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Abstract 16 

 Conflicting hypotheses about the timing of carving of the Grand Canyon involve either a 17 

70 Ma (“old”) or < 6 Ma (“young”) Grand Canyon. This paper evaluates the controversial 18 

westernmost segment of the Grand Canyon where the following lines of published evidence 19 

firmly favor a “young” Canyon. 1) North-derived Paleocene Hindu Fanglomerate was deposited 20 

across the present track of the westernmost Grand Canyon, which therefore was not present at 21 

~55 Ma. 2) The 19 Ma Separation Point basalt is stranded between high relief side canyons 22 

feeding the main stem of the Colorado River and was emplaced before these tributaries and the 23 

main canyon were incised. 3) Geomorphic constraints indicate that relief generation in tributaries 24 
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and on plateaus adjacent to the westernmost Grand Canyon took place after 17 Ma. 4) The late 25 

Miocene-Pliocene Muddy Creek Formation constraint shows that no river carrying far-traveled 26 

materials exited at the mouth of the Grand Canyon until after 6 Ma.  27 

 Interpretations of previously-published low-temperature thermochronologic data conflict 28 

with these lines of evidence, but are reconciled in this paper via the integration of three methods 29 

of analyses on the same sample: apatite (U-Th)/He ages (AHe), 4He/3He thermochronometry 30 

(4He/3He), and apatite fission-track ages and lengths (AFT). “HeFTy” software was used to 31 

generate time-temperature (t-T) paths that predict all new and published 4He/3He, AH, and AFT 32 

data to within assumed uncertainties. These t-T paths show cooling from ~ 100 ℃ to 40-60 ℃ in 33 

the Laramide (70-50 Ma), long-term residence at 40-60 ℃ in the mid-Tertiary (50-10 Ma), and 34 

cooling to near-surface temperatures after 10 Ma, and thus support a “young” westernmost 35 

Grand Canyon.  36 

A subset of AHe data, when interpreted alone (i.e., without 4He/3He or AFT data), are 37 

better predicted by t-T paths that cool to surface temperatures during the Laramide, consistent 38 

with an “old” Canyon. This inconsistency, which mimics the overall controversy, is reconciled 39 

by optimizing cooling paths so they are most consistent with multiple thermochronometers from 40 

the same rocks and adjusting parameters to account for model uncertainties. We adjusted model 41 

parameters to account for uncertainty in the rate of radiation damage annealing during 42 

sedimentary burial in these apatites and thus possible changes in He retentivity. In the 43 

westernmost Grand Canyon, peak burial conditions (temperature and duration) during the 44 

Laramide were likely insufficient to fully anneal radiation damage that accumulated during 45 

prolonged, near-surface residence since the Proterozoic. The combined AFT, AHe, and 4He/3He 46 

analysis of a key sample from Separation Canyon can only be reconciled by a ‘young’ Canyon, 47 
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but thermochronologic uncertainties remain large for this geologic scenario. Additional new AFT 48 

(5 samples) and AHe (3 samples) data in several locations along the canyon corridor also support 49 

a “young” Canyon and suggest the possibility of variable mid-Tertiary thermal histories beneath 50 

north-retreating cliffs. We conclude that application of multiple thermochronometers from 51 

common rocks reconciles conflicting thermochronologic interpretations and is best explained by 52 

a “young” westernmost Grand Canyon.  53 

Keywords: Grand Canyon, apatite, thermochronology, (U-Th)/He, fission track, 4He/3He 54 

 55 

1. Introduction to the “age of Grand Canyon” controversy 56 

 The 140-year-long controversy about the age of the Grand Canyon was initially posed in 57 

terms of the hypothesis that the Colorado River was older than the tectonic uplifts it carves 58 

across (Powell, 1875; Dutton, 1882) and an alternate hypothesis that a younger river became 59 

erosionally superimposed on older, deeper monoclinal structures (Davis, 1901). It has long been 60 

recognized that Laramide-aged deposits from north-flowing rivers were present in the 61 

westernmost Grand Canyon (Young, 1966; Elston and Young, 1991) and some workers have 62 

related these deposits to an “old”, Laramide-aged (~70 Ma) Grand Canyon (e.g.  Wernicke, 63 

2011). As more research in the area was done, early proponents of a “young” (< 6 Ma) Grand 64 

Canyon (e.g. Babenroth and Strahler, 1945; Blackwelder, 1934; Longwell, 1946; Lucchitta, 65 

1966, 1972; McKee et al., 1967; Strahler, 1948) based their conclusions on the locally-derived 66 

Miocene-Pliocene Muddy Creek Fm., which stipulates that no far-traveled material reached the 67 

Grand Wash trough through the mouth of the Grand Canyon between ~13 and 6 Ma. 68 

Low-temperature apatite thermochronology methods began to be applied to Grand 69 

Canyon incision by Naeser et al. (1989) and Kelley et al. (2001). Subsequent studies have 70 
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included apatite fission track (AFT), (U-Th)/He ages (AHe), and 4He/3He thermochronometry 71 

(4He/3He) such that the combined data should resolve continuous t-T paths from ~110 ℃ to 72 

surface temperatures of 10-25 ℃. AFT relies on the temperature sensitivity of annealing the 73 

damage done by spontaneous fission of 238U to the crystal structure. An AFT age is determined 74 

by the number of these ‘fission tracks’ relative to the parent isotope, while the lengths of the 75 

tracks (i.e., the degree of shortening from a ~17 µm initial length) provides information about 76 

residence time in the partial annealing zone (110-60 ℃;  Ketcham et al., 2007). AHe dating is 77 

sensitive to temperatures of 90-30 ℃, where apatite crystals begin retaining radiogenic 4He at 78 

different temperatures depending on initial U and Th parent concentrations (Shuster et al., 2006; 79 

Flowers, 2009). 4He/3He thermochronometry provides additional information about a given 80 

sample’s continuous cooling path and is especially sensitive to the lowest resolvable 81 

temperatures of the three methods (Shuster and Farley, 2005). The datasets, individually and 82 

combined, can be used to constrain multiple time-temperature (t-T) cooling paths that predict the 83 

data within acceptable statistical confidence. Cooling paths are then related to burial depths by 84 

assuming values for surface temperature and geothermal gradient, which in this area are 85 

commonly assumed to be 10-25 ℃ surface temperatures and a 25 ℃/km geothermal gradient 86 

(Wernicke, 2011; Karlstrom et al., 2014).  87 

 Wernicke (2011) hypothesized that a NE-flowing 70-80 Ma California River and then a 88 

SW-flowing 55-30 Ma Arizona River both followed the modern Colorado River’s current path 89 

through the Grand Canyon and carved the canyon to within a few hundred meters of its modern 90 

depth by ~50 Ma. In this hypothesis, the Colorado River “was not an important factor in the 91 

excavation of Grand Canyon”. Flowers and Farley (2012) noted a major difference between 92 

eastern and western Grand Canyon cooling histories but supported an “old” westernmost Grand 93 



5 

Canyon and stated: “The western Grand Canyon 4He/3He and AHe data demand a substantial 94 

cooling event at 70-80 Ma, and provide no evidence for the strong post-6 Ma cooling signal 95 

predicted by the young canyon model.” Flowers and Farley (2013) further supported the 96 

conclusion of “... apatite 4He/3He and (U-Th)/He (AHe) evidence for carving of the western 97 

Grand Canyon to within a few hundred meters of modern depths by ~70 million years ago 98 

(Ma)”.  99 

Other workers have proposed a more complex landscape evolution for individual canyon 100 

segments (Figure 1A, inset map).  Laramide rivers flowed generally north across the Grand 101 

Canyon-Colorado Plateau region (McKee et al., 1967; Young, 2001), perhaps following the 102 

Hurricane fault system (Figure 1; Karlstrom et al., 2014). Thermal histories generated by AHe 103 

and AFT data from Lee et al. (2013) and Karlstrom et al. (2014) indicated different cooling 104 

histories for rim and river-level rocks in the Eastern Grand Canyon before 25 Ma but similar 105 

temperatures after 15 Ma, indicating that no canyon existed in this segment until the incision of 106 

an East Kaibab paleocanyon at 25-15 Ma. Thermochronologic data from these studies and others 107 

(Warneke, 2015) also indicate that Marble Canyon was not incised until the past 5-6 Ma.  108 

 Karlstrom et al. (2014) proposed a “paleocanyon solution” whereby an “old” 70-55 Ma 109 

paleocanyon segment paralleling the Hurricane fault and an “intermediate” NW-flowing 25-15 110 

Ma East Kaibab paleocanyon segment got linked together by the 5-6 Ma Colorado River as it 111 

was downwardly integrated from the Colorado Plateau to the Gulf of California. In this 112 

hypothesis, most of the Grand Canyon was incised by the Colorado River in the past 6 Ma. 113 

Karlstrom et al. (2016) reinforced this paleocanyon hypothesis and suggested that the 25-15 Ma 114 

East Kaibab paleocanyon was carved by an ancestral Little Colorado (not Colorado) River. 115 

Laramide (70-50 Ma) thermochronologic ages seen in many samples of that study were 116 
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attributed to northward cliff retreat of Mesozoic strata off the Mogollon highlands rather than 117 

carving of a ~70 Ma Grand Canyon. Fox and Shuster (2014) proposed that thermochronologic 118 

data from the westernmost Grand Canyon were compatible with “young” incision provided that 119 

sufficient radiation damage was retained during burial, thereby effectively changing the 120 

predicted temperature sensitivity of the system at the time of canyon incision. However, 121 

interpretations of thermochronology data from the westernmost Grand Canyon segment remain 122 

in controversy (Flowers et al., 2015).  123 

Here we applied the three different thermochronology methods using apatite from the 124 

same sample from the westernmost Grand Canyon to resolve conflicting thermal histories 125 

generated by inverse modeling of data originating from the same sample. Our key sample 126 

(sample #1; see Table 1) has new, high precision 4He/3He data, multiple AHe ages, and AFT data 127 

and is from the same location as the single Flowers and Farley (2012) 4He/3He sample (#2) upon 128 

which their “old” Canyon conclusion was mainly based. These are from Separation Canyon, RM 129 

240, where RM = river miles downstream of Lees Ferry (Stevens, 1983). We also report two new 130 

samples with combined AFT and AHe data and two new samples with AFT data that span from 131 

RM 225-260. Our objective is to re-evaluate and reconcile all new and published 132 

thermochronologic data from the westernmost Grand Canyon including AFT and AHe from Lee 133 

et al. (2013), AHe from Flowers et al. (2008), and 4He/3He from Flowers and Farley (2012).  134 

Westernmost Grand Canyon is defined as the segment between Diamond Creek (RM 135 

225) and the Grand Wash Cliffs (RM 276) (Figure 1). We use the term “old” Canyon for time-136 

temperature (t-T) paths that have a single cooling pulse at 70-55 Ma during which rocks cool to 137 

<30 ℃ and hence to within ~200 m of river level using a 25 ℃ surface temperature and a 25 138 

℃/km geothermal gradient (Wernicke, 2011). We use the term “young” Canyon for either a 139 
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single-stage cooling history that does not reach temperatures of <30 ℃ or a two-stage cooling 140 

history with cooling pulses at 70-50 Ma and at < 6 Ma separated by a period of long-term 141 

residence at temperatures of 40-60 ℃. These temperatures correspond to burial by 0.8 to 1.4 km 142 

of sedimentary rock, the depth of the modern westernmost Grand Canyon measured from the 143 

south and north rims respectively, and indicate no westernmost Grand Canyon had been carved.   144 

    145 

2. Summary of recent geologic studies supporting a < 6 ma westernmost Grand Canyon 146 

 Several recent studies have reinforced the evidence for a “young” 5-6 Ma westernmost 147 

Grand Canyon, independent of thermochronology-based studies. “Rim gravels” (e.g. Young, 148 

2001) on the Hualapai Plateau (Figure 1A) document an aggrading base level from 65-55 Ma 149 

(Music Mountain Formation), through ~24 Ma (Buck and Doe Formation), to younger than ~19 150 

Ma (Coyote Springs Formation), aggradation which is incompatible with a deep paleocanyon of 151 

near-modern depth during this time (Young and Crow, 2014). The Paleocene Music Mountain 152 

Formation is interbedded with the Hindu Fanglomerate (see star in Figure 1A and 1C), which 153 

locally contains clasts sourced from the Kaibab escarpment to the north and precludes the 154 

presence of a paleo-Grand Canyon in the Eocene (Young and Crow, 2014). The 19 Ma 155 

Separation Point basalt (Wenrich et al., 1995) overlies the Buck and Doe Formation in a location 156 

on the Hualapai Plateau that has been steeply incised on all sides (Figure 1B) suggesting 157 

lowering of base level after 19 Ma (Young and Crow, 2014).  158 

 Darling and Whipple (2015) examined the longitudinal profiles of Colorado River 159 

tributary drainages and compared them to profiles of similar-sized drainages established on the 160 

17 Ma Grand Wash escarpment. From this comparison, Darling and Whipple (2015) concluded 161 

that the morphology of the tributary drainages and slopes adjacent to the westernmost Grand 162 
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Canyon must be younger than the 17 Ma Grand Wash escarpment. They also noted that the 163 

beveling of the Hualapai Plateau indiscriminately across lithologies is indicative of a long-lived 164 

base level incompatible with a long lived paleo-Grand Canyon. A third conclusion is that a 70 165 

Ma westernmost Grand Canyon requires improbably low erosion rates of ~4 m/m.y. maintained 166 

for tens of millions of years.  167 

 The “Muddy Creek constraint” is based on sediments from Grand Wash Trough, at the 168 

mouth of the Grand Canyon, that contain limited or no Colorado Plateau detritus and no far-169 

traveled gravels from a pre-6 Ma Colorado River; instead, this area was internally drained prior 170 

to 6 Ma (Longwell 1946; Blackwelder, 1934; Lucchitta, 1966; 1972).  More recent support for 171 

the Muddy Creek constraint comes from the geometry of the Miocene Pearce Canyon fan 172 

deposited across the modern path of the Colorado River (Lucchitta, 2013), and by detrital zircon 173 

data from siltstones near the mouth of the Grand Canyon that show no far-traveled sediment 174 

from the Colorado Plateau or Grand Canyon between 13 and 7 Ma (Crossey et al., 2015). Each 175 

of these lines of evidence refutes an “old” deeply carved canyon that followed the path of the 176 

westernmost Grand Canyon.   177 

 178 

3. Procedures and parameters of thermochronologic modeling 179 

Thermal history models were calculated incorporating data from multiple 180 

thermochronometers using HeFTy software (v. 1.8.3) (Ketcham, 2005), with constraints based 181 

on the best understanding of the geologic history of the sampled rocks (Figure 2). We assumed a 182 

surface temperature of 20±10℃, which spans the range of surface temperatures assumed in 183 

published studies for this region. All thermal models assumed the Radiation Damage 184 

Accumulation and Annealing Model (the RDAAM; Flowers et al., 2009), which quantifies He 185 
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diffusivity in apatite through geologic time.  The RDAAM accounts for the effects of radiation 186 

damage concentration on helium diffusivity in apatite (Shuster et al, 2006) by assuming the 187 

annealing behavior of fission tracks can be used as a proxy for alpha-recoil damage annealing 188 

(Flowers et al., 2009).  189 

For many of our samples the ages appear to be over-dispersed (Vermeesch, 2010) and we 190 

were unable to find time-temperature paths that predict the observed AHe ages within error. The 191 

issue of age dispersion is a problem faced by other thermochronology studies (e.g. Vermeesh, 192 

2010) that needs to be better addressed by the apatite thermochronology community. In our case, 193 

in order to attempt to account for over-dispersion, we increased the measured uncertainty 194 

proportionally until we were able to find time temperature paths that could explain the data, 195 

which is equivalent to lowering the p-value and accepting more paths (Vermeesch and Tian, 196 

2014). Over-dispersed ages may arise because uncertainty in AHe ages is estimated using the 197 

high precision of the He, U and Th molar abundance measurements. These “analytical” 198 

uncertainties that do not incorporate additional uncertainties, such as: corrections for alpha 199 

ejection that do not account for the true shape of the crystal or the spatial distribution of U and 200 

Th (Ault and Flowers, 2012), possible undetected micro inclusions (Farley and Stockli, 2002), or 201 

neighboring minerals leading to alpha - injection (Spiegel et al., 2009). Therefore, the reported 202 

“analytical” error likely underestimates system uncertainties. Other assumptions in the models 203 

used to interpret the data may also not account for the true complexity of the system. For 204 

example, Cl content may control the temperature and rate of radiation damage annealing 205 

(Carlson et al., 1999; Donelick et al., 2005; Gautheron et al., 2013) and this is not accounted for 206 

in RDAAM. Therefore, when discussing “good” and “acceptable” paths below, these are in 207 

relation to the data with additional uncertainty included that attempts to account for the over-208 
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dispersed ages. For complete transparency, a comparison of predicted ages and corrected ages 209 

are therefore shown for each model result figure. 210 

Constraint boxes (Figure 2) were defined by potassium feldspar 40Ar/39Ar 211 

thermochronology data from McDermott (2011) and the known geologic history of the region 212 

(DR-6). Because all apatites are from Proterozoic basement rocks near river level, t-T paths 213 

began during the Precambrian and cooled to near-surface temperatures by Cambrian time 214 

beneath the Great Unconformity, with depth of near-surface residence thereafter determined by 215 

deposition and erosion of Paleozoic (~ 1 km) and Mesozoic (~ 2 km) strata. Flowers and Farley 216 

(2012) modeling of AHe data assumed that apatites were completely reset, and radiation damage 217 

was annealed, at temperatures of 110-120 ℃ at 80-100 Ma, just before the Laramide orogeny, 218 

and therefore began their thermal history models at these t-T conditions. However, long-term 219 

low-temperature residence of apatites between the Cambrian and the Laramide in our modeling 220 

allows for extensive pre-Laramide accumulation of radiation damage in the model, which may or 221 

may not have been completely annealed by Laramide burial (Fox and Shuster; 2014), and our 222 

broader 40-140 ℃ Laramide constraint box allow the data themselves to determine maximum 223 

Laramide burial temperatures.  224 

In addition to reanalyzing the key sample (#2) from the Flowers and Farley (2012) study, 225 

we pursue a multi-sample approach to test geologic evidence for spatially variable thermal 226 

histories during progressive north-to-south cooling (Flowers, 2008) due to cliff retreat 227 

(Karlstrom et al., 2014; 2016), Laramide reverse and Miocene normal faulting (Huntoon et al. 228 

1981, 1982), and the formation of older paleocanyon segments (Kelley et al., 2001; Young and 229 

Hartman, 2014; Karlstrom et al., 2014). These geologic factors argue against the assertion of 230 

Flowers et al. (2015) that “all western Grand Canyon samples have the same thermal history”. 231 
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Instead, we consider samples and data types individually before synthesizing the 232 

thermochronology of westernmost Grand Canyon relative to the geologic evidence outlined 233 

above.   234 

Throughout this paper, we assume average surface temperatures of 25 ℃ and a 235 

geothermal gradient of 25 ℃/km (Wernicke, 2011). Estimates of the surface temperature for 236 

westernmost Grand Canyon range between 10-25 ℃ (average surface temperature in Death 237 

valley is 25 ℃ ), whereas geothermal gradient estimates are between 18-30 ℃/km; these 238 

estimates are generally based on well log and heat flow data summarized by Wernicke (2011). 239 

The assumptions of Wernicke (2011) and Flowers and Farley (2008) provide a reasonable 240 

‘minimum’ value for a paleodepth estimate given the relatively high surface temperature 241 

estimate. However, these assumptions regarding the inversion of temperature to burial depth 242 

represent a major uncertainty in any thermochronologic study that involves estimating burial 243 

depth from temperature. These values undoubtedly vary by location and through geologic time in 244 

ways that are not quantifiable. Variables that have undetermined effects on surface temperatures 245 

and geothermal gradients through time and space include changes in the climate, elevation, and 246 

mantle temperatures; variations in thermal conductivity as strata are deposited and eroded; and 247 

the transient flow of groundwater. Complexities of how isotherms mimic topography in cases of 248 

ragged cliff retreat and/or below the edge of Music Mountain paleovalleys may also result in 249 

variations in the geothermal gradient. Thus, given the wide variation in published surface 250 

temperature and geothermal gradient assumptions compiled in Supplementary Table 2 of 251 

Karlstrom et al., (2014), thermochronology-determined paleodepths remain approximate and 252 

represent a continued uncertainty in geologic interpretations of thermal history models. While it 253 

is worth acknowledging these variables as a major uncertainty in our depth estimates, it is 254 
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beyond the scope of this paper to attempt to quantify the many effects of these variables. For the 255 

purposes of this study, it is enough to recognize that for a t-T path to be compatible with the 256 

proposed model of an “old” westernmost Grand Canyon cut to within 200 m of its modern depth 257 

(Wernicke, 2011), t-T paths must reach ~30 °C by 70-50 Ma, using the above assumptions. In 258 

contrast, modeled temperatures of ~ 40° C are interpreted to reflect ~ 600 m burial, the elevation 259 

differential between the river and present south rim in the westernmost Grand Canyon. Use of 260 

any higher geotherm or lower average surface temperature increases the interpreted depth of 261 

burial. 262 

 263 

4. New thermochronologic data and thermal history models 264 

 All new and some previously published data used in this study are reported in the 265 

supplementary files and data repository of this paper. New AFT ages and lengths are presented in 266 

DR-1. Chemical data indicate that apatites from the westernmost Grand Canyon are dominantly 267 

fluoro-apatite, with low concentrations of Cl, indicating relatively rapid annealing of fission 268 

tracks. DR-2 presents new 4He/3He data, DR-3 presents published AHe data with errors and 269 

uncorrected ages (back-calculated in the case of Lee et al., 2013), DR-4 presents new AHe data, 270 

and DR-5 presents all goodness-of-fit (GOF) data and modeling parameters used for the thermal 271 

history models done in this study. Supplementary figures, including modeled thermal histories of 272 

published AHe data, are shown in DR-6 and a detailed summary of methodology and model 273 

results is presented in DR-7.  274 

Each of the t-T path diagrams generated using HeFTy software shows the imposed t-T 275 

constraint boxes that are based on geologic observations, the good and/or acceptable t-T paths, 276 

and a gray bar that indicates the range of surface temperatures that need to be reached by 50 Ma 277 
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to support the “old” Canyon hypothesis. “Good” paths are designated by a goodness-of-fit (GOF) 278 

of p=0.5 or greater and are shown in pink, while “acceptable” paths have a GOF of 0.05<p<0.5 279 

and are shown in green, where p is the probability that the chosen path is not randomly selected 280 

and in fact, represents the data in question. Per the user manual for HeFTy v.1.8.4, the relative 281 

statistical fitting of good vs. acceptable paths implies that a “good” t-T path is supported by the 282 

data, while an “acceptable” t-T path is not ruled out by the data. 283 

 284 

Sample 
Number 

River 
Mile 

Sample 
ID 

Data 
source 

Source rock 
description 

(Karlstrom et al., 
2003) 

AHe 
age 

range 
(Ma) 

eU 
range 
(ppm) 

# of 
AHe 
ages 

AFT 
age 

AFT 
lengths 

1 240 10GC161 this 
study 

Separation pluton: 
weakly foliated, 
medium-grained 
granite; 1.71-1.68 Ga 

55.3-
93.4 

1.1-
14.6 4 60.8±4.4 13.1±1.6 

(102) 

2 240 CP06-69 

Flowers 
et al., 
2008, 
2012 

Separation pluton: 
weakly foliated, 
medium-grained 
granite; 1.71-1.68 Ga 

64-76 11-13 5 -- -- 

3 243 01GC86 Lee et 
al., 2013 

245-mile pluton: 
weakly foliated 
granodiorite; 1.73 Ga 

29-72 10.6-
17.1 3 62.8±4 13±0.4 

(67) 

4 245 10GC164 this 
study 

245-mile pluton: 
weakly foliated 
granodiorite; 1.73 Ga 

66.9-
94.9 

7.2-
18.7 6 72.2±5.9 13.1±1.6 

(92) 

S1 245 CP06-
71A 

Flowers 
et al. 
2008 

245-mile pluton: 
weakly foliated 
granodiorite; 1.73 Ga 

48-55 5-14 4 -- -- 

5 252 01GC87 Lee et 
al., 2013 

Surprise pluton: 
granite; 1.7 Ga 

69.5-
90.1 

81.8-
231.7 6 68.7±3.8 12.1±0.4 

(101) 

S2 ~252 GC863 

Flowers 
and 

Farley, 
2012 

Surprise pluton: 
granite; 1.7 Ga 54-71 47-85 6 -- -- 

6 260 MH10-
260 

this 
study 

Quartermaster pluton: 
megacrystic non-
foliated granite; 1.35 
Ma 

15-71 3-34 4 63.2±7 12.3±2 
(5) 

7 225 04GC138 this Diamond Creek -- -- -- 114±6.5 13.3±2.4 
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study pluton: granodiorite; 
1.73 Ga 

(66) 

S3 225 04GC139 this 
study 

Diamond Creek 
pluton: granodiorite; 
1.73Ga 

-- -- -- 112±6.1 13.6±2.2 
(47) 

8 225 CP06-65 
Flowers 

et al., 
2008 

Diamond Creek 
pluton: granodiorite; 
1.73 Ga 

51-
81.4 32.48 4 -- -- 

9 230.5 MH10-
230.5 

this 
study 

Travertine Falls 
pluton: medium-
grained granite; 1.7 Ga 

-- -- -- 69.0±6.2 12.8±2.1 
(101) 

Table 1: Summary of thermochronologic data modeled in this study 285 

 286 

4.1 Sample #1, Separation Canyon (RM 240): Combined AFT, AHe, and 4He/3He data 287 

 Sample # 1 (10GC161) is a new sample collected in the same location as sample #2 288 

(CP06-69) from Flowers et al., 2008 and Flowers and Farley, 2012, which was the single key 289 

sample with interpretable 4He/3He and AHe data that led to their “old” Canyon conclusion. We 290 

applied all three complementary apatite thermochronology methods to this new sample. This 291 

section highlights initial inconsistencies in t-T paths derived from different thermochronologic 292 

data types in this location and throughout the westernmost Grand Canyon. Thermal history 293 

modeling was initially unable to produce any good or acceptable t-T paths when all three 294 

datasets (AHe, AFT, and 4He/3He) were combined after ~500,000 random tested paths for 295 

sample #1 (10GC161). Thus, we modeled the datasets independently (Figure 3 and 296 

Supplementary Figure 1) to generate viable t-T paths and then compared these t-T paths for both 297 

sample #1 and sample #2 (Figure 4A). Our reconciliation of all data into a single thermal history 298 

by modifying modeling parameters is presented after informative exploration of the separate 299 

datasets. 300 

Bulk AHe ages for both sample #1 and #2 (age range 55.3-93.4 Ma and 64-76 Ma, 301 

respectively; Table 1), considered on their own, can be predicted by “old” Canyon t-T paths that 302 
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cool in a single event to near surface temperatures (~ 30℃) by ~70 Ma, in apparent agreement 303 

with Flowers and Farley (2012). AFT data from sample #1 (age of 60.8 Ma) are best predicted 304 

by t-T paths that cool gradually from peak Laramide temperatures of 100-140 ℃ to reach surface 305 

temperatures after 20 Ma and prefer a “young” Canyon. However, even with track length data, 306 

these AFT data alone are relatively insensitive to the <60 ℃ part of the t-T path where the 307 

controversy lies.  308 

Figure 3 shows high-precision 4He/3He data obtained from sample #1, apatite A (Figure 309 

3A), and our new model of 4He/3He data from sample #2 using our constraint boxes and the 310 

published U and Th zonation profiles for apatites C and D as model inputs (Figure 3B). The 311 

increased precision of 4He/3He data from sample #1 is due to higher 4He concentration, derived 312 

from both larger crystal size and slightly higher U and Th concentrations. Accurate 4He/3He 313 

modeling requires knowledge of both the measured age and the U and Th zonation profile of an 314 

apatite crystal; unfortunately only one or the other can be measured on the same crystal as a 315 

consequence of the destructive nature of each measurement. Flowers and Farley (2012) 316 

measured zonation for sample #2 and used an assumed age of ~85 Ma (corrected) based on the 317 

mean age of four other apatite grains in the sample that had been previously analyzed (Flowers et 318 

al., 2008). Conversely, we measured the age of apatite A of sample #1 (93.4 Ma, corrected) and 319 

assumed no zonation in our modeling of this data, based on minimal zonation present in other 320 

crystals from this rock seen in the distribution of fission tracks and further analysis in the 321 

companion paper Fox et al. (in press; see Supplementary Figure 2 and Flowers and Farley, 322 

2012).  323 

4He/3He data for sample #1 are best predicted by “young” Canyon t-T paths shown in 324 

Figure 3A and 3C. These paths show two-stage cooling: from 75 ℃ to ~60 ℃ at ~80 Ma, long-325 
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term residence at ~55 ℃, and then cooling to surface temperatures after 5 Ma. For comparison, 326 

an approximate ‘old’ Canyon path from Flowers and Farley (2012) (red lines in Figures 3A and 327 

3C), does not predict the new 4He/3He data in Figure 3A. These new data alone therefore provide 328 

strong support for a “young” Canyon.  329 

Figure 3D shows our new inverse modeling of sample #2 with 4He/3He data for two 330 

grains (C and D) using our constraint boxes that represent the complete thermal history and do 331 

not assume full annealing in the Laramide. The data are best predicted by t-T paths that reside at 332 

~40 ℃ after the Laramide, although cooling still appears to be single-stage. We still interpret this 333 

as favoring a “young” Canyon because a temperature of 40 ℃ corresponds to a minimum of 334 

600m of burial assuming a 25 ℃ surface temperature and 25 ℃/km geothermal gradient, and does 335 

not support an “old” Canyon carved to within 200m of the modern depth at this location. Thus, 336 

both samples #1 and #2, when modeled using 4He/3He alone, favor a “young” Canyon and the 337 

uncertainty is whether rocks resided at ~ 55 ℃ (1.2 km) or ~40 ℃ (0.6 km) using the minimal 338 

depth conversion values of 25 ℃ and 25 ℃ /km.     339 

 Figure 4A shows a summary of the best-fit paths for samples #1 and #2 generated by 340 

independent modeling of the three types of datasets (AHe, AFT, and 4He/3He) from the 341 

Separation Canyon location. Best-fit t-T paths from AHe data for both samples favor an “old” 342 

Canyon and are in striking disagreement with the thermal histories that best predict the 4He/3He 343 

data. Paths from the 4He/3He data and AFT data from sample #1 differ, but overlap near 50-60 344 

Ma, the AFT age of this sample. For the Separation Canyon location, AFT and 4He/3He data, 345 

when modeled individually, are compatible with post-Laramide residence temperatures of 40-60 346 

℃ and a “young” Canyon whereas the t-T paths for the AHe data cool to near-surface 347 

temperatures by 70 Ma and are compatible with an “old” Canyon.  348 
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The importance of applying all methods to the same sample and of comparing two 349 

samples from the same location is that it is physically impossible for these apatites to have 350 

undergone different cooling histories. Our approach to reconcile all of the datasets is to favor the 351 

AFT and 4He/3He data, which agree best with the geologic evidence outlined earlier in this paper 352 

and provide better constraints on thermal history solutions due to the greater numbers of data in 353 

these measurements. For westernmost Grand Canyon, where the discussion is focused on the 354 

lowest temperatures of apatite sensitivity, AHe ages alone have limited resolution in comparison 355 

to 4He/3He. 4He/3He data is also internally consistent as it originates from a single crystal, and is 356 

consequently subject to fewer variables and less uncertainty within the RDAAM. AHe ages from 357 

multiple crystals may be influenced by varying parameters per crystal that affect He diffusion 358 

kinetics (such as Cl content) that may not be accounted for by the RDAAM and therefore may 359 

not accurately predict the independent evolution of each crystal. 360 

To account for uncertainty in the rate of alpha-recoil damage annealing, and its influence 361 

on He diffusivity, we adjust the rmr0 parameter in the RDAAM, following Fox and Shuster 362 

(2014). This empirically derived parameter links AFT annealing to alpha-recoil damage 363 

annealing and reflects the grain’s resistance to annealing of radiation damage, which strongly 364 

influences He retentivity after reheating during sedimentary burial. Lower rmr0 values represent 365 

more retentive apatite that has a higher closure temperature range (Gautheron et al., 2013); thus 366 

AHe ages with lower rmr0 values are best predicted by higher temperature t-T paths. The 367 

RDAAM assumes a value of 0.83, which represents a typical fluorapatite’s resistance to 368 

annealing; however values generally range between zero and one, with most values between 0.65 369 

and 0.85, and often vary from apatite to apatite (Carlson et al., 1999; Ketcham et al., 1999; 370 

Ketcham et al., 2007). Figure 4B shows the effect of lowering rmr0 from the default value of 0.83 371 
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to 0.60 for a reference “young” Canyon path (Figure 4C) for the 4He/3He spectra of sample #2. 372 

Lowering rmro to 0.60 increases the GOF from 0.0 to 0.25 for grain c and from 0.0 to 0.16 for 373 

grain d. This point was also made by Fox and Shuster (2014) using a different modeling 374 

approach.  375 

 Figure 4D shows that all three datasets in sample # 1 (AHe, AFT, and 4He/3He) can be 376 

predicted by the same “young” Canyon t-T paths by adjusting the rmr0 values of individual AHe 377 

ages. This required adjustment of the rmr0 values for AHe ages and relaxing the age uncertainties 378 

to 10x the analytical error allowed the AHe ages, AFT age and lengths, and 4He/3He data to be 379 

jointly modeled via the RDAAM, albeit with a poor GOF of 0.07. One AHe age (apatite X) was 380 

excluded from this model as an old outlier on a positive age-eU trend given by the other apatites 381 

Z, Y, and A (Supplemental Figure 1B). The t-T path from this final combined dataset (Figure 382 

4D) shows a narrow set of 25 acceptable GOF paths after over 3 million total paths were tested. 383 

These paths were only generated by varying rmr0 values for the different apatites to 0.70, 0.60, 384 

and 0.60 for apatites A (with 4He/3He data), Z, and Y respectively. Other values for rmr0 for 385 

apatite A were tried, but resulted in unrealistic values of rmr0 values (0.20 and lower) for the other 386 

two apatites in order for t-T paths with acceptable GOF to be generated. Thus, our preferred 387 

thermal history for sample #1 and the Separation Canyon location reaches burial temperatures of 388 

90-120 ℃ during the Laramide, cools rapidly to residence temperatures of 40-50 ℃, and reaches 389 

surface temperatures after 5 Ma.   390 

 391 

4.2 Combined (U-Th)/He and AFT models  392 

 This section expands the thermochronologic coverage to other areas of the westernmost 393 

Grand Canyon with the other samples, listed by river mile, in Table 1. We present new modeling 394 
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of previously published samples from Lee et al. (2013): sample #3 (01GC86, RM 243) and #5 395 

(01GC87, RM 252) using our uniform model constraint boxes and new chemical data for the 396 

AFT analyses. We also report new combined AFT and AHe analyses for sample # 4 (10GC164, 397 

RM 245) and #6 (MH10-260, RM 260).  Thermal histories for the jointly modeled datasets are 398 

presented in Figure 5A-D.  399 

 400 

4.2.1 Sample # 3 (01GC86, RM 243); 245-mile granodiorite 401 

 Figure 5A shows t-T paths that predict the combined AFT and AHe data from sample #3 402 

(01GC86) from Lee et al. (2013). Three AHe ages range from 29-72 Ma, with a scattered age-eU 403 

plot. Flowers et al. (2015) stated that this sample was “a problematic sample” because of high 404 

dispersion of ages and a younger mean age (50 Ma) than other samples in the western Grand 405 

Canyon and therefore should not be used for inversion modeling. In contrast, we see no reason to 406 

reject this analysis as similar ages are found in several other samples and we have accounted for 407 

unknown kinetic controls by increasing the estimated error for each age to achieve acceptable t-T 408 

paths using the RDAAM. Our preferred best-fit path shows a single cooling episode to ~40 ℃ by 409 

40-50 Ma from burial temperatures of 90-130 ℃ during the Laramide and cooling to near-surface 410 

temperatures after ~20 Ma, similar to other thermal histories in this area. The thermal history 411 

generated by modeling the three AHe ages alone for this sample without the AFT data remain 412 

hotter, at ~70 ℃, until after 20-30 Ma, when they cool to near-surface temperatures 413 

(Supplementary Figure 3A). In this case, the addition of AFT to the AHe changes the modeled 414 

thermal history for this sample from a “young” Canyon path to closer to an “old” Canyon path, 415 

although neither path reaches near surface temperatures until after 20-30 Ma.    416 

 417 
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4.2.2 Sample # 4 (10GC164, RM 245); Spencer Canyon pluton 418 

Figure 5B shows our preferred t-T path for the combined AFT and AHe data (5/6 grains) 419 

for sample #4, which is at the same location as sample #S1 (CP06-71A from Flowers et al., 420 

2008; Supplementary Figure 4A). The AFT age for sample #4 is 72.2±5.9 Ma while the AHe 421 

ages range from 66.9-94.6 Ma. HeFTy generated acceptable t-T paths only after the age error 422 

was increased to 8x the analytical error. The best fit t-T path shows 100 ℃ peak burial 423 

temperatures during the Laramide followed by cooling to ~40 ℃ by 60 Ma and no second stage 424 

cooling. The model using AHe data alone for this sample (Supplementary Figure 3B) shows a 425 

different t-T path using 3x the analytical error. These paths have a single stage of cooling from 426 

~80 ℃ during the Laramide to near surface temperatures of 20 ℃, compatible with an “old” 427 

Canyon. Thus, the AHe data alone predict an “old” Canyon whereas the combined AFT and AHe 428 

t-T paths are not compatible with an “old” Canyon because near-surface temperatures are not 429 

reached until after 20 Ma. 430 

 431 

4.2.3 Sample # 5 (01GC87, RM 252); Surprise Canyon pluton 432 

Figure 5C shows our preferred thermal history for this sample from Lee et al. (2013), 433 

which is at the same location as sample #S2 (GC863 from Flowers and Farley, 2012; 434 

Supplementary Figure 4B).  Six AHe ages range from 69.5-90.1 Ma with a generally positive 435 

age-eU slope; the AFT age is 68.7±3.8 Ma. The combined datasets are best predicted by a t-T 436 

path showing a period of rapid cooling from ~90℃ to ~60 ℃ during the Laramide, mid-Tertiary 437 

slow cooling from 70 to 50 ℃, and cooling to surface temperatures after 20 Ma. This suggests 438 

~1.4 km of burial after the Laramide and favors a “young” Canyon. AHe data modeled alone 439 

(Supplementary Figure 3C) return a poorly constrained swath of t-T paths that in general show 440 
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cooling from 90-100 ℃ to ~40 ℃ during the Laramide before cooling gradually to surface 441 

temperatures, also favoring a “young” Canyon. 442 

 443 

4.2.4 Sample #6 (MH10-260, RM 260); Quartermaster pluton 444 

  Figure 5D shows our preferred t-T path for this sample generated with combined AFT 445 

and AHe data. The AFT age is 63.2±7 Ma and four AHe ages range from 15-71 Ma with a 446 

strongly positive age-eU slope. This model generated acceptable GOF paths only after relaxing 447 

the estimated errors to 15x the reported analytical uncertainties. The best-fit path has a two-stage 448 

cooling history that reaches a maximum burial temperature of ~ 100 ℃ in the Laramide, cools 449 

between 85 and 70 Ma, and resides at ~50 ℃ through 70-10 Ma. The inflection showing onset of 450 

young cooling takes place after about 5 Ma. Similar thermal history models are generated by 451 

jointly modeling the 4 AHe analyses without the AFT data (Supplementary Figure 3D). The AHe 452 

t-T paths reach a slightly lower maximum burial temperature of ~80℃ during the Laramide, cool 453 

and reside at ~60℃, and then reach surface temperatures after 10 Ma. Thermal histories for both 454 

the combined datasets and the AHe data alone support a “young” Canyon in that rocks remained 455 

at 50-60 ℃ until after 10 Ma, suggesting a minimum depth estimate of ~1km.  456 

 457 

4.3 Samples # 7 and #8 from Diamond Creek: proof of concept for the paleocanyon hypothesis  458 

 The above data from westernmost Grand Canyon show that the combined 459 

thermochronologic data of 4He/3He (2 samples), AHe ages (6 samples) and apatite fission-track 460 

analyses (5 samples) are best predicted by t-T paths compatible with a “young” Canyon. The 461 

“old” Canyon hypothesis, which predicts cooling to within 200 m of the surface (30 ℃) by 50 462 

Ma, can be compatible with individual datasets but is not compatible with multi-method analyses 463 
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from any of the samples. Consequently, the westernmost Grand Canyon is a “young” segment, 464 

carved in its present position in the past 5 Ma.    465 

To test whether any segments of Grand Canyon are “old” as proposed by Karlstrom et al., 466 

2014, we analyzed samples # 7 (04GC138) and #S3 (04GC139) from Diamond Creek at RM 225 467 

using AFT analysis. Diamond Creek a tributary to the Colorado River (Figure 1) where outcrops 468 

of the 55-65 Ma Music Mountain Formation occur at relatively low elevations and Karlstrom et 469 

al. (2014) and others (Young, 2001; Young and Hartman, 2014) have proposed that a ~60 Ma N-470 

flowing Paleocene river followed the Hurricane fault system. These samples are located near 471 

each other (within 60 m) with minimal elevation difference, and were collected near river level 472 

from the Diamond Creek pluton, at a similar location as sample #8 (CP06-65) from Flowers et al. 473 

(2008). If the paleocanyon hypothesis of Karlstrom et al. (2014) is correct, these samples 474 

represent an important proof-of-concept via their comparison to the westernmost Grand Canyon 475 

and should have an “old” Canyon thermal history. Sample #7 (04GC138) has detailed Cl wt.% 476 

and more track length measurements than sample #S3 (04GC139) and they are near enough to 477 

each other that a similar thermal history is required, so only sample #7 was modeled although 478 

data from both are presented in the data repository. The AFT age for sample #7 is 114.0±6.5, 479 

older than the AFT ages for other samples considered in this study, and high uranium rims are 480 

common in the analyzed apatites indicating some zonation. Figure 6A shows that AFT data for 481 

sample #7 are predicted by a narrow suite of good GOF t-T paths that cool from ~90 ℃ to 482 

surface temperatures by ~70 Ma. This single-stage cooling to surface temperatures supports that 483 

an “old” ~60 Ma paleocanyon was present at this location, but based on comparison with the 484 

westernmost Grand Canyon data it was the northern extension of the Music Mountain paleoriver 485 

system and not carved by a paleo-Colorado River. Further support of low peak burial 486 
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temperatures in this region comes from the bimodal peak of AFT track lengths in Figure 6A and 487 

6C. 488 

 Sample #8 (CP06-65) is a previously published sample from Flowers et al. (2008). This 489 

sample is also from the Diamond Creek pluton at the same location near RM 225. Figure 6B 490 

shows that all AHe ages from sample #8 can be predicted by t-T paths that cool rapidly from 80-491 

100 ℃ in the Laramide to temperatures of 30-60 ℃ before cooling gradually to reach surface 492 

temperatures throughout the Cenozoic, a single-stage cooling history that is compatible with a 493 

“young” Canyon at this location. 494 

 Figure 6C shows t-T paths that combine AHe ages from sample #8 with AFT data from 495 

sample #7. Both are from the same location and must have had the same cooling history. 496 

Predicted ages in the age-eU plot for this combined data thermal history model are much better 497 

behaved than any other set of combined data in this region; the AFT age is significantly older 498 

than the AHe ages and therefore can be accurately predicted by the RDAAM. The t-T paths that 499 

result show a single stage of cooling in the Laramide, between 80 and 60 Ma, with rocks 500 

reaching about 30 ℃ by 60 Ma, compatible with an “old” Canyon. For comparison, Figure 6D 501 

shows t-T paths that predict AFT data from sample #9 (MH10-230.5, this study). The AFT age 502 

for sample #9 is 69.0±6.2 Ma, similar to other AFT ages in the westernmost Grand Canyon but 503 

much younger than the AFT ages for samples 7 and S3 at Diamond Creek. Sample #9’s AFT t-T 504 

paths cool gradually from peak temperatures of 90-140 ℃ during the Laramide over the entire 505 

Cenozoic and reach surface temperatures after 20 Ma, compatible with a “young” Canyon. 506 

 507 

5. Discussion: reconciling dataset inconsistencies 508 
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Figure 7 takes the weighted mean t-T paths from different samples and analytical 509 

methods in order to compare modeling results. The results of the new analyses and new 510 

modeling using uniform geologic constraints back to the Precambrian show that a preponderance 511 

of these thermal histories, especially those that include combined datasets, support a “young” 512 

westernmost Grand Canyon (yellow envelope). Four thermal histories constrained by AHe data 513 

alone are best predicted by an “old” Canyon in Figure 7 but these paths are discordant relative to 514 

all other paths, including paths from the same sample generated when the AHe data are 515 

integrated with 4He/3He and/or AFT data from the same samples and same locations. These 516 

disparate “old” and “young” Canyon t-T paths cannot both be geologically correct and must 517 

result from limitations of the thermal history modeling; i.e. assumptions within the most current 518 

model of apatite thermochronology systems behavior (the RDAAM) must not account for 519 

important variables in an area of low-temperature burial reheating such as the westernmost 520 

Grand Canyon. 521 

In order to reconcile these discordant “old” Canyon AHe-only paths with the multi-522 

dataset “young” Canyon paths and the geologic data, we varied the value of rmr0 in the RDAAM. 523 

The default value for the rmr0 parameter in the RDAAM assumes that alpha-recoil radiation 524 

damage anneals at the same rate as fission track damage for a specific temperature. By 525 

decreasing rmr0 within the range of its uncertainty (Ketcham et al., 2007), we assume that the rate 526 

of annealing alpha-recoil damage is somewhat lower than fission track annealing in apatite (as 527 

supported empirically; Ritter and Märk, 1986), which effectively increases the He retentivity of 528 

each apatite grain after burial heating (Fox and Shuster, 2014). Since Laramide burial depths and 529 

resulting temperatures (75-140 ℃ based on t-T paths from this study) may not have been 530 

sufficiently high enough or endured for a sufficient time to completely anneal radiation damage 531 
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that accumulated during long-term surface residence, this assumed rate of radiation damage 532 

annealing is an especially important source of uncertainty in our analysis. This is partly 533 

addressed by requiring t-T paths to begin in the Proterozoic so the pre-Laramide thermal history 534 

can be accounted for, but cannot be totally reconciled between samples in this region using our 535 

current understanding of He diffusion in apatite.  536 

During the modeling process, we noticed that the subset of t-T paths that reached higher 537 

temperatures during the Laramide (>110 ℃) tended to reach cooler temperatures (<30 ℃) more 538 

quickly than paths that stayed at lower temperatures, demonstrating the difference between 539 

starting modeled t-T paths at high temperatures in the Laramide such as those Flowers and 540 

Farley (2012) employed versus starting these paths in the Proterozoic to account for the entire 541 

thermal history and allowing the data to determine maximum burial temperatures. Fox and 542 

Shuster (2014) emphasized that when using the RDAAM, the t-T paths that represent AHe data 543 

are sensitive to the range of temperatures reached during maximum burial. These maximum 544 

burial temperatures are best constrained by AFT data and provide a valuable co-constraint that 545 

directly influence the t-T paths allowed by the AHe and 4He/3He data. The wide range allowed 546 

by our Laramide constraint box allows the AFT data to determine maximum burial temperatures 547 

and therefore pick the most representative low-T cooling paths following burial for the AHe data 548 

using the RDAAM; these t-T paths almost invariably support a “young” Canyon.  549 

Figure 8 shows weighted mean paths for samples, color coded by river mile, to help 550 

evaluate whether different thermal history model results may reflect real variation in cooling 551 

histories. We interpret the “old” Canyon t-T paths at Diamond Creek to be real and to indicate 552 

that the Hurricane segment had cooled to 20-30 ℃ by 65-55 Ma and was carved by the Music 553 

Mountain and Hindu paleocanyon system (Karlstrom et al., 2014). Samples at river mile 240 554 
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(samples #1 and #2) reside at ~ 50 ℃ after the Laramide. Samples #3, #4, and #S1 in the 555 

westernmost Grand Canyon have similar low-T post-Laramide residence of ~40 ℃ at river mile 556 

243-246.  Samples at river miles 250-260 (samples #5 and #6) reside at 60-80 ℃ after the 557 

Laramide. These temperature differences could plausibly represent real differences in burial 558 

depth. A geologic hypothesis capable of explaining different t-T paths in these locations involves 559 

ragged cliff retreat of the Kaibab escarpment (Karlstrom et al., 2014). Figure 9 shows the 560 

present-day position and an approximate 50 Ma position of this escarpment that could explain 561 

different post-Laramide residence temperatures in westernmost Grand Canyon samples.  562 

 563 

6. Conclusions 564 

A diverse set of geologic studies continue to strongly support a 5-6 Ma integration of the 565 

Colorado River from the Colorado Plateau to the Gulf of California and carving of the 566 

westernmost Grand Canyon in the last 6 million years. The thermochronology of the 567 

westernmost Grand Canyon has been controversial, but this paper demonstrates that the 568 

thermochronology can be reconciled with compelling geologic field evidence.  The application 569 

of multiple thermochronology methods, especially new precise 3He/4He data, applied to the same 570 

source rocks at Separation Canyon, resolves the debate about the age of westernmost Grand 571 

Canyon. The combined data from this location cannot be explained by an “old” Canyon that was 572 

carved to within 200 m of its modern depth by 50 Ma; indeed, the new 3He/4He data alone 573 

precludes an “old” Canyon (see companion paper Fox et al., in press). Instead, our best t-T path 574 

for this location involves two-stage cooling with both Laramide and < 10 Ma pulses. New t-T 575 

paths generated by modeling other samples from this study, spanning river mile 230 to 260, also 576 

argue strongly for a “young” westernmost Grand Canyon. In contrast, samples at RM 225 within 577 
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the Hurricane segment of Grand Canyon, are consistent with an “old” 55-65 Ma (Music 578 

Mountain age) paleocanyon system that flowed north across the present path of the Grand 579 

Canyon as proposed by Karlstrom et al. (2014).  580 

Our best-fitting ‘young’ Canyon thermal history for westernmost Grand Canyon 581 

involves: 1) a history of long term, low temperature residence since the Proterozoic (a key 582 

difference between our models and previous models; e.g. Flowers and Farley, 2012); 2) peak 583 

pre-Laramide burial temperatures of about 80-110 ℃, compatible with burial by about 3 km of 584 

Paleozoic and Mesozoic strata; 3) a Laramide cooling episode that took place from 90-70 Ma 585 

and resulted in cooling to temperatures of 40-60 ℃, compatible with erosional beveling of the 586 

Hualapai Plateau to the level of the Esplanade Sandstone by the northward cliff retreat of a ~ 2 587 

km section of upper Paleozoic and Mesozoic rocks; 4) a period of long-term (70 to 10 Ma) 588 

residence at temperatures of 40-60 ℃, compatible with burial of samples by about 1 km (600 m 589 

to 1.4 km) of lower Paleozoic strata; this is consistent with the observed temporally persistent 590 

fluvial base level observed on the Hualapai Plateau, and the absence of a westernmost Grand 591 

Canyon; and 5) cooling to near-surface temperatures in the last 5-6 Ma, compatible with the 592 

Muddy Creek constraint and the arrival of the Colorado River to the Gulf of California at about 593 

5.3 Ma (Dorsey et al., 2007).  594 

The westernmost Grand Canyon should continue to be an excellent field laboratory for 595 

advancing understanding of low-temperature apatite thermochronology and He diffusion in 596 

apatite with a complex thermal history. This study highlights a range of continued uncertainties 597 

due to relatively low-temperature burial reheating where radiation damage may not be 598 

completely annealed and involving complex He diffusion kinetics related to the rate and 599 

temperature sensitivity of alpha-recoil damage annealing in apatite. Understanding possible 600 
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variables that control the retentivity of apatite crystals and variation in rmr0, such as previously 601 

unrecognized radiation damage effects, and better understanding of age dispersion in apatite 602 

datasets are current challenges for modeling apatite thermochronology datasets.  603 
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 609 

Figure captions 610 

Figure 1. A) Regional map showing geologic constraints and thermochronology sample locations 611 

in westernmost Grand Canyon and the extent of Tertiary gravels and volcanic deposits across the 612 

Hualapai Plateau, modified from Billingsley et al. (2006) and Karlstrom et al. (2014). Inset map 613 

shows sections of the Grand Canyon. Pink star is the location of north-derived key Hindu 614 

Fanglomerate exposure at head of Bridge Canyon. B) Google Earth image, looking SE, 615 

highlighting the incision surrounding the Separation Point Basalt (SPb) and its source flow. 616 

Geographic features are: BC= Bridge Canyon, CR= Colorado River, DC= Diamond Creek, 617 

GWFZ= Grand Wash Fault Zone, GWC= Grand Wash Cliffs, HC= Old man-Hindu Canyon, 618 

HFZ= Hurricane Fault Zone, HP= Hualapai Plateau, MF= Meriwhitica monocline and fault, 619 

PSC= Peach Springs Canyon, SeC= Separation Canyon, ShP= Shivwits Plateau, SpC= Spencer 620 

Canyon.  621 

 622 
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Figure 2. Constraint boxes imposed on models (using HeFTy v. 1.8.3) for all samples and their 623 

geologic justifications. The long period of time that samples resided in and below the partial 624 

retention zone between Precambrian and Laramide times may have resulted in extensive 625 

radiation damage that was not fully annealed in the Laramide and hence produced complex and 626 

variable He diffusion behavior in apatite. 627 

 628 

Figure 3: New and previously published 4He/3He data from sample #1 (this paper) and #2 629 

(Flowers and Farley, 2012) from the same location at Separation Canyon. A) New data (sample 630 

#1) are more precise than prior data (#2) and are best predicted by the “young” Canyon t-T path 631 

shown in black.  B) Flowers and Farley (2012) data as modeled in this paper are also best 632 

predicted by a “young” Canyon. C) Inverse thermal history model of apatite A from sample #1, 633 

using the measured age of this grain (93.4 Ma) and assuming no zonation, returned a tightly 634 

constrained “young” Canyon thermal history shown in black. D) Inverse thermal history model 635 

of the Flowers and Farley (2012) data using the same AHe age and error that they used; note that 636 

the ages for apatites C and D were not measured but were based on the mean AHe age (85.6 ± 637 

6.8 Ma) and eU (12 ppm) from other AHe analyses for this sample (Flowers et al., 2008). The 638 

good and best-fit paths support a “young” Canyon for both samples, but paths reside at ~40 ℃ 639 

(#2) instead of 50-60 ℃ (#1).  640 

 641 

Figure 4: Reconciling the disagreement between Separation Canyon t-T paths. A) Best-fit t-T 642 

paths from different analysis methods and samples (Sup. Fig. 1, Fig. 3) from the same location at 643 

Separation Canyon show marked disagreement when modeled separately. B) To reconcile data, 644 

we adjust the rmr0 value (a proxy for grain retentivity) in RDAAM using data from Flowers and 645 
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Farley (2012) to test a “young” Canyon reference path and find that assuming higher grain 646 

retentivity by decreasing the rmr0 values to 0.6- 0.45 (red and blue curves) predicts the 4He/3He 647 

data with an acceptable GOF of 0.55- 0.97, respectively. C) Reference “young” Canyon path 648 

used in B for varying rmr0; inset of C shows blow up of the forward model after 120 Ma, the time 649 

of interest for this study. D) By adjusting rmr0 values (different amounts for different samples, see 650 

Supplementary data), RDAAM was able to predict all datasets together to return a suite of 651 

acceptable t-T paths that reside at 40-50 ℃ after 70 Ma and reach surface temperatures after 5 652 

Ma. 653 

 654 

Figure 5: Samples with combined AFT and AHe data; age-eU plots and AFT track length GOF 655 

are shown for each sample. A) Data from sample #3 are best predicted by a t-T path that cools to 656 

~40 ℃ during the Laramide. B) Data from sample #4 follow a similar cooling path as sample #3, 657 

but are slightly warmer after the Laramide. C) Data from sample #5 have a 2-stage cooling 658 

history; these paths stay at high temperatures (~60 ℃) after slight cooling during the Laramide 659 

and reach surface temperatures after 20 Ma. D) Data from sample #6 share a similar t-T path 660 

with #5, but reside at ~50 ℃ and reach surface temperatures after 10 Ma.  661 

 662 

Figure 6: The paleocanyon hypothesis of Karlstrom et al. (2014) suggests that samples from 663 

Diamond Creek, because they are in the Hurricane segment, should give “old” Canyon t-T paths. 664 

A) New sample (#7) from the same location as a key sample from Kelley et al. (2001) where 665 

AFT data are best predicted by an “old” Canyon t-T path, consistent with this segment having 666 

been carved by the ~ 55-65 Ma Music Mountain Formation system. B) Previously published 667 

AHe data from Flowers (2008) from the same location as #7 that are best predicted by a “young” 668 
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Canyon t-T path. C) Combining our AFT (sample 7) with AHe data from sample #8 yields t-T 669 

paths that reach surface temperatures by 60 Ma, compatible with the existence of a Music 670 

Mountain paleocanyon. D) New AFT data from river mile 230.5, best predicted by a “young” 671 

Canyon t-T path. Note the significant difference between this sample (#9) and sample #7.  672 

 673 

Figure 7: A weighted mean t-T path comparison for all samples shows inconsistent paths. 674 

Models using our new 4He/3He data, the 4He/3He data from Flowers and Farley (2012), all 675 

models involving combined AFT and AHe, and about half the AHe-only t-T paths show post-676 

Laramide residence time at 40-60 ℃ from 70 to after 20 Ma, consistent with a “young” Canyon. 677 

Four AHe-only best-fit paths are best predicted by t-T paths involving rapid cooling at 70 Ma, 678 

consistent with an “old” Canyon (gray band). This range of t-T paths is not physically possible 679 

because many of the conflicting t-T paths are from the same location. Our preferred path is the 680 

jointly inverted multi-data set path from sample #1 (blue) suggesting that Separation Canyon 681 

rocks reached maximum Laramide burial temperatures of 80-110 ºC, resided at post-Laramide 682 

temperatures between 40-60 ℃ from 70 to 6 Ma, and cooled to near-surface temperatures after 5 683 

Ma.   684 

 685 

Figure 8: Synthesis of weighted mean t-T paths by river mile that shows preferred t-T paths 686 

based on the combination of multiple analytical techniques. Our preferred path for each sample 687 

is shown, including those with adjusted rmr0 values (RM 240). Most t-T paths support a “young” 688 

Canyon, but post-Laramide residence T varies from 40-70 ºC. The black path is from samples #7 689 

and #8 at Diamond Creek and suggests a paleocanyon carved by the Music Mountain paleoriver 690 
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along the Hurricane segment by ~60 Ma. Our preferred explanation for the varied post-Laramide 691 

residence temperatures is ragged northward cliff retreat of the Kaibab escarpment.  692 

 693 

Figure 9: A) Hypothesis that irregular scarp retreat of the Kaibab escarpment may explain 694 

different post-Laramide (~ 50 Ma) residence temperatures of western Grand Canyon basement 695 

samples. Paleocanyons at Diamond Creek and along the Hurricane segment of Grand Canyon 696 

explain the cool temperatures of ~ 25 ℃ for the combined AFT and AHe data from samples 7 697 

and 8 at ~50 Ma. In contrast, temperatures are ~50 ℃ at river mile 240 for samples #1 and #2, ~ 698 

40 ℃ for samples 3 and 4 at river miles 243-245, and ~60 ℃ at river miles 252-260, suggesting 699 

variable cover by at least ~600 m of upper Paleozoic strata (assuming a 25 ℃ surface temperature 700 

and 25 ℃/km geothermal gradient). Red outcrops are a shallowly emplaced Late Cretaceous 701 

pluton, indicating appreciable cover at this location. Pink star is key exposure of Hindu 702 

Fanglomerate sourced from northern exposures of Pennsylvanian-Permian strata. Paleochannel 703 

flow directions and mapping are by Young and Crow (2014). B) N-S cross-section along line A-704 

A’, using our preferred t-T path from sample #1 based on combined AFT, AHe, and 4He/3He 705 

data and assuming a 25 ℃ surface temperature and 25 ℃/km geothermal gradient to reconstruct 706 

possible paleosurfaces above the Colorado River. This cross section includes surficial constraints 707 

such as the Separation Point Basalt, Buck and Doe Conglomerate, north-derived Hindu 708 

Fanglomerate, and Music Mountain Formation within the 55-65 Ma Hindu paleocanyon.  709 

 710 

 711 

Supplementary and data repository items 712 

DR-1 AFT summary, ages, and lengths 713 
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DR-2 New 4He/3He data 714 

DR-3 Published apatite helium data 715 

DR-4 New (U-Th)/He data  716 

DR-5 Goodness-of-fit for the best-fit path in each model presented here relative to the data 717 

entered. 718 

DR-6 Supplementary figures 719 

DR-7 Detailed methodology and results 720 
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Sample #1 (RM 240): 4He/3He
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Sample #6 (RM 260): AFT, AHe (4/4)
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Weighted mean path comparison
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Weighted mean paths by river mile
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surface of the Hualapai Plateau, the Music Mountain Formation in the Old Man Hindu paleocanyon, 

the Buck and Doe conglomerate, and the Separation Point Basalt. Location of cross section line A-A’ is 

shown in Figure 1. Paleosurfaces were estimated from the best t-T path derived from 4He/3He data for 

sample 10GC161 at Separation Canyon assuming a 25˚C surface T and 25 ̊ C/km geothermal gradient. 
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10GC161 (RM 240): 4He/3He
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Figure 3. New and previously published 4He/3He data from 10GC161 and CP06-69, in the same location 

at Separation Canyon. A) New data are best predicted by the “young” canyon hypothesis. B) Flowers 

and Farley (2012) data are also best predicted by a “young” Canyon hypothesis. C) Inverse modeling of 

10GC161-a using the measured age of this grain and assuming no zoning returned a tightly constrained 

“young” Canyon thermal history. D) Inverse modeling of the Flowers and Farley (2012) data using the 

same AHe age and error they used, which were not measured for this grain but were based on the 

mean AHe age and eU from other AHe analyses for this sample (Flowers et al., 2008). Note that good 

paths support a “young” canyon but reside at ~40 ˚C instead of 50-60 ˚C. 
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Figure 4. Reconciling the disagreement between 

Separation Canyon samples. A) t-T best-fit paths 
and envelopes from different samples (Sup. Fig. 

1), all from the same locality at Separation Canyon, 

are geologically incompatible. B) To reconcile data, 

we adjust the rmr0 value (hence grain retentivity) in 

HeFTy for the Flowers and Farley (2012) samples 

to test the “young” canyon hypothesis and find that 
assuming higher grain retentivity (rmr0= 0.60) better 

predicts the 4He/3He data. C) Reference “young” 

Canyon t-T path for the predicted spectra in C. Inset 

shows a zoomed in area of the forward model after 

120 Ma and above 150˚C, the time of interest for this 
study. D) t-T paths from all samples (and methods) 

from the Separation Canyon location can be brought 

into agreement with the “young” Canyon hypothesis 

(except the 10GC161 AHe t-T path) by using an 

assumed rmr0 of 0.60. Dotted line is the weighted 

mean path for 4He/3He data from CP06-69.
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Figure 5. New samples for which AFT and AHe analyses are combined. A) AHe data from Quartermaster Canyon pluton 

(RM 260) are best predicted by a “young” Canyon t-T path. B) Combined AFT plus AHe data from the same samples predict 

a similar t-T path, but with higher Laramide peak T and cooler post-Laramide long-term residence T. C) AHe data from the 

245-mile granodiorite are initially best predicted by an “old” Canyon t-T path. D) Combined modeling of AFT and AHe for 

the same sample as C are best predicted by a t-T path that resides at ~35 ºC from 60-20 Ma compatible with 0.4-1.0 km of 

burial depending on assumed surface T of 10-25 ºC (and geothermal gradient of 25 ºC/km). 
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01GC86 (RM 243): AHe (2/3)
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01GC86 (RM 243): AFT, AHe (2/3)

Time (Ma)
120 100 80 60 40 20 0

140

120

100

80

60

40

20

0

Te
m

pe
ra

tu
re

 (°
C

)

70
 M

a

5 
M

a
Good paths: 0

Acceptable: 100

Total paths: 5,256,165 

AHe age error: 10x

Average GOF: 0.22

01GC86 AFT: Track Length Distribution

Length (µm)
20151050

Fr
eq

ue
nc

y

0.50

0.40

0.30

0.20

0.10

0.00 0

20

40

60

80

100

0 10 20

Ag
e

eU

01GC86 Age-eU: AFT, AHe

Corrected Age Predicted Age
Not modeled Measured AFT
Predicted AFT

M. age: 62.3+11.8/-9.9

P. age:  72.9

GOF:  0.09

M. length:

14.11±1.13

P. length:

14.59±0.95

GOF: 0.11

a1

a3

a2

a5
a4

a3 a7
a2

a6

Figure 6. Previously published samples with combined AHe and AFT data. A) AHe data from the Surprise 

pluton are best predicted by a poorly constrained “young” Canyon t-T path. B) Combined AFT and AHe 

from the same sample as E are best predicted by a tightly constrained “young” Canyon t-T path. C) AHe 

data from the 245-mile granodiorite are best predicted by a “young” Canyon t-T path. D) Combined AHe 

and AFT data are best predicted by cooler post-Laramide residence but still a “young” Canyon path. 
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Figure 7: A “proof of concept” for samples from Diamond Creek would suggest that, because they are in the Hurricane segment, they 

should give “old” Canyon t-T paths (Karlstrom et al., 2014); A) New sample  from the same location as a key sample from Kelley et al. 

(2001), where AFT data are best predicted by an “old” Canyon t-T path, consistent with this segment having been carved by the ~ 55-65 

Ma Music Mountain Formation system. B) Previously published AHe data from Flowers (2008) that are best predicted by a “young” Canyon 

t-T path. C) Combined AFT and AHe data from A and B, respectively, are best predicted by t-T paths that reach surface temperatures by 60 

Ma, compatible with the existence of a paleocanyon. D) New AFT data from river mile 230.5, best predicted by a “young” Canyon t-T path. 

Note the significant difference between this and A.
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04GC138, CP06-65: AFT, AHe (4/4)
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Figure 8. Best-fit path comparison for all samples shows inconsistent t-T paths. Our new 4He/3He data, 

the 4He/3He data from Flowers and Farley (2012), all combination models involving AFT and AHe, and 

about half the AHe-only analyses show post-Laramide residence time at 40-60 ºC from 70 to after 20 

Ma, consistent with the “young” Canyon hypothesis. Five AHe-only best-fit paths are best predicted by 
t-T paths involving rapid cooling at 70 Ma, consistent with the “old” Canyon hypothesis (gray band). 

This range of t-T paths is not physically possible because many of the conflicting t-T paths are from the 
same location. 



Figure 9. Synthesis of weighted mean t-T paths by river mile that shows preferred t-T paths based on 

the combination of multiple analytical techniques. The ‘best’ path for each sample was taken, including 

those with rmr0 values adjusted to 0.6 (dashed lines). Most t-T paths are more compatible with the 

“young” Canyon hypothesis, but post-Laramide residence T is varied. We have no good explanation 

for the AHe-only path at river mile 240 that is in conflict with AFT and 4He/3He best-fit paths even after 
setting rmr0 values to 0.6 (or even 0). 
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Figure 10. Summary figure showing irregular scarp retreat of the Kaibab escarpment. Paleorivers at 
Diamond Creek explain the cool temperatures of the combined AFT and AHe data there, while the extra 

500m of material covering thermochronology samples at river mile 240, 252, and 260 explain the 10-20˚C 
higher temperatures observed in Figure 11 compared to samples located at river miles 243 and 245. 


