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A B S T R A C T

Respiratory activity is controlled by inputs from the peripheral and central chemoreceptors. Since overactivity of
the carotid bodies, the main peripheral chemoreceptors, is linked to the pathophysiology of disparate metabolic
and cardiovascular diseases, carotid body denervation (CBD) has been proposed as a potential treatment.
However, long-term effects of CBD on the respiratory rhythm and regularity of breathing remain unknown. Here,
we show that five weeks after bilateral CBD in rats, the respiratory rhythm was slower and less regular. Ten
weeks after bilateral CBD, the respiratory frequency was not different from the sham-operated group, but the
regularity of the respiratory rhythm was still reduced. Increased frequency of randomly occurring apneas is
likely to be responsible for the irregular breathing pattern after CBD. These results should be taken into con-
sideration since any treatment that reduces the stability of the respiratory rhythm might exacerbate the cardio-
respiratory instability and worsen the cardiovascular outcomes.

1. Introduction

Oxygenation of the arterial blood is continuously monitored by
peripheral chemoreceptors located in the carotid and (in some species)
aortic bodies (Heymans and Bouckaert, 1930; Heymans and Neil, 1958;
O’Regan and Majcherczyk, 1982). These chemoreceptors detect
changes in blood PO2 in a manner also dependent on blood PCO2/pH,
and convey chemosensory information to the brainstem respiratory
control networks (Bruce et al., 1982; Finley and Katz, 1992), which
adjust the respiratory activity in accordance with prevailing physiolo-
gical and behavioral needs.

Located bilaterally at the bifurcation of the common carotid ar-
teries, carotid body chemoreceptors are believed to be the major site for
respiratory oxygen sensing (Forster, 2003; Forster et al., 2000). When
arterial PO2 decreases (e.g., during systemic hypoxia), the carotid
bodies signal to the brainstem circuits, which increase the rate and
depth of breathing (Heymans and Bouckaert, 1930) and also trigger
adaptive increases in sympathetic activity (Persson et al., 1991; Persson
and Kirchheim, 2013).

In addition to hypoxia, other stimuli, including hypercapnia
(Andronikou et al., 1988; Forster et al., 2000), acidosis (Tan et al.,
2007), hypoglycemia (Koyama et al., 2000; Pardal and López-Barneo,
2002), and mediators of inflammation (Ackland et al., 2013) have been
shown to activate carotid body chemoreceptors. There is evidence that
carotid body chemoreceptor hyperactivity may contribute to patho-
genesis of certain metabolic and cardiovascular diseases, including

hypertension (Abdala et al., 2012; Habeck, 1991; Trzebski et al., 1982),
heart failure (Del Rio et al., 2013; Franchitto et al., 2010; Marcus et al.,
2014; Ponikowski et al., 1997; Schultz et al., 2013), and insulin re-
sistance (Ribeiro et al., 2013).

Recently, the efficacy of carotid body denervation as a potential
treatment of sympathetically-mediated disease has been explored in
animal models. In a rat model of obesity, carotid body denervation
prevented development of hypertension and insulin resistance (Ribeiro
et al., 2013). Carotid body denervation was also found to improve
cardiac function in rat and rabbit models of heart failure (Del Rio et al.,
2013; Marcus et al., 2014), and to reduce the degree of hypertension in
spontaneously hypertensive rats (Abdala et al., 2012; McBryde et al.,
2013). There is also human data suggesting that surgical removal of the
carotid body may reduce the arterial blood pressure in some hy-
pertensive patients (Nakayama, 1961; Narkiewicz et al., 2016; Winter
and Whipp, 2004). Variable effects of uni- and bilateral carotid body
resection in humans on respiratory activity, arterial blood pressure and
heart rate have been reported (Timmers et al., 2003b). However, the
available evidence comes from observations in patients in which carotid
body resection was used as a treatment for certain underlying condi-
tions including carotid body tumors (Timmers et al., 2003a) or chronic
obstructive pulmonary disease (Whipp and Ward, 1992). The long-term
effects of carotid body denervation on the respiratory rhythm stability
remain unknown. In this study, we assessed the regularity of the re-
spiratory rhythm in conscious adult rats five and ten weeks after bi-
lateral carotid body ablation.
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2. Methods

All the experiments were performed on male Sprague-Dawley rats in
accordance with the European Commission Directive 2010/63/EU
(European Convention for the Protection of Vertebrate Animals used for
Experimental and Other Scientific Purposes), the UK Home Office
(Scientific Procedures) Act (1986), and the National Institutes of Health
Guide for the Care and Use of Laboratory Animals, with project ap-
proval from the respective Institutional Animal Care and Use
Committees. Animals were housed in a temperature-controlled facility
with a normal light-dark cycle (12 h:12 h, lights on at 7:00 A.M.). Tap
water and laboratory rodent chow were provided ad libitum.

2.1. Ablation of the carotid body chemoreceptors

In young male rats (60–80 g, 3–4 weeks old), the carotid body
chemoreceptors were ablated bilaterally as described in detail pre-
viously (Abdala et al., 2012; Angelova et al., 2015). Rats were an-
esthetized with intramuscular (i.m.) injection of a mixture of ketamine
(60 mg kg−1) and medetomidine (250 μg kg−1). Using aseptic techni-
ques, an anterior midline neck incision was made and the sternohyoid
and sternocleidomastoid muscles were retracted. After exposing the
carotid bifurcation, the occipital artery was carefully retracted, and the
carotid body was visualized under a dissecting microscope. The carotid
sinus nerve and its branches were cut, and the carotid bodies were
removed. The same procedures were performed to expose the carotid
bifurcation and both carotid bodies in the control group of rats, but the
carotid sinus nerves and the carotid bodies were left intact (sham-op-
erated animals). The neck incision was closed with absorbable suture
and anesthesia was reversed with atipemazole (1 mg kg−1). No mor-
talities occurred after the surgery and the animals gained weight nor-
mally.

2.2. Recordings of the respiratory activity by whole body plethysmography

Five and ten weeks after bilateral carotid body ablation, whole-body
plethysmography was used to record respiratory activity in unrest-
rained conscious rats, as described previously (Angelova et al., 2015;
Trapp et al., 2011). The animals were maintained on a 12:12 h light–-
dark cycle. On the day of the experiment, the rat was placed in a
Plexiglas recording chamber (∼1 L) that was flushed continuously with
a humidified mixture of 79% N2 and 21% O2 (temperature 22–24 °C) at
a rate of 1.2 L min−1. The animals were allowed to acclimatize to the
chamber environment for at least 60 min before the recordings of re-
spiratory-related plethysmographic signals were obtained. In order to
limit the effect of the circadian rhythm on the respiratory activity, the
recording sessions lasted for ∼2 h and took place between 11 A.M. and
3 P.M.

2.3. Data acquisition and analysis

Pressure changes in the plethysmography chamber were recorded
using a Power1401 interface, and analyzed off-line using Spike2 soft-
ware (CED Limited, Cambridge, UK). The duration of the respiratory
cycle (TTOT) was measured for each cycle after the rat had habituated to
the recording chamber. After excluding movement and sniffing signal
artifacts, the average TTOT was calculated for an ∼2 h period of con-
tinuous recording and used to calculate the respiratory frequency (fR)
presented as the number of respiratory cycles per minute. Variability of
breathing was assessed by calculating the coefficient of variation (CV)
and the irregularity score (IS) indices as described elsewhere (Telgkamp
et al., 2002; Viemari et al., 2011). For each respiratory cycle, CV was
determined by calculating the ratio of the standard deviation (SD) of
the period of breathing cycles to the mean TTOT and expressed as a
percentage (CV = SD/mean TTOT × 100). The IS was calculated by
determining the value of (TTOTn − TTOTn-1)/TTOTn-1 for the nth

respiratory cycle and also reported as a percentage. A lower irregularity
score indicates a more regular respiratory rhythm. Poincaré plots of
TTOT for the nth cycle versus TTOT for nth + 1 cycle were used to illus-
trate the temporal dispersion of TTOT. The frequency of sighs was also
determined. A sigh was defined as a high-amplitude inspiratory breath
that started near the peak of the normal inspiration and was at least
100% larger in amplitude than the mean amplitude of five breaths
proceeding each sigh (Cherniack et al., 1981). Sighs were typically
followed by a period of post-sigh apnea. Sigh frequency is expressed as
the number of sighs per hour. Periods of apnea were also identified by
the absence of respiratory activity over a period of at least three com-
plete respiratory cycles (i.e., ≥3xTTOT). The apnea index was expressed
as the number of apneas per hour. The data were compared by Mann-
Whitney U by ranks and reported as means ± SEM. Differences be-
tween experimental groups with p < 0.05 were considered to be sta-
tistically significant.

2.4. Assessment of sleep efficiency

To confirm successful ablation of the carotid bodies, the animals
were exposed to hypoxia while asleep and sleep efficiency was assessed
as described in detail previously (Angelova et al., 2015). Briefly, an
investigator who was unaware of the nature of the experimental groups
used established behavioral criteria (Gramsbergen et al., 1970) to cal-
culate sleep efficiency score (SES) before, during, and after the hypoxic
challenge. SES was defined as the percentage of the time an animal
spent is quiet sleep (QS) and active sleep (AS) according to the fol-
lowing formula: SES = 100x(QS + AS)/(QS + AS + W+ IN), where
W was the total time the rat was awake. When it was difficult to es-
tablish the state definitely, this time period was designated as in-
determinate (IN).

3. Results

3.1. Verification of successful ablation of the carotid bodies

Conscious rats (as well as other mammals, but not humans) with
denervated peripheral chemoreceptors display partial or almost com-
plete recovery of the ventilatory response to hypoxia (Angelova et al.,
2015; Bisgard et al., 1980; Davenport and Brewer, 1947; Miller and
Tenney, 1975; Olson et al., 1988; for recent review see also Gourine and
Funk, 2017). Therefore, successful ablation of the carotid bodies cannot
be reliably verified by measuring the hypoxic ventilatory response.
However, peripheral oxygen chemoreceptors are believed to play a key
role in triggering a hypoxia-induced arousal response (Bowes et al.,
1981; Miller and Tenney, 1975). Therefore, in the absence of the car-
otid body input, hypoxic challenge should minimally affect sleep effi-
ciency. We first assessed the effect of a brief period (10 min) of hypoxia
(10% O2 in the inspired air) on sleep efficiency in sham-operated and
carotid body-ablated rats by calculating SES before, during, and after
the hypoxic challenge. SES was not different in the carotid body-de-
nervated and sham-operated animals under normoxic/normocapnic
conditions (84 ± 4% vs. 85 ± 3%, p = 0.6; Fig. 1). When the animals
were exposed to 10% O2, SES was found to be significantly higher in
rats with ablated carotid bodies compared to sham-operated animals
(58 ± 1% vs. 29 ± 3%, p < 0.0001; Fig. 1). These data confirmed
that in rats, afferent inputs from the carotid body chemoreceptors re-
main absent/impaired ten weeks after denervation.

3.2. Resting respiratory frequency in conditions of chronic carotid body
ablation in rats

During the light phase of the 24 h cycle, when the animals spent
most of the time asleep, the resting rate of breathing (fR) in the carotid
body-ablated rats five weeks after the surgery, was ∼25% lower
(88 ± 2 breaths min−1) compared to sham-operated animals
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(115 ± 5 breaths min−1, n = 8, p < 0.001) (Fig. 2A & B). Re-
spiratory frequency in the carotid body-ablated rats was not different
from that in sham-operated rats ten weeks after carotid body ablation
(102 ± 8 vs. 117 ± 5 breaths min−1, n = 7, p = 0.5; Fig. 2C &D).

3.3. Regularity of breathing in conditions of chronic carotid body ablation
in rats

Higher cycle-to-cycle dispersion in TTOT in conditions of peripheral
chemodenervation is clearly evident when illustrated using Poincaré
plots (Fig. 3A). To determine the effect of carotid body ablation on the
regularity of breathing, two parameters were assessed: coefficient of
variation (CV) of the breath-to-breath time (TTOT) and irregularity score
(IS). Five weeks after peripheral chemodenervation, CV was higher in
carotid body-ablated rats compared to sham-operated animals
(70 ± 5% vs. 31 ± 3%, n = 8; Fig. 3B). IS was also higher in carotid
body-ablated rats (29 ± 3% vs. 16 ± 1%, p < 0.001; Fig. 3D). Both
CV and IS were also higher when assessed ten weeks after carotid body

ablation (Fig. 3C, E).

3.4. Sigh frequency and apnea index in conditions of chronic carotid body
ablation in rats

Sighs and periods of apnea could potentially contribute to breathing
irregularity. Sigh and the post-sigh pause of inspiratory activity are
believed to be generated within inspiratory rhythm-generating circuits
of the preBötzinger complex (preBötC) (Lieske et al., 2000; Ramirez
et al., 2013), which receive excitatory afferent inputs originating from
the carotid bodies. Apneas may also occur in the absence of the carotid
body input. Sigh frequencies were not different between the experi-
mental groups five (37 ± 2 in sham-operated rats vs. 33 ± 2 h−1 in
CB ablated rats; p = 0.6; Fig. 4A) and ten (29 ± 3 in sham-operated
rats vs. 29 ± 4 h−1 in CB ablated rats; p = 0.8; Fig. 4B) weeks after
the carotid body ablation. After five weeks, the frequency of randomly
occurring apneas was significantly higher in carotid body-ablated rats
compared to sham-operated animals (64 ± 2% vs. 22 ± 4%, n = 8,
p < 0.001; Fig. 4C). Similarly, the apnea index was higher ten weeks
after bilateral ablation of the carotid bodies (46 ± 8% vs. 19 ± 4% in
sham-operated animals; p = 0.01; Fig. 4D).

4. Discussion

This study determined the role of afferent inputs from the carotid
body chemoreceptors in maintaining regularity of breathing in con-
scious rats. We hypothesized that respiratory network activity would
display higher variability when the afferent inputs from this key per-
ipheral respiratory chemoreceptor site are removed experimentally.
Indeed, when regularity of breathing was assessed by two different
independent criteria (IS and CV of TTOT), ablation of the carotid bodies
was found to be associated with a slower and less regular respiratory
rhythm five weeks after the denervation surgery (regularity of
breathing was assessed during the light-phase of the 24 h cycle when
the animals spent most of the time asleep). Ten weeks after the carotid
body ablation, respiratory frequency was not different from that dis-
played by sham-operated rats, but regularity of the respiratory rhythm
was still reduced. Moreover, ablation of the carotid bodies had no effect
on sigh frequency five and ten weeks after the surgery, indicating that

Fig. 1. Hypoxia-induced arousal responses in rats following bilateral ablation of the
carotid bodies. Summary data illustrating changes in SES induced by hypoxia in the
carotid body ablated and sham-operated animals (10 weeks after CB ablation, n = 8 per
group).

Fig. 2. Resting breathing patterns after car-
otid body ablation. (A) Representative time-
condensed and expanded traces (for the
period indicated by the dashed box) illus-
trating resting breathing pattern in a con-
scious rat five weeks after bilateral carotid
body ablation, showing sighs (marked by *)
and randomly occurring apneas (marked by
arrow heads). (B) Summary data showing
23 ± 3% decrease in the mean resting
breathing rate (fR) in conscious rats five
weeks after bilateral carotid body ablation
when compared to the sham-operated rats.
(C) Representative time-condensed and ex-
panded traces illustrating resting breathing
pattern in a conscious rat ten weeks after
bilateral carotid body ablation. (D)
Summary data showing no difference in the
mean resting fR in conscious rats ten weeks
after bilateral carotid body ablation com-
pared to the sham-operated animals. Sighs
(*) and random apneas (arrow heads) are
indicated.
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peripheral chemoreceptor afferent inputs are not essential for genera-
tion of the inspiratory sighs (Lieske et al., 2000; Li et al., 2016). Im-
portantly, five weeks after carotid body ablation, the apnea index was
increased by nearly two-fold, and remained elevated ten weeks after
peripheral chemoreceptor denervation due to a higher frequency of
randomly occurring apneas (Fig. 4).

Respiratory activity in mammals is generated by brainstem neural
circuits, including the inspiratory rhythm generating circuits in the
medullary preBötC (Smith et al., 1991). Brainstem respiratory networks
receive afferent inputs from central and peripheral respiratory che-
moreceptors to adjust lung ventilation in accord with prevailing me-
tabolic and behavioral needs (Feldman et al., 2003; Funk, 2013). Re-
sults obtained in this study suggest that afferent activity of the carotid
body chemoreceptors provides an important tonic input that con-
tributes to the stability of the respiratory rhythm. Similarly, denerva-
tion of the arterial baroreceptors is well known to increase the varia-
bility of systemic arterial blood pressure (Alper et al., 1987; Sved et al.,

1997).
Recently, carotid body denervation has been put forward as a po-

tential therapy/treatment of certain disease states characterized by high
sympathetic activity which is generally considered to have a detri-
mental effect, contributing to the development and progression of
certain cardiovascular pathologies (Paton et al., 2013). Indeed, results
of several experimental studies demonstrated a clear beneficial effect of
carotid body denervation in animal models of hypertension and heart
failure (Abdala et al., 2012; Del Rio et al., 2013; Marcus et al., 2014;
Paton et al., 2013). The first clinical reports are now published de-
scribing the effects of unilateral carotid body denervation in heart
failure patients and patients with drug-resistant hypertension
(Narkiewicz et al., 2016; Niewinski et al., 2017; Niewiński et al., 2013).
In contrast to the results of the animal experiments, no effect of carotid
body denervation on blood pressure was observed in patients with
drug-resistant hypertension (Narkiewicz et al., 2016). In addition, the
chronic effect of peripheral chemoreceptor denervation on respiratory

Fig. 3. Irregular breathing pattern in con-
ditions of chronic carotid body ablation. (A)
Poincaré plots of the respiratory cycle
duration (TTOT) for nth cycle versus TTOT for
the nth + 1 cycle in a sham-operated rat
(top) and in a rat five weeks after carotid
bodies ablation (bottom). Summary data
showing that the coefficient of variation
(CV) of TTOT was higher in carotid body
ablated rats five (B) and ten (C) weeks after
surgery when compared to sham-operated
rats. (D) Summary data showing that the
breathing Irregularity Score (IS) was higher
in carotid body ablated rats vs. sham-oper-
ated animals five weeks after surgery. (E)
Summary data showing that IS remained
significantly higher ten weeks after bilateral
ablation of the carotid bodies when com-
pared to sham-operated rats.

Fig. 4. Sigh frequency and apnea index in conditions
of chronic carotid body ablation. When compared to
sham-operated rats, sigh frequencies were not dif-
ferent five (A) or ten (B) weeks after carotid body
ablation. (C) Summary data showing that apnea
index (random events per hour) was significantly
higher in rats five weeks after carotid body ablation
compared to sham-operated rats. (D) Summary data
showing that apnea index remained higher in carotid
body ablated rats ten weeks after ablation when
compared to sham-operated rats.
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rhythm stability under normal physiological conditions has not been
reported. This appears to be important since a sleep-disordered
breathing pattern is frequent in heart failure: 27% of heart failure pa-
tients have obstructive sleep apnea and 38% have central sleep apnea
(Bradley and Floras, 2003a, 2003b). Sleep-disordered breathing is
strongly associated and believed to contribute to sympathetic over-ac-
tivity and progression of cardiovascular disease (Chouchou et al.,
2013). Previous studies in rat models of heart failure reported that
carotid body denervation decreases variability of breathing (Del Rio
et al., 2013). In contrast, when we measured variability of breathing
five and ten weeks after carotid body ablation, it was found to be higher
in rats that underwent bilateral ablation of carotid bodies when com-
pared to sham-operated rats. These differences might be due to the
different protocols for carotid body denervation [excision of carotid
bodies in young (this study) vs. adult animals (Del Rio et al., 2013)] and
differences in data analysis [measuring variability of breathing in per-
iods of ∼ 120 min (this study) vs. ∼ 5 min (Del Rio et al., 2013)].
Nevertheless, in humans and animal models, denervation of the carotid
bodies results in higher resting PCO2 (during sleep PCO2 may further
increase), and it is proposed that increases in PCO2 may lead to unstable
breathing (Dempsey et al., 2004). Indeed, it was reported that surgical
removal of both carotid bodies made patients susceptible to the de-
velopment of irregular breathing patterns (Dahan et al., 2007). The
results obtained in this study should be taken into consideration since
any treatment that reduces stability of the respiratory rhythm over time
might detrimentally exaggerate the cardio-respiratory instability and
worsen the cardiovascular outcomes.
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