On an axial slice at the level of 

the AC-PC line, the GPi can be divided into an anterior, middle and posterior third. The electrode 

was targeted to the centre of the anterior third of the GPi.  

 
The entry point was defined at or behind the coronal suture and at a laterality such as to ensure a 

trajectory that would avoid sulci and the ventricular system, while maintaining an orthogonal 

approach towards the GPi. The exact entry and target point were subsequently modified to 

maintain a parenchymal trajectory whilst maximising the length of the trajectory within the 

visible amGPi.  An immediate postoperative stereotactic MRI with the frame still on the head 
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verified the DBS electrode location in the anteromedial GPi. All patients received Activa PC 

implantable pulse generators (Medtronic, Minneapolis, MN, USA). 

 

Clinical assessments were performed pre and post operatively with validated scoring systems 

consisting of the Yale Global Tic Severity scale (YGTSS) (13) and the Modified Rush Video Rating 

Scale (MRVRS) (14) to measure tic frequency and severity, the Gilles de la Tourette Quality of life 

scale (GTS-QOL) (15), the Yale Brown Obsessive Compulsive scale (Y-BOCS) for OCB outcome 

(16), the Beck Depression Inventory (BDI), and the State Trait Anxiety Inventory (STAI). A two-

tailed t test was used to compare baseline and latest follow up (LFU) scores using SPSS version 

22. The percentage difference between baseline and LFU scores were calculated (Baseline-

LFU/Baseline) for each parameter. These percentage changes were then used in the 

subsequently described linear modelling analysis.  

 

Creation of electric fields for patient-specific modelling  

The optimal DBS parameters including frequency, voltage, pulse width and the number of active 

contacts were recorded for each patient.  

 

Brain model 

Pre-implantation axial MR images were co-registered with immediate post-implantation axial MR 

images using an open source software (3DSlicer, www.slicer.org) and the x,y and z coordinates 

for contacts were obtained for each patient. The coordinates for the active stimulation contacts 

were subsequently used in the brain and electrode model to outline the fields of stimulation.  

 

A software tool developed in Matlab 2015a (MathWorks, USA) named ELMA (17)(8) was used to 

assign the electric conductivities, σ (S/m), in the models based on the voxel intensities in the T1 

pre-implantation MR image sets. Images were exported as .nrrd files for reading into Matlab. 

Average intensities for grey matter, white matter and cerebrospinal fluid were calculated in 

regions of interest around the DBS target and were used to classify the voxels into these tissue 

types. For voxels with intensities within the middle third of the averages for two tissue types, the 

conductivity values were linearly interpolated with intensity between the conductivity values for 

http://www.slicer.org/
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the two tissue types. The (mainly pulse width-dependent) electric conductivities of the tissue 

types were calculated by the weighted average between 10 and 106 Hz of the Fourier transform 

of the DBS pulse shape  (18)  with conductivity spectra taken from a compilation by Gabriel et al 

(19) (20). The conductivity matrix was saved for a cuboid corresponding to the dimensions of 

each brain. 

Electrode model 

The DBS electrodes (DBS lead model 3389, Medtronic Inc., USA) with a radius of 0.635 mm, a 

contact length of 1.5 mm and a contact separation of 0.5 mm were modelled in Comsol 

Multiphysics 5.2 (Comsol AB, Sweden) and placed in the positions indicated by the postoperative 

MRI relative to the above described conductivity matrix of the brain tissue. 

Boundary conditions 

For each patient, the active contacts were set to the corresponding electric potential, V (V) while 

the surrounding of the brain model was set to ground (V = 0 V). The plastic parts of the lead were 

set to electric insulation 

 (V/m)         (1) 

where n is the normal vector of the electrode contact surface S. The inactive contacts were set to 

floating potential  

         (2) 

In case of interleaved stimulation, two separate simulations were made for the two contact sets. 

Governing equation and simulations 

The equation for steady currents was solved for the brain domain around the electrodes 

 (A/m3)         (3) 

using a mesh of approximately 500 000 elements and the Conjugate Gradient solver in the Cuthill 

McKee algorithm (CM). From the solution, the EF isolevels estimated to trigger axons with a 

diameter of 2 and 5 µm respectively were calculated and exported as a logic matrix with the 

same coordinates as the preoperative MRI set. The required isolevels were estimated based on 

the pulse width used for the stimulation. Based on neuron model simulations by Åström et al 
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(21), rheobase and chronaxie were calculated to be 0.041 V/mm and 99.8 µs for 5 µm axons and 

0.174 V/mm and 101.4 µs for 2 µm axons. Corresponding activation levels are given in table 1. 

For interleaved stimulation, the activated volume was assumed to be the union of the activated 

voxels in the two simulations.  

 

(Table 1) 
 
 
Each patient’s specific simulated EF or volume of tissue activated (VTA) within the whole brain 

T1 image was exported in Neuroimaging Informatics Technology Initiative (nifti) format. 

 

Co-registration of nifti files to MNI space  

In order to carry out the voxel based analysis, all patients’ scans were co-registered to a standard 

space. Pre-implantation T1 (MPRAGE) MR scans were brain extracted using BET (Brain 

Extraction Tool, FSL v5.0) which deletes non-brain tissue from a whole head MRI (22). Native 

scans were co-registered to the MNI 152 standard-space T1-weighted average structural 

template image (1mm resolution) (23). This was achieved by employing linear (affine) 

transformation first using FLIRT (FMRIB's Linear Image Registration Tool) with 12 degrees of 

freedom, correlation ratio cost function and normal search (24)(25). The output from this step 

was then used to execute non-linear registration using FNIRT (FMRIB's Non-Linear Image 

Registration Tool) (26). This process produced individual native to standard (MNI space) non-

linear warp fields which were then applied to the DBS tissue activation volumetric meshes 

acquired in order to transform all volumes to standard space. Group averages were then 

generated using Fslmaths. 

 

Linear regression of voxels versus clinical outcomes  

Left and right sided VTAs (in MNI space) corresponding to the 2 micrometer axon stimulation 

fields were combined using Fslmerge (FSL v5.0) into two 4D data files (one for each hemisphere). 

In each voxel, each of the VTAs was modelled as a linear combination of outcome scores within 

the group. A simple design contrast file was used to test the significant voxels predictive of 

improvement in each clinical outcome variable individually. 
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Nonparametric permutation inference was then carried out on each voxel using Randomise (FSL 

v5.0) with 5000 permutations to build up the null distribution to test against. General linear 

model (GLM) variables were demeaned and single group t-test with threshold-free cluster 

enhancement (TFCE) was used as the test statistic (27). Raw t-stat images were thresholded at 

α=0.05. 

 

 

Results 

 

Clinical outcomes  

Fifteen patients were included in this study. All patients had undergone bilateral DBS surgery 

between 2009-2014.  The follow up period ranged from 17-82 months. There were 12 males and 

3 females who had a mean age of TS onset of 7 years (range 2-12) with the average age at surgery 

being 32 (range 18-49).  The mean YGTSS score at baseline was 88 (range 71-98) which 

improved to a mean value of 54 (range 15-97) at latest follow up. The mean reduction in YGTSS 

was 38.2% (95% CI 23.6-52.8) with the percentage reduction in vocal tics being 38.2% (95%CI 

23.7-52.7) and motor tics was 33.2% (95%CI 20.3-46.0). The mean change in MRVRS observed 

was 40.5% (95% CI 22-59) and unobserved was 34.1% (95% CI 19.8-48.3) which correlated well 

with the changes in YGTSS. There was a statistically significant difference in YGTSS including 

both vocal and motor tic outcome, MRVRS, quality of life outcome as well as the co-morbidities of 

anxiety and depression. However, despite an overall improvement in OCB outcome, statistical 

significance was not reached. Further sub-group analysis, revealed that 4 patients with the most 

severe baseline OCB (score 24-31) showed a 38.7% (7.4-60) improvement in Y-BOCS, 5 with a 

moderate score (16-23) 12.3% (-20-50), whilst 6 patients with mild or subclinical OCB showed 

little or no improvement suggesting that the impact of DBS may be seen most in those with 

severe baseline OCB associated with TS. Inspection of individual patient data also revealed 

variability in tic outcome with 4 patients showing less than 20% YGTSS improvement, 6 

experiencing 20-50% improvement and 5 over 50% improvement. 

 

(Table 2) 
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Stimulation related non-serious adverse effects at last follow up reported by individual patients 

included weight gain, dizziness and feelings of nausea. Other effects included freezing of gait 

episodes with prolonged stimulation of more ventral pallidal contacts, difficulties with speech 

articulation and akathisia. In the majority of patients, adverse effects could be controlled by 

altering stimulation parameters. Most patients remained on pre-surgery medications which 

mostly served to address co-morbid symptoms such as depression, anxiety and OCB.  

In several patients, tolerance to the DBS developed over time, necessitating progressive increases 

in stimulation parameters to maintain symptom control. Table 3 confirms that 12 of our patients 

have progressed to need double monopolar (or in one case even triple monopolar) stimulation 

over long-term follow up. In 7 of these patients increases in stimulation over time were required 

because of a relapse in tic control which led to restoration, whereas in 5 patients, progressive 

increases have been pursued to try and make additional improvements upon suboptimal tic 

control. Owing to low tolerance of increased parameter settings, 2 patients have not derived 

maximum benefit resulting in poorer tic control and 1 patient has switched off their DBS owing 

to little improvement. The evolution towards such high parameters has led to the need for 

repeated battery replacements and the switch to using rechargeable devices in increasing 

numbers of patients. 

Table 3: Active contacts and parameters (voltage, pulse width and frequency) for 15 
patients at time of optimal tic control. 
 
 
 
2.Modeling of stimulation fields in patients  

 

An example of the simulated stimulation fields for 1 of the 15 patients is illustrated in Figure 1.  

In every patient the active contact(s) lay within the amGPi or on the lamina between amGPi and 

am GPe. The simulations indicate that 2 µm axons exposed to stimulation lie predominantly in 

the GPi/GPe, whereas 5 µm axons lying medially in the internal capsule, and laterally as far as the 

putamen are also exposed to the effects of chronic stimulation. 

 
(Figure 1) 
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3.Linear regression comparing voxels activated v clinical outcome 

 

General linear modeling revealed that the voxels activated by DBS that were most significantly 

predictive of improvement in motor tics, vocal tics and YGTSS were located in the ventral limbic 

GPi. Specifically, there were three convergent clusters on the medial medullary lamina in the 

pallidum at the level of the AC-PC. Areas of maximum efficacy for these three outcomes along 

with the average VTA are shown in Figure 2. We did not find any voxels significantly associated 

with percentage improvement in any of the other clinical outcome measures. None of the 

significant clusters of voxels survived correction for multiple comparisons. 

 
(Figure 2) 
   
 
 
Discussion 
 
The long-term outcome data presented here demonstrates that mean YGTSS tic improvement 

from baseline to latest follow up in the 15 patients included is encouraging but responses can be 

highly variable.  This supports the search for between-patient factors, including the site of 

stimulation delivery to explain the variability in response.  The results of our EF simulation study 

demonstrate that the most consistent stimulation site associated with vocal and motor tic 

improvement is the anteromedial limbic GPi bordering on the lamina medullaris interna between 

the GPi and GPe. This region was not however associated with improvement in mood or OCB 

outcome, suggesting that there may be some degree of separation between brain networks 

involved in tic generation from those involved in obsessive compulsive behavior or mood 

disturbance despite their frequent coexistence within patients with severe TS.  

 

The interpretation of our results should be considered in light of potential limiting factors at 

various stages of the analysis which will be considered in turn. Firstly, the accuracy of clinical 

data was limited by the subjectivity of rating scales such as the Y-BOCS which can be highly 

variable between time points and influenced by patient insight and reporting. Although the 

change in OCB outcome did not reach statistical significance, sub-group analysis revealed that 4 

patients with the most severe OCB symptoms had the greatest improvement suggesting that 
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results may differ in a larger cohort of patients with more severe baseline OCB. The YGTSS is 

currently the most widely accepted measure of tic severity and reflects the level of tic control 

during the previous week rather than the acute snapshot of tic severity that is recorded by the 

MRVRS.  

 

Secondly, the creation of simulation fields, involved the use of computer simulations that 

assumed an isotropic electrical conductivity of tissue and the random orientation of axons. In 

reality, white matter in particular is anisotropic with preferential axon directions leading to both 

changes in the extension of the EF isolevels and the ease at which the axons are triggered. 

However, previous simulations studies have shown this to be only a minor influence, compared 

with for instance, CSF filled cysts due to Virchow Robin spaces (28). Another parameter that is 

unknown is the exact distribution of axon diameters in the regions of interest; as wider diameter 

axons are easier to trigger, this will affect what EF isolevel is relevant for calculation of the 

stimulation (21). The axon model used to calculate the triggering isolevels also contains 

parameters other than axon diameter that could affect the ease of activation, such as internodal 

length.  

 

For these reasons the isolevels for two different axon diameters are presented in this paper and 

were chosen from the smallest and largest simulated by Åström et al (21). An electron-

microscopy study of axon diameter by Liewald et al. (29) indicated that the median inner axon 

diameter in white matter axons is around 0.5 µm and the maximum inner diameter is below 5 µm 

in most structures. The larger outer axon diameter of 5 µm used in this study should thus be seen 

as the approximate upper limit though it would have been interesting to have estimates of 

required EF for activation of diameters smaller than 2 µm.  Comparisons of EF levels with the 

borders of the GPi by Hemm et al indicates that an EF isolevel of 0.2 V/mm is the best fit for axon 

activation (30) which corresponds to an axon diameter of approximately 3.5 µm (21). It may thus 

be that activation of a small subset of the largest axons is sufficient for the therapeutic effect of 

DBS. 
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Apart from intrinsic uncertainties in the electric conductivities of the different tissue types, there 

is also a tendency for gliosis formation around the electrode lead that somewhat reduces the 

electric conductivity in the closest vicinity (31) the effect of which has not been included. 

Previous simulations by Yousif (32) and Alonso (33)  however show this has little impact at 

chronic stimulation points as was the case in our study. Further limitations lie in MRI resolution 

and contrast between different tissue types which introduces some uncertainty in the tissue 

classification of the voxels and for neural tissue as well as a dependency from axon activation on 

the electric conductivity (34).  

 

Co-registration of pre-operative and post-operative images, followed by co-registration to MNI 

space following the field simulations is a further potential source of error. At each stage we used 

whole brain data and utilized the linear and non-linear registration tools to minimize errors 

introduced by the co-registration process.  Finally as demonstrated by the loss of significance 

after correction for multiple comparisons the small sample size was an important limitation. 

While we have included 3 times more patients than the previous study assessing EF simulations 

in TS, it is likely that other patient specific factors exist, such as age, symptom duration, 

comorbidity, medication exposures, which all impact on the degree of tic improvement.  

 

In the majority of patients, tic improvement translated into functional gains. However we have 

observed that symptom course over time can vary, with some patients tending to reach a 

response plateau while others deteriorate in comparison to previous follow up points, unless 

stimulation parameters are progressively increased, though in general such patients do not 

decline to baseline tic severity. These observations are supported by previous long term studies 

targeting the pallidum (3)(2) though whether other factors also predict long term tic outcome 

remains unclear.  

 

Tic control is one important aspect of quality of life and tends to dominate the picture when first 

discussing the potential use of DBS in severely affected TS patients. However non-tic co-

morbidities also have a crucial impact on patient quality of life and these can become the focus of 

the patient’s attention once tic severity decreases. While patients continue to have significant 
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improvements in mood and quality of life following DBS, improvements in OCB do not reach the 

threshold for statistical significance, and in our imaging analyses, changes in these other 

variables were not significantly related to the minor variability in the site of electrical stimulation.  

 

In summary, we conclude that chronic high frequency stimulation, particularly in the anterior 

limbic GPi, is most associated with long term improved motor and vocal tic outcome. Although 

we plan to already learn from these data to inform future electrode targeting at this region, we 

acknowledge that the methods we have utilised require replication in a larger number of patients 

in order to improve reliability. We of course cannot conclude that amGPi DBS is superior to 

stimulation through electrodes targeting in other GPi regions, or the centromedian thalamus 

however our findings may help future targeting within the amGPi region.  It can be argued that 

due to patient-specific factors ie differing TS patient phenotypes, there is unlikely to be one 

target region that will benefit all patients to the same degree. Anecdotally, we have observed 

several patients with optimal responses from the dorsal contacts of the electrodes lying within 

the amGPe. This is consistent with a previous report of efficacy of GPe DBS in TS patients (35). 

Therefore, collecting more information about patient co-morbidities and tic types in relation to 

patient specific simulations and outcomes may help to further individualise targeting.  

 

Given the observation of tolerance emerging in some patients, the role of plasticity in tic and 

behaviour related networks should also be considered. Stimulation of one node in a tic related 

network may eventually lead to the escape of abnormal firing patterns into different networks 

which could partly explain the increased tolerance that some patients with DBS can develop. 

Understanding network changes over time in patients with DBS for TS e.g. by using functional 

imaging may help further understand this phenomenon of tolerance and elucidate further those 

networks that are involved in tic expression and their anatomical connections with relevance for 

future electrode targeting.  
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