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1 Abstract

1.1 Introduction

Lesion — Symptom mapping forms the foundation to our understanding of the
function of different parts of the brain. As the science of neuro-imaging has
developed, the detail and quality of images produced on scanning patients
have improved. The result is that a single scan can produce a wealth of data.
The manual analysis and interpretation of this data have thus become a time
consuming and laborious affair. Manual analysis also has the drawback of
being highly subjective and user dependent. This has resulted in the
development of automated methods for the interpretation of such data. Before
data could be analysed, it must be pre-processed into a format that can be
optimally used by these methods. This step involves the normalisation,
segmentation and spatial smoothing of patient scans. Scans must be pre-
processed before automated analysis can be done. The use of automated
methods is supposed to make data interpretation quick, reliable and

reproducible.

1.2 Aim

In this study the smoothing aspect of pre-processing will first be looked at.
Here different smoothing levels will be used to try and decide on a value for
optimal smoothing. Once this is decided analyses using three automated
lesion identification methods will be done. The methods include Voxel Based
Morphometry (VBM), Posterior Probability Mapping (PPM) and Fuzzy

Clustering with fixed Prototypes (FCP). Parameters for the optimal functioning



of these methods will be determined and suggestions will also be made as to

which method may be the best and under what circumstances.

1.3 Results

The optimal Full Width at Half Maximum (FWHM) value for smoothing was
found to be 8mm. When the methods were looked at the following could be
said:

VBM:

e Analyses produced results in all 5 patients and

¢ Results only produced one level of information.

PPM:

The optimal probability threshold was determined to be 0.5

Analysis provides two levels of information.

Lesions were identified with sharper borders and

Analyses required the longest computer processing time.

FCP:

e An avalue of 0.5 provides the pest results.

o Lesions identified with less sharp (i.e. fuzzy) borders — method possibly
more sensitive and

e Analyses required the least computer processing time.

1.4 Conclusion

This study provides further evidence that smoothing must be carried out on all
scans to enable accurate and reliable lesion identification. An optimal FWHM

of 8mm was determined.



The study also determines an optimal value of 0.5 for the probability threshold
in PPM analysis. An optimal a value of 0.5 was also found for FCP analysis.
VBM proved to be the easiest method to use while PPM estimated the
confidence to declare a tissue as abnormal and FCP was the most sensitive
to lesion presence. Further work, however, should be done to further

investigate the probability threshold for PPM and a value for FCP.



2 Introduction

2.1 Background

Lesion — Symptom mapping studies have been integral to the development of
insight into the functioning of the human brain (Bates et al. 448-50). With the
advent of computer based imaging techniques (Computerised Tomography
and Magnetic Resonance Imaging) the ability to investigate patients in vivo
was realised. This was again forwarded with the development of functional
MRI. MRI allowed non-invasive imaging at a high spatial resolution with
lesions and other types of impaired tissue shown as atypical changes in signal

density.

The localization and sizing of lesions was first achieved by manually tracing
the volume of interest (VOI) by a human reporter (Mehta et al. 1438-54). This
manual approach has many drawbacks. It is a labour intensive and time
consuming task. It is highly subjective and user dependent. It also requires a

detailed knowledge of neuroanatomy.

In the 1990’s computational programs were developed that could identify
lesions automatically. At the Wellcome Trust Centre for Neuroimaging
(http://www fil.ion.ucl.ac.uk/spm/), Statistical Parametric Mapping (SPM) was
developed to enable just that. This program was written using the matrix
laboratory (MATLAB) programming platform. Currently the most up-to-date

version of SPM is version 5.



Using SPM, different automated lesion identification methods have been
developed. In order for these methods to function, images must first be
prepared or pre-processed into a format that can be analysed by the program
(SPM in this case) (Ashburer and Friston 1238-43). It should be noted
however that pre-processing is not perfect. It can result in the introduction of
error into an image and a compromise must be met to limit this effect. In order
to limit error, smoothing has also been introduced into the pre-processing

process.

2.2 Automated methods

Automated methods were developed in an attempt to make analysis easier,
standard and more reliable. The methods rely on the fact that a lesion can be
thought of as essentially abnormal tissue. This abnormal tissue composition
means that its magnetic properties differ from that of normal brain tissue. Thus
when the brain is imaged with MRI, the voxels corresponding to the lesion
differ to some extent from voxels corresponding to normal brain tissue. It is
this difference that automated methods detect and display. Distinguishing
between abnormal and normal voxels can however prove difficult. This can
result in potentially normal voxels being classed as abnormal and visa versa.
This is most evident around the borders of a lesion where the difference

between normal and abnormal can become blurred.



Automated methods can be classed in two categories according to the nature
of MRl images used as input:

1. multi-channel or multi-spectral methods that necessitate several
weighted MRI images, including T1, T2, PD, FLAIR images with or
without contrast agents (Wu et al. 1205-15). |

2. mono-channel or mono-spectral methods that deal with lesion
identification on only one type of image (e.g. if only T1 weighted MRI

images are available) (Stamatakis and Tyler 167-77).

In this study, three different automated methods of lesion identification in a
mono-spectral mode are compared. Thus only one image type is used for

analyses with one T1 weighted MRI image per patient.

The three methods to be compared include:
e Voxel Based Morphometry (VBM),
e Posterior Probability Mapping (PPM) and

e Fuzzy Clustering with fixed Prototypes (FCP).

They each quantify lesions in a different manner. The aim of this study was to
compare these different methods in an attempt to decide which method is
most reliable and / or gives the most information in a given situation. Factors
that affect the sensitivity and specificity of each method were also varied in an
attempt to find the best possible conditions for the functioning of the different

methods. A secondary aim of the study was to determine what level of



smoothing would be most useful for lesion identification. Smoothing is part of

data pre-processing and will be discussed further below.

Further explanation of the science of lesion identification and the pre-

processing of data will now be considered.

2.3 Data pre-processing

Before images are analysed attempts are made to make them as standard as
possible. This step involves the pre-possessing of images. This process limits
the influence of inter-individual anatomical variability and corrects for sampling
error created during image acquisition (Mechelli et al. 1-9;Bates et al. 448-50).

It will be discussed further now.

2.3.1 Spatial Normalisation

Everyone’s brain is different. There are small differences in anatomy and
volumes clearly vary with head and body size. However gross anatomy
generally remains the same. When using automated methods, the patient’s
brain is compared to an age-matched bank of controls. Thus it is important
that only similar parts of the brain are compared (Ashburner and Friston 805-
21). Thus, for example, the patient’s right cerebellar hemisphere is compared
to the controls’ right cerebellar hemispheres and not the pons. It can thus be

i

seen that if part of a patient’s brain not properly aligned, artefactal differences
will arise. Conversely if the brains of control subjects are not aligned they will
increase inter-subject variability. This will result in false positives (Mehta et al.

1438-54;Crinion et al.).



During spatial normalisation, the scan is registered on to a standard template
aligning the scan and making comparison possible. This template is obtained
from the average of several scans. The presence of lesions however makes
normalisation more difficult (Crinion et al.). For example, the presence of a
stroke prevents subject scans from lining up well with the template. Témplates
are thus chosen that match up with the subject scan as much as possible
(Davatzikos et al. 1361-69). Several templates may also be used in the
normalisation of one scan. The registration algorithm (which is responsible for
normalisation) selects the best possible templates to use for each study. Thus
different templates may be used in the normalisation of different studies (e.g.
adult, child, Alzheimer’s disease templates are all available). Once a template

is chosen however, it must be held constant within a study.

In this study the unified segmentation algorithm for normalisation was used.
This method has been shown to be more effective than previous normalisation
approaches (Crinion et al.). At the end of normalisation the subject’s scan is
scaled and warped. To limit this effect, it is thus important that the best
possible method and templates are used for normalisation. Normalisation is
not meant to be perfect but rather minimises the anatomical differences
between subjects. It is also true that without normalisation these automated

methods would not function.

2.3.2 Segmentation
Segmentation aids normalisation by further increasing the accuracy and

sensitivity of the automated methods (Mehta et al. 1438-54;Ashburner and



Friston 805-21). During segmentation the patient’s scan is broken up into its
constituent parts. These include (Davatzikos et al. 1361-69;Ashbumer and
Friston 805-21):

1. Grey Matter,

2. White Matter and

3. Cerebrospinal Fluid.

The voxel signal intensity of each of these constituent parts varies on MRI.
The separation of the scan into these constituents is based on this variation.
Modem segmentation techniques also correct for signal intensity variation that
arise because of the non-uniformity of conditions during MR image
acquisition. Over time, several segmentation algorithms have been
developed. Most utilise a Gaussian mixture model based on global and / or
local image intensity for tissue classification (Mehta et al. 1438-54;Ashburner
and Friston 805-21). This study used the unified segmentation algorithm

which iteratively combines the segmentation and normalisation process.

The same procedure is necessary for both patients and controls. Thus it
ensures that, for example, the grey matter of the patient’s right cerebral
hemisphere is compared to the grey matter of the controls’ cerebral
hemisphere. In this manner, unified segmentation goes one step beyond
normalisation, with comparisons limited to voxels that should have similar
signal intensity. It also allows the likelihood of abnormal tissue to be

calculated.



Thus segmentation generally results in a single scan being split into three.
Different methods / algorithms have developed for segmentation (Bezdek,
Hall, and Clarke 1033-48;Clark et al. 730-42).This study focused on the Grey
and White matter constituents produced by the unified segmentation
algorithm. Before comparing these images, the last step of pre-proce.ssing

requires spatial smoothing which will now be discussed in more detail.

2.3.3 Smoothing

Smoothing is normally the last pre-processing step. After smoothing important
patterns in the data set are captured while noise is minimised. It serves to
minimise the error introduced during normalisation and segmentation. It
reduces noise while retaining as much detail as possible in the image. It
functions to:

1. Render the data so that it becomes more normally distributed. This
helps to ensure that the assumptions underlying the theory of Gaussian
random field are met thereby increasing the validity of the parametric
statistical tests.

2. Help compensate for the inexact nature of spatial normalisation.

3. Ensure that each voxel in the image is an average of the grey or white
matter from around the voxel in the unsmoothed image (Mechelli et al.
1-9).

4. Improve the signal to noise ratio.

5. ‘Cushions’ against the imperfections in spatial normalisation introduced

within the data set (Jones et al. 546-54).

10



Smoothing is typically achieved with a Gaussian random filter in SPM5. The
Gaussian filter is a 3D convolution operator. It acts as a mean filter using a
Gaussian hump as a kemel (Fisher et al.). An example of such a hump is
shown in figure 1. The calculation of this Gaussian distribution is actually
performed using the voxels of the scan. The next step in smoothing is to
decide on the size of the filter to be used when smoothing with the Gaussian
kernel. The size of the filter is expressed in terms of the Full Width at Half
Maximum (FWHM) of the kemel. FWHM is an expression of the extent of any
given function. Figure 2 illustrates what is meant by FWHM. This approach

has been used for some time in engineering and biological applications.

Data are first processed with a single low pass filter (using the Gaussian
kemel). The FWHM of this filter can be varied. Previously, studies using
diffusion tensor MRI images have determined the affect that varying filter size
has on image analysis (Foong et al. 333-36). Filter sizes as large as 14 mm
and 16mm have been used (Wu et al. 1205-15;Jones et al. 546-54). For MRI
scans however a general ‘rule of thumb’ exists. It implies that the smoothing
kernel should be at least 2-3 times the voxel dimension. In this study,
unsmoothed images and three different filter sizes were compared. The
selected filter sizes were 4mm, 8mm and 12mm. An example of the result of
smoothing is shown in figure 3. These images demonstrate the increasing

fuzziness that occurs with smoothing.

2.3.4 Modulation
Modulation attempts to correct for the volume changes that occur during

normalisation (Mehta et al. 1438-54). Unmodulated images represent local

11



grey matter densities while modulated images represent the absolute amount
of grey pattern present. Modulation, however, is an optional step in pre-
processing. Modulation may cause difficulties with further analysis and can be
associated with poorer lesion detection in stroke patients (Mehta et al. 1438-

54). In this study, unmodulated images where thus used.

With pre-processing completed, analysis of image localisation can proceed. It

is appropriate now to consider how these different methods work.

2.4 Automated Image Analysis Methods

2.4.1 Voxel Based Morphometry (VBM)

In VBM a voxel-wise statistical analysis is performed (Ashburner and Friston
805-21;Ashburner and Friston 1238-43). A general linear model is employed
for this. This is a flexible framework allowing different statistical tests to be
performed (Mechelli et al. 1-9). The t test and F test are commonly used in
statistical routines of SPM5. The VBM technique using SPM software was the
first to be developed and is thus referred to as classical. The result of the
analysis is a statistical parametric map (SPM) of t or F statistics. It shows

where in the brain the null hypothesis can be rejected at a given confidence.

Graphical representation of the SPM uses coloured voxels on an MRI brain
‘slice.’ Different colours or gradients of colours can be used to identify areas

with different statistical significance.
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2.4.2 Posterior Probability Mapping (PPM)

PPM relies on Bayesian inferences when deciding on the probability that a
given voxel is abnormal. In Bayesian inference, two levels of calculations are
performed. The evidence or observation of the first calculation is used to
update the subsequent calculation. It is the results of this second calculation
that tells us the probability that a given hypothesis is true. Thus the results of
the first calculation act as the priors in the second calculation (Friston et al.

465-83;Friston and Penny 1240-49).

PPM analysis thus takes part in two stages. In the first stage VBM analysis is
carried out on all voxels. This initial analysis identifies areas where potentially
abnormal voxels may be found. This is followed by the second analysis.
During this analysis a probability threshold is set. It is this probability threshold
that distinguishes PPM analysis from VBM analysis. This probability threshold
represents the minimum probability that a voxel is abnormal. It can be varied
between analyses. The second analysis is again a VBM analysis with the
results of the first analysis acting as priors. Thus while in classical VBM
analysis the threshold is fixed, in PPM, the threshold is varied according to the
variability identified in the first analysis. For example, in areas of high prior
variability, the classical thresholds are relaxed avoiding false negatives. The
result of both stages of calculation is the generation of a probability
distribution map (Friston et al. 465-83). This map displays the abnormal

voxels for a given probability threshold.
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Analysis can then be repeated using another probability threshold. The results
can again be displayed on MRI brain ‘slices’ with different colours
representing different probability thresholds. Results can thus be easily
interpreted. This technique also provides two levels of information. One; it
locates statistically abnormal voxels and two; it can calculate the probability

that these voxels are actually abnormal.

2.4.3 Fuzzy Clustering with fixed Prototypes (FCP)

FCP functions differently from VBM and PPM because the analysis does not
rely directly on statistical test. Several concepts need to be explained before
FCP is fully described. First the idea behind clustering is considered. In
clustering, similar data elements are grouped together into clusters or classes.
Clusters are thus as dissimilar as possible. In fuzzy clustering, data elements
can belong to more than one group. Each data element must have a
membership level associated with it. The membership level defines the

degree of membership that data element has to the group.

Secondly we have to consider the idea of being an outlier. A group of data
elements will have a mean. If one of the data elements varies significantly
from the others, the effect is to move the mean towards that data element.
This data element can be thought of as an ‘outlier.’ Outliers have the effect of
inflating the variance of a data group and moving the mean towards the
outlier. Outliers can thus skew the true group effect and various techniques
have been employed in the past to remove outliers. FCP however relies on

the identification of these outliers (Seghier, Friston, and Price). For this study

14



outlier voxels were considered as belonging to the stroke lesion of patient
scans. Outlier voxels will thus show less signal intensity when compared to
the corresponding voxels in normal subjects. In calculations related to this
study the amount (or distance) that the outlier lies away for the mean effect of
all voxels is represented by D. U represents the membership value of a voxel

to the cluster. The entire process is outlined in figure 4.

At this stage the concept of a is introduced. Alpha acts as a ‘tuning’
parameter. It is one of the parameters involved in the calculation of D. Thus
varying a will have a direct effect on the value of D. Increasing a results in the
“smoothing” of values of D. Alpha can thus be thought of as a “smoothing”
parameter varying the range of values for D. Increasing a increases the
smoothness of the distribution of D while decreasing a has the opposite effect.
By increasing the smoothness of distribution of D the distance from the mean
effect of the voxels is decreased (see graph on figure 4). As recalled, in FCP,
the detection of outliers relies on the value of D being very different from the
mean effect of all voxels. With a increasing, the ability to pick up such large
variations decreases. Thus the sensitivity of the method decreases. However
the specificity of the method will increase as we can be certain that the
outliers identified when a smoothes D do in fact lie far from the mean. Varying
a thus provides a convenient way for varying the sensitivity or specificity of
FCP. This can possibly prove to be one of the strengths of this method. For
example when analysing a patient with a small stroke, it may be useful to use
a value of a that increases sensitivity. However patients with large lesions can

be investigated using larger values of a making the analysis more specific.

15



2.5 Summary of Methods used

These three methods represent a range of techniques that are currently used
for lesion identification. There is no as yet published data comparing all three
methods. Thus the aim is to make some suggestions as to which method may
be the best. It may however become apparent that the different methods may
be most suitable under different conditions but this too needs to be

detemined.

16






Figure 1: An Example of a 3D Gaussian Distribution Curve
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Figure 2: Full Width at Half Maximum, fnax represents the maximum value of
the distribution curve, x; and x, are the limits of the FWHM filter.
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Figure 3: Effect of Smoothing with a Gaussian random filter on T1 segmented Grey Matter
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3 Methods

3.1 Subjects and Controls

This study focused on the analysis of lesions in five patients who had all
suffered strokes at least 6 months prior to scanning. They can thus be
considered as having chronic stroke lesions. They were aged between 23 and
68 at the time of the stroke. All were pre-morbidly right handed and spoke
English as a first language. Four patients had infarctions while one had a
haemorrhagic stroke, (see Table 1). Anatomical T1 MRI scans of these
patients are illustrated in figure 5. These images demonstrate that all lesions
were left hemispheric strokes. In patients 1 to 3 the lesion is quite significant
with considerable atrophy. In Patients 4 the lesion is mostly limited to the
White Matter. In Patient 5, the lesion is smaller than in other patients and less
well defined. This should pose an especially challenging case for the
automated methods. It should be noted however that posterior circulation

strokes were not represented in this group.

Sixty-four controls were obtained from a bank of MRI scans from the
Wellcome Trust Centre for Neuroimaging. These controls were age-matched,
normal healthy right-handed individuals with no neurological disease.
Individuals were aged 21 — 75 years and all spoke English as their first

language.

20



3.2 MRI acquisition and pre-processing

Image acquisition was from a 1.5 Tesla Sonata Siemens MRI scanner using
3D GRE T1-weighted sequence (176 axial slices, 1mm thick with no gap,

1x1mm in-plane resolution).

Image pre-processing was conducted using SPM version 5. Normalisation
and segmentation were based on the unified segmentation algorithm. The

resulting Grey Matter and White Matter were used for analysis.

Before investigation of the automated methods, the effect of smoothing
FWHM on VBM analysis was assessed. Smoothing was thus carried out on
the Grey Matter images of all patients at three FWHM values:

1. 4mm x 4mm x 4mm,

2. 8mm x 8mm x 8mm and

3. 12mm x 12mm x 12mm.
The resultant images were used in this first stage of analysis.

At the end of this stage a consensus would be met on an FWHM that is optimal for

a

smoothing. Using this value, the White Matter images were also smoothed. The result

of this stage of pre-processing was thus Grey and White Matter images smoothed to
an optimal FWHM. These images were then used in the investigation of the

automated lesion identification methods.

21



3.3 Data analysis

All analysis was performed using the SPM version 5 software package.

Analysis, as noted above, involved two stages.

First analyses used the Grey Matter images produced from smoothing at
different FWHM. VBM analysis was performed on these Grey Matter images
at each FWHM of smoothing. During this analysis voxels of the Grey Matter
images of each patient are compared to anatomically comparable voxels of all
64 controls. Comparison takes the form of a two-sample t-test. For the t-test a
threshold of p<0.001 (uncorrected) was applied. The result was the
generation of t maps by assessing the contrast “patient < controls.” The
results were displayed onto ‘glass brains’ and on the standard T1 image of
SPMS5. The result was the generation of the images of lesions at different

levels of smoothing for each patient.

These results were then reviewed to determine the optimal FWHM of
smoothing necessary to give satisfactory results. Using this value, further
analyses were conducted using VBM on White Matter. Grey and White Matter

analyses were then carried out using PPM and FCP.

The VBM analysis of White Matter was completed in a similar fashion to Grey

Matter analysis but using only the optimal smoothing.

PPM analysis followed the VBM analysis. As noted in the introduction, PPM

analyses can use different thresholds or levels of probability. Using the

22



optimal smoothing, the images were analysed at three thresholds — high (0.9
or 90% probability), middle (0.5 or 50% probability) and low (0.3 or 30%

probability).

FCP was then performed. As noted in the introduction, a is a tuning
parameter. It is integral to the calculation of D which in turn is needed in the
identification of outlier voxels. Increasing a deceases the sensitivity (while
increasing the specificity) of the FCP method. Thus, using the optimal
smoothing, analysis was repeated at three levels of a. Two of the values of a
were calculated according to the standard deviation (o) of the whole data
(voxel) set. The following values were thus used:

1. a=250,

2. a=3.0o0and

3. a=0.5.

The result of these analyses was a bank of Statistical Parametric Maps for
both White and Grey Matter. This bank consisted of:
1. Different FWMH of smoothing for VBM Grey Matter
2. Using optimal smoothing, VBM White Matter, PPM and FCP analyses
3. Three different probably thresholds for PPM analysis, and

4. Three different values of a for FCP analysis.

23



3.4 Results comparison

The next step was the comparison of the images obtained from the analyses.

Firstly the issue of smoothing was resolved by reviewing images at different
FWHM. As indicated these images were created using VBM analysis and
Grey Matter images. The result of this first stage was a decision on an optimal

smoothing value.

Secondly the results of the different methods were compared.

For VBM analysis, Grey Matter maps were displayed on the standard T1 MRI
brain image of SPMS at different levels of smoothing. White Matter maps were

displayed on T1 MRI brain slices.

For PPM, Grey Matter images were again displayed on the standard T1 MRI
brain image of SPM5 and White Matter displayed on T1 MRI brain slices. The
true strength of the PPM analysis however lies in the ability to vary probability.
For each patient the images produced at different thresholds of probability
were thus displayed onto a single MRI brain (for Grey Matter) or MRl slices
(for White Matter). This enabled us to visualise the effect that varying

probability had on results.

If there was difficulty with analysis at a certain probability threshold, this
probability was excluded. The images created thus consisted of only two

levels of probability.

24



FCP images could not be displayed on the SPM T1 MRI ‘glass brain.” MRI
slices were thus used. The images were created using the optimal smoothing
value and the three different values of a. In order to decide on an optimal
value of a, results from each patient were displayed onto a single MRI brain
slice in a similar fashion as in the PPM analysis. It was thus possible to

visualise the effect that varying a had on the analysis.

The resultant images were then visually compared. As noted earlier VBM
results helped decide on an appropriate FWHM of smoothing. PPM probability
images were used to determine the best possible threshold that could be used

for this method. FCP images were used to determine the best value for a.

Finally the results of the different methods were compared. Their ability to
locate lesions with as little noise as possible was determined visually. The
best possible method for analysis could then be suggested. It should be noted
however that different methods might hold different areas of strength. This too

could be suggested by how the methods coped with different lesions.

Table 1: Characteristics of subjects scanned

Sex Stroke type Age at stroke (years) Timing scanning after
stroke (years)

M Infarction 68 8

F Infarction 34 7

M Infarction 47 0.5

F Infarction 23 10

M Haemorrhagic 60 4

25




Figure 5: Anatomical images of Patients 1 to 5, T1 MRI scans
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4 Results

The results will be presented under two headings:
1. Smoothing and

2. Findings of lesion identification methods.

4.1 Smoothing

The aim of the first part of this study was to determine the optimal FWHM for

smoothing. This initial phase used Grey Matter segmented images and VBM.

The results of patient 1 will be presented in detail followed by a brief mention
of the results from other patients. After the description of these images a

consensus will be made on an appropriate FWHM for smoothing.

4.1.1 Patient 1

Images obtained from Patient 1 smoothing, at different FWHM'’s, are shown in
figure 6. Within the range of FWHM values assessed (i.e. 0 to 12mm), as
smoothing increased the area identified as abnormal also increased. As
FWHM increased, images also become ‘cleaned up.”’ Small areas of
abnormality were removed as larger areas increased in size. The central area
of these larger lesions also became more deeply coloured. This can be
expected as smoothing increases the fuzziness of an image. Thus smaller
areas of abnormality are merged into the background image. Larger areas

however spread into the surrounding area and the borders of the lesion
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became increasingly blurred. The effect was (in this case) to increase the size

of the lesion.

This effect can be confirmed by review of the differences in t value between
Patient 1 and controls. These results are shown on Table 2. This table
illustrates the effect that increasing smoothing has on two different vo{l% and
on the maximum t score of all voxels. Voxel 1 (co-ordinates -10 14 -4) is near
the ventricles and not involved in the lesion. Voxel 2 on the other hand (co-
ordinates -36 0 -2) is involved in the lesion. The maximum t score, T, gives us
an idea of what is happening throughout the lesion. The t score of Voxel 1
steadily decreased as the FWHM of smoothing increased while the trend was
an increase in the t score of Voxel 2 as the FWHM of smoothing increased.
This would indicate that Voxel 1 is becoming less and less significant as the
FWHM of smoothing increased. The trend for Voxel 2 however, was to
become more and more significant as the FWHM increased. It should be
noted however that between 8mm and 12mm FWHM of smoothing, the t
score of Voxel 2 actually dropped. This suggests that significance was
actually lost between 8mm and 12mm of smoothing. The maximum t score (T)
is seen to be decreasing as the FWHM increases. T can be thought of as
representing the maximum difference between Patient 1 and controls. A larger
the value of T thus signifies a greater difference between the analysis for
Patient 1 and controls. As expected this maximum difference decreases as

smoothing increases and images become fuzzier.
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Overlap images were also created in an attempt to better demonstrate how
smoothing affected lesion size. These images (figure 7) demonstrate that
while there is a substantial increase in lesion size from unsmoothed to 4mm
and from 4mm to 8mm the increase in size from 8mm to 12mm is nét SO

dramatic.

The images from this analysis should also be compared to the anatomical
images provided in figure 5. The lesions identified at an FWHM of 8mm,

closely resemble the lesions as seen on the anatomical scans.

4.1.2 Other Patients
It must be clear that these results were not limited to Patient 1. Figure 8
illustrates overlay images at 8mm and 12mm smoothing for Patient 2 though

to 5.

These images all support the findings of Patient 1. Smoothing removed
smaller areas of abnormality as images became fuzzier. However significant
areas steadily increased in size. Again the magnitude of this increase drops
off after 8mm making 12mm analysis similar to 8mm. Again images can be
compared to the anatomical images of the patients in figure 5. Here too, 8mm
smoothing produced lesions of similar size as the lesions seen on these

scans.

The findings between patients are also interesting. Analysis generally

identified a large area which can be thought of as the area of interest. For
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Patients 4 and 5 however, several small areas of abnormality were still

detected at 8mm smoothing.

Considering these initial results a conclusion was reached that 8x8x8mm

FWHM smoothing would provide a good compromise between high lesion

detectability, low artefact contribution and accurate lesion delineation. These

initial results also gave us an impression of what to expect for the results of

further analysis.

Table 2: Effect of the FWHM of smoothing on the t scores of 2 voxels and the
maximum t score of all voxels (T). Voxel 1 is not involved in the lesion while
voxel 2 is involved.

FWHM Voxel 1 Voxel 2 Maximum t score
(co-ordinates -10 14 -4) (co-ordinates -36 0 -2) | (T)
not involved in the lesion involved in the lesion
Oomm 181.4 8.1 181.4
(unsmoothed)
4x4x4mm 35.00 18.0 35.00
8x8x8mm 12.6 19.8 19.80
12x12x12mm | 8.1 15.8 17.00

4.2 Findings of lesion identification methods

The second part of this study presents the findings of each lesion identification

method. VBM will first be presented followed by PPM and FCP.
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4.2.1 VBM
This classical analysis is based on the use of t test with a p < 0.001 (corrected
for multiple comparisons). Analysis produced results in all five patients in the

study.

Figure 9 (A — Grey Matter and B — White Matter) illustrates the results of these
analyses. These images can be compared with the overlap 8mm and 12mm

smoothed VBM images shown in figure 7 and 8.

It should be noted here that these images only provide us one level of
information. Voxels are identified as abnormal only if they differ significantly
from control voxels. As stated previously this analysis uses the t test with p <
0.001. Thus we know nothing more than the highlighted voxels differ

significantly from control voxels.

4.2.2 PPM
In PPM analysis we posed two questions:

1. What threshold or probability would be best in the analysis of scans

and

2. How does PPM compare to the two other analysis methods?

With respect to the first issue, 8mm smoothed images were first analysed
using probability thresholds of 0.3, then 0.5 and then 0.9. As noted in the
introduction, however, it is important to remember that the exact Probability

Threshold used in calculation varies according to the priors used in the

31



Bayesian calculation. Therefore it was not possible to define objectively the
PPM's threshold (i.e. the expected posterior probability) for use in calculation.
The results of the analysis are shown on figure 10 as overlap images of

probability thresholds 0.3, 0.5 and (for all except patient 5) 0.9.

All scans, except Patient 5, produced results at thresholds 0.3, 0.5 and 0.9. As
would be expected the volume of abnormal voxels steadily decreased as
probability increased. So much so that in the case of Patient 5, a probability
threshold of 0.9 did not pick up any abnormal voxels. As noted above, VBM
analysis showed the lesion to be small and limited mostly to the Grey Matter.
This can be confirmed by cross-referencing the anatomical images in figure 5.
Thus, as this scan contained a small lesion it is possible that (at 8mm of
smoothing) it was difficult to define using such a high probability. Comparison
with the anatomical images in figure 5 also showed that the ‘true’ lesion
matched the lesion detected by PPM analysis most closely when a probability

threshold of 0.5 was used.

It was thus decided that an empirical threshold level 0.5 would be acceptable.
Finally, it should be noted that PPM analysis took more computing time than
the other methods. Generally the analysis of a single Grey Matter / White
Matter T1 weighted MRI scan took 10 minutes. It must be remembered
however that the PPM analysis provides two levels of information. Firstly, it
identifies statistically significant voxels (as compared to control voxels) and
secondly, a probability threshold that the voxel is actually abnormal is built into

the analysis.
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4.2.3 FCP
Next the data were analysed using the FCP method. Again we pose‘d two
questions:

1. What is the optimal value for the ‘tuning’ parameter a and

2. How dose FCP compare to the other analysis methods?

With respect to q, three different values were chosen for analysis, a = 0.5, a =
2.50 and a = 3.00. Images produced during FCP analysis unfortunately could
not be displayed onto the 3D image of SPM5. Sections are thus illustrated in
figures 11 and 12 with abnormal Grey Matter voxels in red and abnormal
White Matter voxels in yellow. Figure 11 illustrates the results of analysis for

Patient 1 using different values of a.

They illustrate that the volume of voxels detected as abnormal steadily
increased moving from a = 0.5 to a = 2.50 to a = 3.00. These results were
compared visually to the anatomical images in figure 5. This shows that the
anatomic lesion matches the lesion detected by FCP analysis best when a =
0.5. This finding was similar for all 5 patients analysed. By this rational, it was
thus decided that a = 0.5 would in fact be the optimal value of a for analysis.
Figure 12 illustrates the analysis of the remaining patients with a = 0.5 and

8mm smoothing.

It should be noted that lesions identified by FCP analysis were less well

defined (i.e. had less sharp boundaries). FCP analysis also detected a greater
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number of small areas of abnormality as compared to VBM and PPM analysis.
This would suggest that FCP is more sensitive but less specific than VBM or
PPM. Finally is should be pointed out that FCP proved to be the fastest of the
three methods generally completing analysis within 1 minute. This may have

implications on computing time.

4.3 Summary

A summary is the resulits are shown below in Table 3.

Table 3: Main results of analyses.

Effect / Method Conclusions

assessed

Smoothing Images must be smoothed prior to analysis.
An FWHM of 8x8x8mm was found to be the optimal level of
smoothing.

vBM Reliable providing results for all patients.

Proves only one level of information.

PPM A probability threshold of 0.5 gives the best results.
Provides two levels of information.

Lesions identified with sharper borders.

Requires the longest computer processing time.

FCP An a value of 0.5 provides the best results.

Lesions identified with less sharp borders — method possibly
more sensitive

Requires the least computing time.
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Figure 6: Patient 1, Smoothed and unsmoothed images, Grey Matter

Unsmoothed 4x4x4mm smoothed

8x8x8mm smoothed 12x12x12mm smoothed
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f Patient 2 to 5 at 8mm and 12mm smoothing

Grey Matter only.

Figure 8: Overlay images 0
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Figure 9: Summary for all 5 patients for VBM analysis.
8mm smoothing. B) White Matter
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Patient 2

Patient 4
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Figure 10: The effect of thresholding on PPM analysis, A) Grey Matter
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Figure 10: The effect of thresholding on PPM analysis, B) White Matter
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Figure 11: The effect of varying a on FCP analysis. All images for Patient 1, 8 mm smooth
A) Grey Matter shown in Red

a=3.00



Figure 11: The effect of varying a on FCP analysis. All images for Patient 1, 8 mm smoothed
B) White Matter shown in Yellow

a=0.5

a=2.50c

a=3.0c
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Figure 12: FCP analysis, a = 0.5, Patients 2 to 5, 8mm smooth
A) Grey Matter in Red

Patient 3

Patient 5




Figure 12: FCP analysis, a = 0.5, Patients 2 to 5, 8mm smooth
B) White Matter in Yellow

-

Patient 4
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5 Discussion

As the science of Neuro-imaging has developed, more and more data have
been produced as spatial resolution increases with thinner and thinner
anatomical slices. Automated sequences have thus become important for the

reliable, quick and robust analysis of lesions.

Images however had to be moulded and shaped into usable data sets that
could be analysed by programs. Thus the science of image pre-processing
developed hand in hand with these automated methods. The development of
these technologies has been rapid with many different methods being tried
and tested. In this study we have looked at the smoothing aspect of pre-
processing and three different types of lesion identification methods. The
results of the effect of smoothing will be discussed initially followed by the

lesion identification methods.

5.1 Smoothing

Smoothing is the last stage of pre-processing. Normalisation and
segmentation are both imperfect and smoothing helps to even out this
impertfection. In this study we analysed data that was unsmoothed and
smoothed using increasing FWHM. It is interesting that all data sets produced

results.
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However three effects were noticed as the FWHM of smoothing increased:

1. The larger lesions of interest became larger in size.
2. The smaller lesions decreased in size.

3. Asthe FWHM increased, lesion bounders became less sharp.

These effects could be anticipated. Smoothing serves to blur an image.
Voxels fuse into the background and the borders of any lesion become less

distinct.

Using Patient 1 (figure 6) as an example, analysis of an unsmoothed image
produced results where the lesion identified was much smaller that the actual
anatomical lesion. Referring to table 2 three effects can be identified as the

FWHM of smoothing increases:

1. The t score of a voxel involved in the lesion increases
2. The t score of a voxel not involved in the lesion decreases and

3. The maximum t score (T) decreases.

These effects also are illustrated in figure 13. This would indicate that as
smoothing increased the lesion increased in size with the maximum T value
dropping off as the borders of the lesion merged with the surrounding scan.
Referring again to figure 13, the rate of this decrease can be seen to reduce
as the FWHM of smoothing increases. The final shape of the lesion detected

matches that of the anatomical lesion. This suggests that the voxels actually
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making up the lesion were close to the necessary p value to make them

statistically significant. Smoothing was however necessary for this to occur.

Looking closely at the unsmoothed and 4mm smoothed images of Patient 1 in
figure 6 you can also notice several small areas of lightly coloured abnormality
over the cerebellum. These are likely to be artefacts because they are not
visible on the anatomical scans. Artefacts could arise as a result of the
imperfect nature of the earlier steps of pre-processing (e.g. normalisation).
With smoothing however these small differences merge into the background
and are no longer identified as abnormal. In effect, the smoothing has
‘cleaned up’ the images. Unlike the voxels discussed above, the p value of
these voxels can be considered as being close to non-significance.
Smoothing was however necessary them to be fully rendered as non-
significant. The findings suggest that it would be inappropriate to use images

that are unsmoothed or smoothed with a 4mm FWHM.

Lastly, 8mm and 12mm smoothed images are considered. On visually
comparing the images in figure 6, the magnitude of the change between these
images is not as great as that seen between 4mm and 8mm smoothing. The
effect of smoothing thus becomes less pronounced when dealing with higher
values of FWHM. Again looking at figure 13 we can see that the t value of
Voxel 2 (which is involved in the lesion) actually decreased as we moved from

an FWHM of 8mm to 12mm. This would suggest that the maximum t value for
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this ‘lesioned’ voxel was already attended at 8mm. Further smoothing had the

effect of actually decreasing its significance.

As smoothing increases and the boarders of the lesion become blurred, it is
important that we do not start encroaching on areas of the scan that are
actually normal. It is possible that this will occur at very high smoothing values
as the entire image is blurred into one and the abnormal lesion is spread
throughout. It is thus best to use the lowest possible value of smoothing that
will give us useful results. This gradual increase in lesion size has been

described in other studies where smoothing was varied (Jones et al. 546-54).

For these reasons, in this study the FWHM found to be most useful was
8x8x8mm. At this value the lesion detected was similar in size and shape to
the anatomical lesion. While a slightly larger lesion was outlined with
12x12x12mm smoothing, there is the risk of including voxels that are not
actually involved in the lesion. These results are in line with previous studies
using spatial smoothing during lesion identification (Stamatakis and Tyler 167-

77).

Smoothing may also depend on the voxel size. Here the voxels were acquired
at 1x1x1 mm and this was increased to 2x2x2mm during the spatial
normalisation process. While 8x8x8 mm may be best for these images, the
ideal smoothing may vary with the size of the voxel. This was not investigated

in this study.
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t score

Figure 13 — Effect of smoothing on the t score of Voxel 1, Voxel 2 and the
maximum t score, T.
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Having completed pre-processing, attention is now turned to the lesion

identification methods that were compared in this study.

5.2 Lesion identification methods

The methods compared in this study include Voxel Based Morphometry
(VBM), Posterior Probability Mapping (PPM) and Fuzzy Clustering with fixed
Prototypes (FCP). All methods were dependent on images being pre-
processed prior to analysis. Provided that pre-processing was adequate, all
methods produced meaningful results in so far as the lesions demarcated
corresponded to the anatomical lesion seen in figure 5. Before further
comparisons are made between methods, each will be discussed

independently.
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5.2.1 VBM

This is one of the earliest developed methods for image analysis. Results
from VBM analysis relay on statistical testing. The quality of the results is thus
likely to be related directly to the quality of pre-processing and the controls
used in the study (for more details see Mehta et al). This made VBM the

simplest method to use amongst the three.

5.2.2 PPM

As noted PPM relies on Bayesian statistics and analysis is done in two
stages, the results of the first stage being used as the priors in the second
analysis. It is this second stage of analysis that distinguished PPM from VBM.
The second analysis requires a probability threshold to be applied to help
decide if a voxel is abnormal or not. Defining this probability threshold is vital
for the efficient functioning of PPM. As seen in the analysis, using too low a
value can result in too many voxels being identified as abnormal. The
opposite effect is also true, with far fewer voxels being identified as abnormal
when the probability threshold is too high. In the case of Patient 5, this
actually led to the patient being assessed as lesion free when a probability
threshold of 0.9 was used. It was therefore decided that 0.5 would be the

most adequate compromise between these two extremes.

5.2.3 FCP
This method is the most recent to be developed. Analysis is fundamentally
different from both VBM and PPM analysis with neither t nor F tests being

preformed. Rather FCP groups all voxels in different clusters. Within these
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clusters abnomal voxels are identified as outliers that differ markedly from the
mean effect of all voxels. As stated a acts as tuning parameter in the analysis.
An increase in a will result in a decrease in the sensitivity of FCP. Thus it is
likely that 3.00 and 2.50 both produced a values that were higher than
acceptable. With an a value of 0.5, however, the area assessed as abnormal
increased to match the lesion as seen on the anatomical scan. Considering

this, an a value of 0.5 is most likely to be useful for analysis.

5.3 Comparison between methods

All three methods do have similarities. They all required adequate pre-
processing to work. The important aspects of smoothing were discussed
above. All methods were also successful at producing meaningful results. All
lesions identified were of a similar size and shape to the anatomical images.

Thus grossly, all methods behaved in a similar fashion.

VBM proved to be the easiest to use. Analysis does however require
adequate pre-processing of images. Further analysis depends solely the
results of statistical tests. In the past this has proven to be one of the
strengths of the method, while others have viewed it as a weakness. In this
study the unified segmentation algorithm was used for normalisation and
segmentation and an FWHM of 8mm was found to be an optimal level of
smoothing. Using these parameters for pre-processing VBM gave meaningful
results. VBM can thus be seen as a robust and dependable method that is

relatively easy to use. Mention should be made of Patient 5 however. Here
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the lesion was small and VBM only identified part of the lesion. It thus

functions better when the lesion is large.

PPM goes one step further than VBM. A probability threshold is built into the
calculation. This extra information comes from two stages of calculations
typical of the Bayesian approach. In this study we decided on a value of 0.5 or
50%. The results generated are thus more meaningful than those of VBM.
When visually assessed, PPM calculation also produced results with relatively
sharper border delineation. PPM can thus be most useful in situations where
sharp delineation is important and the lesion must be outlined accurately. The
inclusion of the probability threshold however makes PPM more difficult to
work with. The use of too low a value will result in areas beyond the lesion
being assessed as abnormal. However when the value is too high, results will
produce a situation where small lesions are missed. This is exemplified when
Patient 5 was analyzed using a probability threshold of 0.9. Caution is thus
advised when using a high probability threshold.

FCP analysis is the most recently developed of the three methods. Analysis is
dependent on the choice of the tuning parameter a. In this study we chose a
value of 0.5 to give the necessary sensitively for analysis. Of the three, this
unique characteristic of FCP may make it more useful in the analysis of scans
with small lesions. Again using Patient 5 as an example, VBM and PPM both
identified small lesions. FCP was however sensitive enough to identify a
larger area of abnormality. It is important however that too small an a value is
not used. This will result in increasing the false positive rate making the

analysis invalid.
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Thus none of the methods can be considered ideal. They each have strengths
making them more suited under different circumstances. VBM is easy to use
and carries the benefit of being in use for a long time. PPM however provides
the most information from analysis and produced sharp lesion delineation.
FCP is best suited when the lesion is small. This analysis is very sensitive in

identifying lesions that other analyses miss.

Mention should also be made of computing time. A VBM Grey Matter Scan
took an average of 3 minute for analysis. With the two levels of analysis
required in PPM, analysis of a single Grey Matter scan took well over 10
minutes. This may have implications if computing power is a limiting factor
and as voxel sizes decrease with higher resolution. FCP however was the
fastest of the three with analysis being completed within 1 minute for a single
Grey Matter T1 weighted MRI scan. It is thus likely that this maybe a more

useful technique if computing power is a limiting factor.
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6 Limitations

The large number of parameters varied during this study means that
limitations are inevitable. On discussing these limitations, possible means of

improving on the study will also be addressed.

The analyses in this study were conducted on only 5 patients. Such a small
number makes it likely that the power of the study is low. At the beginning of
the study it would have been useful to do a power calculation to determine
exactly how many images need to be analysed to make the results significant.
Time constraints however also need to be considered as further patient

analyses would have been difficult in the time period allocated.

The patients analysed were all from a bank of images held by the Wellcome
Foundation fMRI Unit. It is thus unlikely that this cohort represents the entire
stroke population. All patients had middle cerebral artery strokes. It thus
cannot be said for certain if the results can be applied to patients with
posterior circulation strokes or lacuna strokes. It should be recalled that
although the physiological changes are similar, the pathological conditions
leading to these events could differ. Similar analysis should thus be

conducted on other patients to confirm the results.

All scans analysed were conducted of stroke patients who has their primary
event over six months ago. The scans thus showed marked atrophy over the

area of inf@ction. It is actually this atrophy that the methods used in the

55



identification of lesions. It is thus uncertain how the methods would cope with
acute strokes. The oedema that can accompany these insults may in fact be
difficult for these methods to identify, as the MRI signal is higher than in areas v

of atrophy.

The results of the analyses where compared visually. Visual comparison,
while easily performed, is highly subjective, user dependent and prone to
error. Robust statistical test should instead be used in the comparison of
results. Receiver Operating Characteristics (ROC) curves could have been
used for this comparison. Ideally all results could be compared using ROC
curves. They would provide a means of graphically representing how close to

ideal the results are.

Analyses were also conducted using the scans of actual stroke patients.
While this has the benefit of assessing how the methods work under ‘real’
circumstances, scans using manually inserted lesions could have been used.
This would make comparison easier as the co-ordinates of the lesion would
be known. The results obtained and the conclusions made would thus be

more reliable.

This study also lacked a clear Gold Standard for comparison. In the
discussion we used VBM analysis as a standard for comparison of PPM and
FCP analysis. However the Gold Standard for reporting is actually the
manually identified mapping of the lesion. As indicated in the introduction this

manual mapping is very time consuming and requires in depth knowledge of
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neuro-anatomy. It thus was not possible to carry out manual mapping of the
lesions. If available however they would provide another possible standard for
the generation of ROC curves even thought manual mapping has its own

limitations.

As noted many parameters were varied in this study. These parameters were
key to the conclusions generated. It should be noted however that further
analyses could be conducted to ensure that the same conclusions are arrived
at as in this study. Considering initially smoothing, the trend identified was a
general drop in maximum T value with an evening off after an FWHM of 8mm
éee/ﬁgure 13). /bther studies however have looked at smoothing values

~ beyond 12rﬂh/(Jones et al. 546-54). It would have thus been useful to extend
the range of FWHM. We could thus be certain of the trend identified and
making our conclusions stronger. The other parameters varied included the
probability threshold (for PPM analysis) and a (for FCP analysis). Considering
first the probability threshold, we tested three values that identified ‘high’,
‘medium’ and ‘low’ probability. It is with the ‘high’ value of 0.9 that we ran into
some difficulty (of example, with the analysis of Patient 5). We have thus
suggested that the ‘medium’ value of 0.5 should be used in analysis. From our
study this is the correct suggestion but further analyses should be conducted
to look at values between 0.5 and 0.9, for example 0.7 may actually provide
useful results at a higher probability. The same can be said for a in FCP
analysis. From this study we identified 0.5 as a value making FCP most
useful. However, further analyses should be conducted using a values smaller

than 0.5. It would be even more useful if analyses were conducted using
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scans with small lesions that other methods found difficult to detect. Using this
approach the benefits of FCP analysis can be emphasised.

The suggestions can form the basis of further studies in the area of neuro-
imaging. With the increasing importance of automated lesion identification
methods, conducting these studies is becoming increasingly essential to

furthering our knowledge into Lesion — Symptom mapping.

58



7 Conclusion

The science of neuro-imaging has increased significantly over the last 50
years. Using MRI, we are now able to produce images with great defail and
resolution. The manual reporting of these images has however become
increasingly complex. This has made the science of automated lesion
identification important. There are many issues that still need to be resolved
when using this relatively new technology. New techniques are constantly
being developed without fully testing of old techniques. This has created a
situation where the full potential of various techniques has not been
completely resolved. Indeed there are no studies in the literature attempting to
compare different techniques. This study aimed to achieve just that. Three
commonly used lesion identification methods have been compared and the
strengths and weakness of the methods identified. The study has also looked
at the contentious issue of smoothing. A rational for the need of smoothing
has been made and an optimal FWHM of smoothing has been identified. The

main conclusions of the study are dealt with below.

The first part of the study investigated the impact of spatial smoothing on the
results of VBM analyses. This highlighted the importance of smoothing as
unsmoothed data produced incorrect results. The most valid results were
identified when data were smoothed with a FWHM of 8mm. The use of a
FHWM value above this runs the risk of over smoothing and increasing the

false positive rate.
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The second part of the study looked at the different types of lesion
identification methods. VBM analysis is simplest to use and can produce
useful results especially in patients with large lesions and if pre-processing is

adequate.

PPM analysis however gave the most informative results. The probability
threshold built into the analysis tells us the probability that the lesion identified
is statistically significant. From this study we can say that a threshold of 0.5
produces meaningful results. Using too high a probability threshold may lead
to false negative errors. PPM also produced results with the sharpest borders.

It is thus most useful where the lesion needs to be clearly defined.

FCP analysis is the newest technique of the methods assessed. It has
proven to be more sensitive then VBM and PPM. It employs the use of the
tuning parameter a. In this study we have suggested a value of 0.5 for this
parameter. The strength of FCP lies in its ability to detect small lesions. These
lesions actually appear larger than with VBM or PPM analysis. This method
would thus be most useful for the analysis of scans with small lesions.

Of all the methods FCP was least demanding on computer processing time
while PPM took the longest to generate results. FCP may thus be most suited

where computing power is a limiting issue.

In conclusion, it cannot be said that there is an ideal method. They all have

different strengths and should be used for the task best suited to them.
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This study has also raised several issues that should be addressed in future
research. The ability of these methods to identify other lesions (e.g. oedema
and tumours) should be addressed. This however was not one of the main
aims of this study. More in depth analyses should also be conducted to
investigate the ideal probability threshold and tuning parameter a. For both
these parameters 0.5 has been suggested as a usable value. However to
ensure that this is the best possible advice, further values should be tested.
The results of such trials will further improve our knowledge and familiarity

with these methods.
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