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Abstract 17	  

Lactobacillus plantarum, Lactobacillus rhamnosus, Lactobacillus acidophilus 18	  

and Enterococcus faecium, which are the component species of a 19	  

commercially available probiotic mixture (Symprove®, P1), were grown in co-20	  

culture to determine whether they would inhibit each other in vitro using an 21	  

isothermal microcalorimeter (IMC). The growth profiles in the IMC were 22	  

characteristic and unique to each species while the growth profile of P1 was 23	  

most similar to that of L. plantarum, suggesting this is the dominant organism 24	  

in mixed-culture. Bacterial growth in the cell free supernatants (CFS) of the 25	  

probiotic species were also evaluated by IMC and viable counts determined at 26	  

the end of the incubation period. L. plantarum was found to be the most 27	  

effective species at inhibiting L. rhamnosus. Conversely, L. rhamnosus was 28	  

the most effective at limiting the growth of L. plantarum. Both L. plantarum 29	  

and L. rhamnosus were inhibitory toward L. acidophilus and E. faecium. E. 30	  

faecium was the least inhibitory towards all the other species. The study 31	  

shows how complex, multi-species probiotic products can be analysed to 32	  

determine the predominant species, and so provides a route to formulation of 33	  

new products. 34	  

Keywords: probiotic, Lactobacillus, interspecies inhibition, isothermal 35	  

microcalorimetry 36	  
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1. Introduction 40	  

Probiotics are defined as “live microorganisms that, when administered in 41	  

adequate amounts, confer a health effect on the host” [1]. Probiotics are 42	  

claimed to improve digestibility and nutrition [2, 3], prevent the occurrence of 43	  

diarrhoea [4], reduce cancer risk [5], prevent or alleviate allergies and atopic 44	  

diseases [6, 7] and prevent and treat infectious diseases [8]. The mechanism 45	  

by which their beneficial effects are achieved has been proposed to include 46	  

competition for nutrients, production of antimicrobial substances, competition 47	  

for adhesion receptors and stimulation of immunity [9, 10]. 48	  

Probiotics are usually members of the genera Lactobacillus and 49	  

Bifidobacterium (although some members of the genera Streptococcus, 50	  

Enterococcus, Lactococcus spp., Bacillus spp. and some yeast, for example 51	  

Saccharomyces boulardii, have been identified as probiotics). They are known 52	  

as members of the microbiota, which significantly contribute to a beneficial 53	  

health effect and have a long history of safe use [11]. Initially it was 54	  

anticipated that single probiotic strains from these genera or species could 55	  

produce the intended health benefits using the mechanisms underlined but as 56	  

knowledge of probiotic use has developed it is becoming clearer that for 57	  

optimal effect, mixed probiotics should be formulated. This resolution 58	  

stemmed from the basis that it was unlikely a single probiotic strain could 59	  

colonize the gut and achieve all therapeutic benefits and also because 60	  

probiotics could be used for targeting a number of diseases; each targeted 61	  

disease may require a specific probiotic property, which cannot be found in a 62	  

single probiotic strain [12-15]. Multi-species probiotic products are therefore 63	  

now commonly available and although some have not shown superior 64	  
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benefits [16, 17], there exists some evidence on their greater efficacy 65	  

compared with single strains [18-21]. For example, Chapman et al. [16] 66	  

reported insignificant differences between single probiotics and mixtures when 67	  

studying the effect of probiotics against the urinary pathogens Escherichia coli 68	  

and Enterococcus faecium. Tejero-Sarinena et al. [17] also demonstrated 69	  

better potency of inhibiton by some single probiotic species than mixtures 70	  

against enteric pathogens (Clostridium difficile and Salmonella Typhimurium). 71	  

Further, a previous study by Chapman et al. [18] demonstrated that 5 multi-72	  

species probiotic preparations had significantly greater inhibitions in 12 out of 73	  

24 cases towards C. difficile, E. coli and S. typhimurium, than 15 single-74	  

species probiotics. Apella et al. [21] and Drago et al. [20] have shown the 75	  

superior potency of mixtures than single strains in inhibiting the growth of 76	  

pathogens in co-culture.  77	  

However, very little is known about the growth behaviour of individual species 78	  

in probiotic mixtures, i.e. whether there is the possibility of inhibition or 79	  

promotion of growth [18, 19]. Also a previous evaluation of commercial 80	  

probiotic products on the UK market [22] indicated that none of the multi-81	  

species products contained all the labelled species; a reason believed to be 82	  

the likely result of inhibition amongst the species. In this study, the component 83	  

species of a commercially available probiotic mixture (Symprove, P1) were 84	  

tested against each other to determine whether some probiotic species could 85	  

inhibit the growth of others in vitro. This product was selected because it is an 86	  

aqueous suspension containing 4 probiotic species and as such is unique in 87	  

the market. 88	  

Conventionally, the in vitro assessment for inhibition would involve two main 89	  
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methods, although there are adaptations to these. The first is the observation 90	  

of growth of the species as whole organism co-cultures or bioproduct/species 91	  

co-culture on or within selective growth media; colony counting or 92	  

turbidimetric measurements are used to determine the degree of inhibition 93	  

[20, 21, 23, 24]. The alternative is to use diffusion assays for assessment of 94	  

inhibition [18, 23, 25]. Both of these methods are well established and have 95	  

several advantages but are labour intensive and time consuming. The plate 96	  

technique allows data acquisition in a retrospective manner, with colony-97	  

forming ability being influenced by the plating procedure and morphological 98	  

alteration during treatment. Turbidimetric measurements may also not 99	  

distinguish viable cells from dead cells, while the diffusion method may be 100	  

limited by the capacity of bioproducts to enter into and spread through the 101	  

growth medium.  102	  

The use of isothermal microcalorimetry (IMC) has been shown to circumvent 103	  

some of these limitations, offering many benefits; in particular, the 104	  

experiments are simple to set up and because there is no requirement for 105	  

optical clarity, growth of live organisms can be monitored in real time, non-106	  

destructively [26, 27]. Although successfully applied in the detection and 107	  

characterization of bacteria and other microorganisms, IMC assays are 108	  

usually done on pure cultures [27-30] and complex polymicrobial systems [31, 109	  

32] are rarely explored for detection of relative growth of two or more species. 110	  

This study aimed to explore the potential of IMC to detect the relative growth 111	  

of mixed culture of probiotic species to determine whether inhibition occurs 112	  

amongst them.  113	  
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2. Materials and methods 114	  

2.1. Probiotic strains and product 115	  

The probiotics used were Lactobacillus acidophilus, Lactobacillus plantarum, 116	  

Lactobacillus rhamnosus and Enterococcus faecium. The species were 117	  

obtained from the manufacturer of a commercially available combination 118	  

product (Symprove®, P1) with these constituent species in the United 119	  

Kingdom. The species were obtained as dehydrated cultures (the form in 120	  

which the species are introduced to make the final product, P1). 121	  

2.2. Growth conditions and maintenance of strains 122	  

The probiotic species were cultured overnight in de Man Rogosa Sharpe 123	  

(MRS) broth (Oxoid, Basingstoke, UK) supplemented with 0.05% w/v L-124	  

cysteine hydrochloride for 24 h at 37oC under anaerobic conditions (anaerobic 125	  

jar with AnaeroGen GasPak System; Oxoid, Basingstoke, UK). The cells were 126	  

then harvested, washed in phosphate buffered saline (PBS), resuspended in 127	  

15% (v/v) glycerol at an organism density of 108 CFU/mL and frozen in 1.8 mL 128	  

aliquots over liquid nitrogen [33]. Bacterial concentration was determined by 129	  

serial dilution and colony counting. Aliquots were stored under liquid nitrogen 130	  

until required. Prior to use, they were thawed for 3 min by immersion in a 131	  

water bath (40oC) and vortexed for a period of 1 min. 132	  

2.3. Sample preparation and microcalorimeter experiments with strains 133	  

and product  134	  

For pure culture studies, the probiotic species were each inoculated into pre-135	  

warmed Brain Heart Infusion (BHI) broth or MRS broth (Oxoid, Basingstoke, 136	  
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UK) supplemented with 0.05% w/v L-cysteine hydrochloride (BHIc; MRSc) (in 137	  

3 mL calorimetric glass ampoules) to give individual population densities of 138	  

106 CFU/mL. The probiotic bacteria were also inoculated into the pre-warmed 139	  

medium to give a mixed culture of the individual species at concentrations of 140	  

106 CFU/mL of each organism in the ampoules. Samples of batches of P1 141	  

were inoculated into pre-warmed BHIc or MRSc in ampoules at 1 in 100 142	  

dilutions to give a final concentration of 106 CFU/mL. The ampoules were 143	  

sealed with crimped caps, vortexed for 10 s and loaded into the intermediate 144	  

position of a Thermometric Thermal Activity Monitor 2277 (TAM 2277) (TA 145	  

Instruments Ltd., UK). The temperature of the instrument was set at 37oC (± 146	  

0.1oC). The loaded samples were allowed to equilibrate thermally at the 147	  

intermediate position for 30 min before measurement. Data were collected 148	  

every 10 s, with an amplifier range of 1000 µW using the software package, 149	  

Digitam 4.1 and analysed using Origin Pro 8.6 (Microcal Software Inc.). The 150	  

reference ampoule was loaded with 3 mL of sterile media. 151	  

2.4. Cell free supernatant and microcalorimeter experiments  152	  

The cell free supernatant (CFS) obtained from each species was tested 153	  

against the producing organism and the other species. Culture supernatants 154	  

of the probiotic species were prepared by cultivating the respective species in 155	  

broth over 48 h anaerobically using an Oxoid anaerobic jar with an 156	  

AnaeroGen GasPak System (Oxoid, Basingstoke, UK). The cells were 157	  

removed by centrifuging at 3500 g for 10 min at 4oC. The supernatant was 158	  

collected and filter-sterilized using a 0.22 µm membrane syringe filter. The 159	  

pHs of the supernatants were examined and recorded. 160	  
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1.5 mL of CFS obtained from the species were homogeneously mixed with 161	  

double fold concentrated medium. The probiotic species were individually 162	  

inoculated into the respective CFS-broth mixture to a population density of 106 163	  

CFU/mL and placed in the TAM. Power-time measurements were then taken. 164	  

A control experiment was done by replacing the CFS with sterile distilled 165	  

water. Colony counts of serially-diluted samples of the bacteria were done 166	  

after the TAM experiments.  167	  

3. Results and Discussion 168	  

As noted above, IMC is a technique widely used for monitoring bacterial 169	  

growth [26, 34]. The raw data from IMC are a plot of power (µW or µJs-1) as a 170	  

function of time (t). The power-time data showing growth curves of 10 batches 171	  

of P1 are shown in Figure 1. The power-time curves are complex, with peaks 172	  

and troughs representing the growth phases of the individual species in the 173	  

product [35]. The growth curves are generally reproducible but there are some 174	  

variances in the lag period, which may reflect slight differences in the 175	  

numbers of organisms loaded into the calorimeter; [36].  176	  

The power-time curves of the component species of P1 (L. plantarum, L. 177	  

rhamnosus, L. acidophilus and E. faecium), their mixed culture and a batch of 178	  

the product in BHIc are compared in Figure 2. It is apparent that the curves 179	  

are characteristic for individual species, with different onset times (increase in 180	  

power from baseline) and areas under curve (AUC, representing heat output). 181	  

It is important to note that the inoculum concentration for the species were the 182	  

same; while it would be possible to explore the effect of different inoculum 183	  

concentrations, the number of permutations and combinations would be vast. 184	  
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The time-lag before growth for some of the species may indicate a period of 185	  

adaptation of the species to the medium [36]. AUC also varied amongst the 186	  

species with E. faecium producing the highest heat output and L. acidophilus 187	  

the least. The maximum power attained was also higher for E. faecium 188	  

relative to the other species, which could imply that growth of E. faecium in 189	  

the medium is favoured or the species adapts to the medium more quickly 190	  

than the others. Growth of the species and P1 in MRSc, Figure 3, showed 191	  

characteristic growth curves but did not show the fastest growth of E. faecium. 192	  

This result shows the importance of media selection when carrying out these 193	  

studies and suggests that the best in-vitro:in-vitro correlation will be obtained 194	  

in biorelevant media.  195	  

The growth curve of a mixed culture of all four species in BHIc appears to be 196	  

dominated by E. faecium, in line with the observation above. However, when 197	  

the growth curves are compared, the growth curve of the product (P1) 198	  

appears to share some similarities to that of the growth curve of L. plantarum 199	  

in both BHIc and MRSc. So while it is likely E. faecium rapidly adapted and 200	  

consumed the nutrients before the other species in BHIc, in the commercial 201	  

product it could have contrarily been inhibited by the other species; colony 202	  

counting at the end of the IMC study showed lower numbers of E. faecium 203	  

relative to the other species, supporting this hypothesis. The dominance of L. 204	  

plantarum in the growth curve of the product may reflect that it is very robust 205	  

and may have survived the product manufacturing process and/or storage 206	  

better relative to the other species or may have inhibited the other species 207	  

during growth. Notably, isolation and characterization of the species in the 208	  

product showed L. plantarum to be the numerically superior organism 209	  
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between those isolated (L. plantarum and L. rhamnosus; [22]). Also, the 210	  

power-time data of the species in the CFS of each other (Figure 4) and the 211	  

plate count data at the end of the IMC-CFS experiment (Table 1) showed that 212	  

both L. acidophilus and E. faecium did not grow in the CFS of L. plantarum 213	  

and L. rhamnosus indicating inhibition of the former organisms by the other 214	  

two probiotic species. Also, lower concentrations of viable cells (104-105 215	  

CFU/mL) were observed at the end of the IMC-CFS experiment with these 216	  

species relative to 107 CFU/mL for the others. It could be reasoned that the 217	  

CFS of L. plantarum and L. rhamnosus caused some cell death in L. 218	  

acidophilus and E. faecium.  219	  

According to the IMC data and plate count data, the CFS of L. plantarum was 220	  

the most inhibitory towards all the other species; that of E. faecium was the 221	  

least inhibitory. The CFS of L. rhamnosus was the most effective against L. 222	  

plantarum and had a greater capacity to inhibit other species than L. 223	  

acidophilus. The data also showed that the species were inhibited by their 224	  

own CFS, this being more profound in the case of L. acidophilus which had 225	  

lower final concentration of 106 CFU/mL unlike the other species, which 226	  

maintained cell count of 107 CFU/mL after incubation in their own CFS.  227	  

In this study, our goal was to explore the potential of IMC to determine 228	  

whether some probiotics could inhibit others in vitro. The data show that some 229	  

species inhibit others and therefore may consequently inhibit them when 230	  

blended together as a formulation. This observation is consistent with 231	  

previous findings of Be'er et al. [37] and Chapman et al. [18] who reported 232	  

inhibition of closely related strains and species/genera respectively. For 233	  

instance, Be'er et al. [37] reported mutual inhibition of sibling colonies of 234	  
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Paenibacillus dendritiformis, observing that growth inhibition and cell death 235	  

occurred if material extracted from the agar plate between the two growing 236	  

colonies was introduced near a growing single colony [37]. Also, Chapman et 237	  

al. [18] reported that among lactobacilli, bifidobacteria, Streptococcus, 238	  

Lactococcus and Bacillus species tested, mutual inhibition was observed; 239	  

however the degree of inhibition was reported to be genus-specific.  240	  

Lactobacilli were reported to be most effective in inhibiting species of other 241	  

genera followed, by bifidobacteria. Bacillus, Streptococcus and Lactococcus 242	  

species showed little ability to inhibit species from the other genera. Testing 243	  

against strains of their own genus, they also reported that lactobacilli showed 244	  

mutual inhibition amongst the species [18], which is consistent with the 245	  

present findings. The inhibitory properties of lactobacilli may be due to the 246	  

production of acids and other metabolites to which they themselves are 247	  

susceptible. According to the present study, amongst the lactobacilli tested, L. 248	  

plantarum had the greatest capacity to inhibit other bacteria followed by L. 249	  

rhamnosus then L. acidophilus. The reason for the greater inhibitory profile of 250	  

L. plantarum could be either the production of greater quantity of antimicrobial 251	  

substances or a broader spectrum of activity of the antimicrobial substances 252	  

produced. Indeed CFS produced by L. plantarum recorded the lowest pH 253	  

indicating that it may have produced the highest quantity of acidic metabolites, 254	  

which may have contributed to its inhibitory profile. 255	  

The results from the study have several implications, not least of which is the 256	  

importance for research into intra and interspecies interaction of potential 257	  

probiotic strains and species and the need for their characterization before 258	  

they are put together as a product, submissions also echoed by Myllyluoma et 259	  
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al. [38] when studying the effects of multispecies probiotic combinations on 260	  

Helicobacter pylori infection in vitro and Grandy et al. [39] when studying two 261	  

different probiotic preparations for treatment of acute rotavirus diarrhoea [38, 262	  

39]. One likely consequence of species inhibition in combination products is 263	  

the probability that the species inhibited is the species offering the specific 264	  

activity anticipated. Also, species may adversely react or the presence of a 265	  

species could affect the potency of the other [18, 40].  266	  

In conclusion, the results from this study show that some probiotic species 267	  

could be inhibitory to others and highlight the importance of characterizing 268	  

probiotic species before putting them together as combination products.  269	  

References 270	  

[1] C. Hill, F. Guarner, G. Reid, G.R. Gibson, D.J. Merenstein, B. Pot, et 271	  

al. Expert consensus document. The International Scientific Association for 272	  

Probiotics and Prebiotics consensus statement on the scope and appropriate 273	  

use of the term probiotic. Nat Rev Gastroenterol Hepatol 11 (2014) 506-14. 274	  

[2] N.P. Shah. Functional cultures and health benefits. Int Dairy J 17 275	  

(2007) 1262-77. 276	  

[3] M. Rossi, A. Amaretti, S. Raimondi. Folate production by probiotic 277	  

bacteria. Nutrients 3 (2011) 118-34. 278	  

[4] J. Saavedra. Probiotics and infectious diarrhea. Am J Gastroenterol 95 279	  

(2000) S16-8. 280	  



	   13	  

[5] H. El-Nezami, H. Mykkanen, P. Kankaanpaa, S. Salminen, J. Ahokas. 281	  

Ability of Lactobacillus and Propionibacterium strains to remove aflatoxin B, 282	  

from the chicken duodenum. J Food Prot 63 (2000) 549-52. 283	  

[6] V. Rosenfeldt, E. Benfeldt, S.D. Nielsen, K.F. Michaelsen, D.L. 284	  

Jeppesen, N.H. Valerius, et al. Effect of probiotic Lactobacillus strains in 285	  

children with atopic dermatitis. J Allergy Clin Immunol 111 (2003) 389-95. 286	  

[7] E. Isolauri, T. Arvola, Y. Sutas, E. Moilanen, S. Salminen. Probiotics in 287	  

the management of atopic eczema. Clin Exp Allergy 30 (2000) 1604-10. 288	  

[8] K. Hatakka, E. Savilahti, A. Ponka, J.H. Meurman, T. Poussa, L. Nase, 289	  

et al. Effect of long term consumption of probiotic milk on infections in children 290	  

attending day care centres: double blind, randomised trial. BMJ 322 (2001) 291	  

1327. 292	  

[9] R. Fuller. Probiotics in human medicine. Gut 32 (1991) 439-42. 293	  

[10] S.C. Ng, A.L. Hart, M.A. Kamm, A.J. Stagg, S.C. Knight. Mechanisms 294	  

of action of probiotics: recent advances. Inflamm Bowel Dis 15 (2009) 300-10. 295	  

[11] S. Salminen, A. von Wright, L. Morelli, P. Marteau, D. Brassart, W.M. 296	  

de Vos, et al. Demonstration of safety of probiotics -- a review. Int J Food 297	  

Microbiol 44 (1998) 93-106. 298	  

[12] M.E. Sanders, J. Huis in't Veld. Bringing a probiotic-containing 299	  

functional food to the market: microbiological, product, regulatory and labeling 300	  

issues. Antonie Van Leeuwenhoek 76 (1999) 293-315. 301	  



	   14	  

[13] G. Famularo, C. De Simone, D. Matteuzzi, F. Pirovano. Traditional and 302	  

high potency probiotic preparations for oral bacteriotherapy. BioDrugs 12 303	  

(1999) 455-70. 304	  

[14] C. Dunne, L. Murphy, S. Flynn, L. O'Mahony, S. O'Halloran, M. 305	  

Feeney, et al. Probiotics: from myth to reality. Demonstration of functionality in 306	  

animal models of disease and in human clinical trials. Antonie Van 307	  

Leeuwenhoek 76 (1999) 279-92. 308	  

[15] M.E. Sanders. Summary of conclusions from a consensus panel of 309	  

experts on health attributes of lactic cultures: significance to fluid milk 310	  

products containing cultures. J Dairy Sci 76 (1993) 1819-28. 311	  

[16] C.M. Chapman, G.R. Gibson, S. Todd, I. Rowland. Comparative in vitro 312	  

inhibition of urinary tract pathogens by single- and multi-strain probiotics. Eur 313	  

J Nutr 52 (2013) 1669-77. 314	  

[17] S. Tejero-Sarinena, J. Barlow, A. Costabile, G.R. Gibson, I. Rowland. 315	  

Antipathogenic activity of probiotics against Salmonella Typhimurium and 316	  

Clostridium difficile in anaerobic batch culture systems: is it due to synergies 317	  

in probiotic mixtures or the specificity of single strains? Anaerobe 24 (2013) 318	  

60-5. 319	  

[18] C.M. Chapman, G.R. Gibson, I. Rowland. In vitro evaluation of single- 320	  

and multi-strain probiotics: Inter-species inhibition between probiotic strains, 321	  

and inhibition of pathogens. Anaerobe 18 (2012) 405-13. 322	  



	   15	  

[19] C.M. Chapman, G.R. Gibson, I. Rowland. Health benefits of probiotics: 323	  

are mixtures more effective than single strains? Eur J Nutr 50 (2011) 1-17. 324	  

[20] L. Drago, M.R. Gismondo, A. Lombardi, C. de Haen, L. Gozzini. 325	  

Inhibition of in vitro growth of enteropathogens by new Lactobacillus isolates 326	  

of human intestinal origin. FEMS Microbiol Lett 153 (1997) 455-63. 327	  

[21] M.C. Apella, S.N. Gonzalez, M.E. Nader de Macias, N. Romero, G. 328	  

Oliver. In vitro studies on the growth of Shigella sonnei by Lactobacillus casei 329	  

and Lact. acidophilus. J Appl Bacteriol 73 (1992) 480-3. 330	  

[22] M. Fredua-Agyeman, S. Parab, S. Gaisford. Evaluation of commercial 331	  

probiotic products. Br J Pharm 1 (2016) 84-9. 332	  

[23] H. Annuk, J. Shchepetova, T. Kullisaar, E. Songisepp, M. Zilmer, M. 333	  

Mikelsaar. Characterization of intestinal lactobacilli as putative probiotic 334	  

candidates. J Appl Microbiol 94 (2003) 403-12. 335	  

[24] Y.J. Lee, W.K. Yu, T.R. Heo. Identification and screening for 336	  

antimicrobial activity against Clostridium difficile of Bifidobacterium and 337	  

Lactobacillus species isolated from healthy infant faeces. Int J Antimicrob 338	  

Agents 21 (2003) 340-6. 339	  

[25] T.M. Barbosa, C.R. Serra, R.M. La Ragione, M.J. Woodward, A.O. 340	  

Henriques. Screening for bacillus isolates in the broiler gastrointestinal tract. 341	  

Appl Environ Microbiol 71 (2005) 968-78. 342	  



	   16	  

[26] O. Braissant, D. Wirz, B. Gopfert, A.U. Daniels. Use of isothermal 343	  

microcalorimetry to monitor microbial activities. FEMS Microbiol Lett 303 344	  

(2010) 1-8. 345	  

[27] S. Gaisford, A.E. Beezer, A.H. Bishop, M. Walker, D. Parsons. An in 346	  

vitro method for the quantitative determination of the antimicrobial efficacy of 347	  

silver-containing wound dressings. Int J Pharm 366 (2009) 111-6. 348	  

[28] X. Xing, Y. Zhao, W. Kong, Y. Zhong, D. Yan, P. Zhang, et al. 349	  

Application of microcalorimetry and chemometric analysis. J Therm Anal 350	  

Calorim 109 (2011) 381-5. 351	  

[29] M.A. O'Neill, G.J. Vine, A.E. Beezer, A.H. Bishop, J. Hadgraft, C. 352	  

Labetoulle, et al. Antimicrobial properties of silver-containing wound 353	  

dressings: a microcalorimetric study. Int J Pharm 263 (2003) 61-8. 354	  

[30] R.M. Zhao, Y. Liu, Z.X. Xie, P. Shen, S.S. Qu. A microcalorimetric 355	  

method for studying the biological effects of La3+ on Escherichia coli. J 356	  

Biochem Biophys Methods 46 (2000) 1-9. 357	  

[31] D. Bravo, O. Braissant, A. Solokhina, M. Clerc, A.U. Daniels, E. 358	  

Verrecchia, et al. Use of an isothermal microcalorimetry assay to characterize 359	  

microbial oxalotrophic activity. FEMS Microbiol Ecol 78 (2011) 266-74. 360	  

[32] A. Beaubien, L. Keita, C. Jolicoeur. Flow microcalorimetry investigation 361	  

of the influence of surfactants on a heterogeneous aerobic culture. Appl 362	  

Environ Microbiol 53 (1987) 2567-73. 363	  



	   17	  

[33] A.E. Beezer, R.D. Newell, H.J. Tyrrell. Application of flow 364	  

microcalorimetry to analytical problems: the preparation, storage and assay of 365	  

frozen inocula of Saccharomyces cerevisiae. J Appl Bacteriol 41 (1976) 197-366	  

207. 367	  

[34] A.E. Beezer. Biological microcalorimetry. Oxford, Academic Press 368	  

(1980). 369	  

[35] J. Said, C.C. Dodoo, M. Walker, D. Parsons, P. Stapleton, A.E. Beezer, 370	  

et al. An in vitro test of the efficacy of silver-containing wound dressings 371	  

against Staphylococcus aureus and Pseudomonas aeruginosa in simulated 372	  

wound fluid. Int J Pharm 462 (2014) 123-8. 373	  

[36] M. Fredua-Agyeman, S. Gaisford. Comparative survival of commercial 374	  

probiotic formulations: tests in biorelevant gastric fluids and real-time 375	  

measurements using microcalorimetry. Benef Microbes 6 (2015) 141-51. 376	  

[37] A. Be'er, H.P. Zhang, E.L. Florin, S.M. Payne, E. Ben-Jacob, H.L. 377	  

Swinney. Deadly competition between sibling bacterial colonies. Proc Natl 378	  

Acad Sci USA 106 (2009) 428-33. 379	  

[38] E. Myllyluoma, A.M. Ahonen, R. Korpela, H. Vapaatalo, E. Kankuri. 380	  

Effects of multispecies probiotic combination on Helicobacter pylori infection 381	  

in vitro. Clin Vaccine Immunol 15 (2008) 1472-82. 382	  

[39] G. Grandy, M. Medina, R. Soria, C.G. Teran, M. Araya. Probiotics in 383	  

the treatment of acute rotavirus diarrhoea. A randomized, double-blind, 384	  



	   18	  

controlled trial using two different probiotic preparations in Bolivian children. 385	  

BMC Infect Dis 10 (2010) 253. 386	  

[40] M. Lema, L. Williams, D.R. Rao. Reduction of fecal shedding of 387	  

enterohemorrhagic Escherichia coli O157:H7 in lambs by feeding microbial 388	  

feed supplement. Small Rumin Res 39 (2001) 31-9. 389	  

 390	  

Figure 1. Power-time data of 10 batches of P1. 391	  

Figure 2. Comparison of the power-time curves of the individual species of P1 392	  

(L. acidophilus, L. plantarum, L. rhamnosus, and E. faecium), their mixed 393	  

culture at equal cell density and a batch of the commercial product (P1) in 394	  

BHIc. 395	  

Figure 3. Comparison of the power-time curves of the individual species of P1 396	  

(L. acidophilus, L. plantarum, L. rhamnosus, and E. faecium), their mixed 397	  

culture at equal cell density and a batch of the commercial product (P1) in 398	  

MRSc. 399	  

	  400	  
Figure 4. Power-time data of the species in the CFS of each other; the 401	  

species in the CFS of [A], L. plantarum, [B], L. rhamnosus, [C], L. acidophilus, 402	  

[D], E. faecium. 403	  
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	   19	  

Table 1. Cell count of L. plantarum, L. rhamnosus, L. acidophilus and E. 405	  

faecium after incubation in the CFSs of each other (n=3). 406	  

CFS of 

species 

Cell count (log CFU/mL) of species post CFS incubation 

L. plantarum L. rhamnosus L. acidophilus E. faecium 

 L. plantarum 7.28 ± 0.07 7.09 ± 0.04 5.30 ± 0.02 4.54 ± 0.03 

L. rhamnosus 7.20 ± 0.05   7.26 ± 0.10 5.53 ± 0.06 5.36 ± 0.06 

 L. acidophilus 7.27 ± 0.13 7.38 ± 0.05 6.49 ± 0.03 7.08 ± 0.04 

 E. faecium 7.99 ± 0.03 7.58 ± 0.02 7.54 ± 0.07 7.34 ± 0.05 

 407	  
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