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Focal hemodynamic responses in the stimulated hemisphere during high-definition

transcranial direct current stimulation

Abstract

Objective: High-definition tDCS (HD-tDCS) using a 4x1 electrode montage has been

previously shown to constrain the electric field within the spatial extent of the electrodes. The

aim of this study was to determine if functional near-infrared spectroscopy (fNIRS)

neuroimaging can be used to determine a hemodynamic correlate of this 4x1 HD-tDCS electric

field on the brain.

Materials and Methods: In a 3 session cross-over study design, 13 healthy males received

sham (2mA, 30s) and real (HD-tDCS-1 and HD-tDCS-2, 2mA, 10min) anodal HD-tDCS

targeting the left M1 via a 4x1 electrode montage (anode C3, 4 return electrodes 3.5cm from

anode). fNIRS was used to measure changes in brain hemodynamics (oxygenated hemoglobin

integral-O2Hbint) during each 10min session from 2 regions of interest (ROIs) in the stimulated

left hemisphere that corresponded to “within" (Lin) and “outside” (Lout) the spatial extent of the

4x1 electrode montage, and 2 corresponding ROIs (Rin and Rout) in the right hemisphere.

Results: The ANOVA showed that both real anodal HD-tDCS compared to sham induced a

significantly greater O2Hbint in the Lin than Lout ROIs of the stimulated left hemisphere; while

there were no significant differences between the real and sham sessions for the right

hemisphere ROIs. Intra-class correlation coefficients for the 2 real HD-tDCS sessions showed

“fair to good” reproducibility for Lin (0.54) and Lout (0.52) ROIs.

Conclusion: The greater O2Hbint “within” than “outside” the spatial extent of the 4x1 electrode

montage represents a hemodynamic correlate of the electrical field distribution, and thus

provides a prospective reliable method to determine the dose of stimulation that is necessary to

optimize HD-tDCS parameters in various applications.
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Introduction

Transcranial direct current stimulation (tDCS) is a non-invasive and portable brain stimulation

technology that has potential to positively augment the human brain to enhance a variety of

cognitive/motor skills that should ultimately improve behavioural performance (1, 2). For the

purpose of augmenting motor skills, anodal tDCS is usually applied to scalp overlying the

primary motor cortex (M1) with a currently intensity of 1-2mA over 10-20min duration. Most

research groups have used a conventional electrode montage of two large 35 cm2 (7 x 5 cm2)

rectangular rubber-sponge electrodes with the anode electrode placed on the M1 and return

electrode on the contralateral supraorbital region (3) or extracephalic region such as the

shoulder (4). These tDCS parameters and montages are generally shown to increase M1

excitability and activity during and for a short period (min to hours) after anodal tDCS (5).

The mechanism(s) of anodal tDCS-induced neuromodulatory effects are related to

subthreshold neuronal membrane depolarization directly induced by the tDCS electric field

with subsequent increases in spontaneous neuronal firing rates coupled with synaptic

neuroplasticity (5). However, the imprecise understanding of the specific neurophysiological

changes induced by scalp-applied electric fields limits efforts to understand its precise

mechanisms of action, as well as optimize stimulation protocols. Consequently, tDCS

parameters and montage are commonly applied uniformly between subjects without

consideration for anatomical and physiological differences between individuals, which may

account in part to the variability in responses to tDCS that is recently being reported in the

literature (6, 7). This is a growing concern among researchers as the number of tDCS studies

increases and reproducibility concerns are a problem (8, 9).

In order to circumvent the limitations in directly measuring the tDCS electric field,

studies have attempted to optimize tDCS applications using computational modeling of current

flow between the electrodes in order to predict brain regions the tDCS current passes through
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or directly engages. These modeling approaches have been applied to derive optimal electrode

montages (10), as well as the design of multiple small electrode (~3cm2) high-definition (HD)

montages to focalize distribution of tDCS current to a target brain region (11). For example, in

anodal HD-tDCS using a 4x1 electrode montage, the anode electrode is placed at the centre

overlying the M1 with four return electrodes placed ~3.5cm away from the anode in a ring

configuration (12, 13). Compared to conventional tDCS montages, the 4x1 HD-tDCS montage

has been shown to constrain the electric field between the active electrode and four surrounding

return electrodes, and thus focally stimulate a target cortical region (14), and potentially

increase the long-lasting excitability after-effects (12). Although modeling approaches have

been applied to derive optimal electrode montages and dosages for tDCS (10), the estimates of

tDCS current distribution remain theoretical and await experimental validation. Therefore, in

order to optimize 4x1 HD-tDCS montage potential applications to enhance motor and cognitive

performance, there is a critical need to identify a neurophysiological correlate of the electric

field spatial distribution from the scalp-applied current.

Neuroimaging methods can be used to provide information about the brain-tissue effects

of the tDCS electric fields when measured in a resting-state during (15-22) and/or after (23-25)

neurostimulation. Hemodynamic based neuroimaging methods, such as positron emission

tomography (PET), functional magnetic resonance imaging (fMRI) and functional near-

infrared spectroscopy (fNIRS), detect cerebral hemodynamic changes based on neurovascular

coupling mechanisms (26, 27). Lang et al. (24) using PET and a conventional anodal tDCS

montage (anode M1, cathode on opposite supraorbital region) showed increased regional

cerebral blood flow (rCBF) under the stimulating electrodes, as well as widespread increases in

rCBF in cortical and subcortical areas up to 50min after tDCS. Although rCBF measurements

after tDCS provide information on the after-effects of tDCS, measuring rCBF during tDCS is

the only way to determine the direct brain tissue effects of tDCS electrical fields. Zheng et al.,
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(16) using fMRI-arterial spin labeling measurements during conventional anodal tDCS with

interleaved 7min On/Off stimulation periods showed current intensity related increases in rCBF

in brain regions under and in close proximity to the stimulating electrodes as well as a

widespread network, specifically involving contralateral motor-related cortical areas. These

localized increases in rCBF under the stimulating electrodes during anodal tDCS have also been

demonstrated in the prefrontal cortex by Stagg et al. (15) using a similar fMRI method.

Since fMRI and PET neuroimaging methods are immobile, large, expensive, and require

complicated analysis methods, they are not suitable for routine in-vivo visualization of tDCS

induced effects on brain tissues in natural settings such as a clinic. Furthermore, due to the

nature of fMRI measurements there are issues regarding the role tDCS-induced current flow

itself producing an artifact or distortion of the fMRI signal considering that applied currents

generate magnetic fields and these may interfere with the MRI imaging sequences which rely

on carefully controlled magnetic field distributions (28). Furthermore, there are safety concerns

of fMRI causing heating in wires and electrodes on the scalp of subjects that may not be

properly insulated, and in the case of PET, there are concerns of radiation and invasiveness of

the method to inject radiolabels (29).

fNIRS being a non-invasive and portable optical neuroimaging technique is ideal for in-

vivo monitoring of brain hemodynamics during and/or after tDCS in naturalistic settings (4, 13,

20-22, 25, 30-33). Moreover, since fNIRS uses optically based measurements of light intensity,

it is not influenced by electrically induced artifacts. fNIRS uses scalp based light emitting

probes to measure the time course of changes in the concentrations of oxygenated (O2Hb) and

deoxygenated (HHb) hemoglobin in both extracranial (skin) and intracranial (cerebral)

compartments of the brain (34). A previous multi-channel fNIRS study by Khan et al., (20)

using a bi-hemispheric tDCS montage (anode M1, cathode on opposite M1) showed an increase

and then plateau in O2Hb under the anode electrode during the initial 3min of stimulation,
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however, no specific description of the spatial distribution of O2Hb relative to the stimulating

electrodes was provided. Thus far, only our previous pilot study (21) utilized a 2-channel fNIRS

setup (one channel on each hemisphere) to measure the time course of changes in O2Hb during

anodal HD-tDCS (2mA, 10min) using a 4x1 electrode montage targeting the left M1. We

showed that O2Hb increases in close proximity to the anode located on the left hemisphere with

a steady rise over the initial stimulation period with peak levels attained within 2-5min of the

onset of stimulation with these levels maintained at relative plateau throughout the remaining

stimulation period. No consistent changes in O2Hb were found in the right hemisphere

measurement point. Since our previous study used one fNIRS channel on each hemisphere, we

were not able to determine the spatial distribution of the time course of O2Hb during 4x1 HD-

tDCS.

Although portable and non-invasive electroencephalography approaches using scalp

based electrodes can be used to determine neurophysiological correlates of electric field

propagation within the brain during tDCS in natural settings (18, 19), this method faces the

fundamental biophysical limits imposed by the scalp, skull and brain as volume conductors that

limit spatial resolution, and the need to remove artefacts imposed by the tDCS-induced currents

limits its application for in-vivo online monitoring. fNIRS provides a solution to this, since

spatial locations of changes in hemodynamics are predicted between the boundaries of the

transmitter-detector locations that are usually 3cm apart, such that changes in fNIRS parameters

provide an accurate measurement of the spatial hemodynamic changes with a resolution of 2-

3cm.

Therefore the aim of this study was to utilize multi-channel fNIRS neuroimaging to

measure in-vivo changes in O2Hb during anodal HD-tDCS (2mA, 10min) with a 4x1 electrode

montage and thus provide a hemodynamic correlate of the spatial distribution of this HD-tDCS

electric field. We hypothesized the 4x1 HD-tDCS electric field would 1) increase O2Hb in the
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regions within the spatial extent of the 4x1 electrode montage in the left stimulated hemisphere

to a greater extent than regions outside this boundary, 2) the changes in O2Hb in the

corresponding regions of the right non-stimulated hemisphere would show no or minimal

changes compared to the left side, 3) the changes in O2Hb in the left hemisphere will be

reproducible.

Materials and Methods

Subjects

Fifteen healthy males volunteered to participate in the study, however, two subjects had to be

excluded due to missing a session or inadequate data for analysis. The remaining 13 Subjects

(34.2 ± 12.3 years) were right handed (laterality quotient 82.8 ± 14, range from 58 to 100) as

determined by the Edinburgh handedness questionnaire (Oldfield, 1971). The study conformed

to the recommendations of the local Human Research Ethics Committee in accordance with the

Declaration of Helsinki, and all participants gave written informed consent after a description

of the study procedures and associated risks.

Design and Protocol

In a 3 session cross-over study design, subjects were randomly allocated to initially receive

either sham or one of 2 identical real (HD-tDCS-1 or HD-tDCS-2) anodal HD-tDCS sessions

targeting the left M1 via a 4x1 electrode montage with 1 week separating each session. The two

real HD-tDCS sessions afforded a within-subject replication of the findings. In the 2 real HD-

tDCS sessions, active stimulation was applied with 30s ramp up to 2mA and maintained at this

level for 10min duration. In sham, active stimulation was applied with 30s ramp up to 2mA,

30s at 2mA, and 30s ramp down (total active stimulation: 1.5min) followed by no stimulation
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for the remaining 8.5min. We undertook this type of active sham stimulation to provide the

same sensations on the scalp as those of the real HD-tDCS sessions.

For each session, after the experimental setup, fNIRS measurements were initiated with

3min of baseline followed by the specific stimulation session, in which participants were asked

to relax for the duration of the session. During each anodal HD-tDCS session, fNIRS was used

to simultaneously measure changes in brain hemodynamics from 16 channels covering the scalp

of the left (stimulated) and right (unstimulated) hemispheres.

HD-tDCS

A Startstim tDCS system (Neuroelectrics, Barcelona, Spain) was used to deliver constant direct

currents to the left M1 via an anodal 4x1 HD-tDCS electrode montage (13). The active anode

electrode was positioned on the scalp at C3 surrounded by four return electrodes each at a

distance of ~3.5 cm from the anode electrode at FC1, FC5, CP5 and CP1 based on the 10-10

EEG system. The five HD-tDCS electrodes (3.14 cm2 AgCl electrodes) were secured on the

scalp using conductive paste (Ten20®, Weaver and Company, USA) and held in place using a

specially designed plastic headgear to hold the HD-tDCS electrodes and fNIRS probes on the

head (see Figure 1).

fNIRS

A continuous-wave fNIRS device (Oxymon MK III, Artinis Medical Systems, The

Netherlands) was used to continuously measure changes in O2Hb and HHb concentrations from

16 channels (Ch) covering the scalp of the left (Ch1-8) and right (Ch9-16) hemispheres with a

3 cm transmitter-detector distance (see Figure 1). A 3D-digitizer (Fastrack, Polhemus, United

States) and MATLAB toolbox NFRI_function (Singh et al., 2005) was used to estimate the

Montreal Neurological Institute coordinates (MNI) of the location of each fNIRS probe and
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HD-tDCS electrode. Based on the anatomical locations of brain areas, we designated four

regions of interests (ROIs): the two left hemisphere ROIs corresponded to “within” (Lin:

Ch3,4,5,6) and “outside” (Lout: Ch1,2,7,8) the spatial extent of the 4x1 electrode montage (see

Figure 1). For the right hemisphere, two spatially corresponding ROIs were also determined

(Rin: Ch11,12,13,14 and Rout: Ch9,10,15,16).

Data analysis

All fNIRS data analysis was undertaken using Oxysoft V3.0.103 (Artinis Medical Systems, The

Netherlands). The changes in O2Hb and HHb concentrations (expressed in µM) were calculated

according to a modified Beer-Lambert Law that included an age-dependent constant differential

pathlength factor (4.99+0.067*Age0.814) (35).

The time course of changes in O2Hb and HHb concentrations for each of the 16 channels

were first low-pass filtered at 0.1 Hz to attenuate cardiac signal, respiration, and Mayer-wave

systemic oscillations (35), and then offset to zero at the start of each stimulation session. HHb

time course did not show robust changes compared to O2Hb over the 10min stimulation period,

so we focused on O2Hb. The O2Hb integral (O2Hbint) value of each of the 16 channels of each

subject was then calculated over a 600s period after stimulation onset. Since we found no

significant difference between the anterior and posterior portions of the “outside” ROIs in the

left (Ch1,2 and Ch7,8, respectively) and right (Ch9,10 and Ch15,16, respectively) hemispheres,

we combined the two portions to represent Lout and Rout ROIs, respectively. Subsequently, the

group average O2Hbint value was calculated for each ROI (Lin, Lout, Rin, Rout).

Statistics

SigmaPlot 12 (Systat Software Inc, CA, USA) software was used for statistical analysis. All

data were first screened for normality of distribution and homogeneity of variance using a
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Shapiro-Wilk and Levene’s test, respectively. For statistical analysis of the O2Hb integral

(O2Hbint) values, a Session (HD-tDCS-1, HD-tDCS-2, sham) x ROI (Lin, Lout, Rin, Rout) repeated

measures ANOVA was used. If a significant main or interaction effect was evident, then

Bonferroni corrected post-hoc tests were performed. Intraclass correlation coefficients

(ICC(2,1)) were calculated between the two real HD-tDCS sessions (HD-tDCS-1 and HD-

tDCS-2) to test the repeatability of the O2Hbint results. Significance was set at P ≤ 0.05. Data 

are presented as mean ± SD.

Results

Figure 2 shows a representative subjects’ time course of O2Hb changes in the left (a) and right

(b) hemisphere ROIs during 10min of sham and real anodal HD-tDCS. For the real HD-tDCS

session, the O2Hb time course in the stimulated left hemisphere ROIs (Lin, Lout) showed, after

an initial decrease, a steady increase from baseline over the first 3min of stimulation period

with a relative plateau maintained for the duration of the stimulation period; however, the Lin

ROI showed a faster rise and greater amplitude in the hemodynamic response than Lout ROI.

During the sham session, O2Hb in the left ROIs also increased after an initial slight dip during

the 90s active stimulation period (30s ramp up from 0mA to 2mA, 30s at 2mA, and 30s ramp

down to 0mA) and then gradually returned to baseline levels over the next 8.5min measurement

period with no stimulation. The O2Hb amplitude changes in the respective left hemisphere ROIs

were much lower for the sham than real HD-tDCS session. Compared to the time course of

O2Hb in the stimulated left hemisphere ROIs, the non-stimulated right hemisphere ROIs (Rin,

Rout) did not show differences between the sham and real-HD-tDCS session with O2Hb

amplitude staying close the baseline levels.
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Figure 3 shows the group mean O2Hbint values of the left (stimulated) and right (non-stimulated)

ROIs for the real (HD-tDCS-1, HD-tDCS-2) and sham sessions. The 2-way ANOVA revealed

a significant main effect for Session (F2,24=8.26, p=0.002) and ROI (F3,36=78.57, p<0.001), as

well as a Session x ROI interaction (F6,72=10.88, p<0.001). Bonferroni corrected post-hoc tests

showed that O2Hbint in the Lin ROI was significantly greater for the real HD-tDCS sessions

(HD-tDCS-1: t(2)=6.9, p<0.01 and HD-tDCS-2: t(2)=7.0, p<0.01) compared to sham with no

significant difference between HD-tDCS-1 and HD-tDCS-2. For both the real HD-tDCS

sessions, Lin was significantly greater than Lout (HD-tDCS-1: t(2)=6.8, p<0.01 and HD-tDCS-

2: t(2)=7.0, p<0.01), Rin (HD-tDCS-1: t(2)=11.5, p<0.01 and HD-tDCS-2: t(2)=11.2, p<0.01),

and Rout (HD-tDCS-1: t(2)=11.1, p<0.01 and HD-tDCS-2: t(2)=10.7, p<0.01), and there was no

significant difference between HD-tDCS-1 and HD-tDCS-2. For sham, there was no significant

difference between Lin and Lout, but Lin was significantly greater than Rin (t(2)=3.3, p=0.008)

and Rout t(2)=3.1, p=0.015). There were no significant differences between the real (HD-tDCS-

1, HD-tDCS-2) and sham sessions for the right hemisphere ROIs (Rin, Rout).

The ICC calculated between the 2 real HD-tDCS sessions showed fair-to-good repeatability for

left hemisphere ROIs (Lin: 0.54 and Lout: 0.52); while the ICCs from the right hemisphere ROIs

indicated lower repeatability (Rin: 0.17 and Rout: 0.44).

Discussion

This is the first study to use multi-channel fNIRS to determine the spatial distribution of brain

hemodynamics induced by anodal HD-tDCS using a 4x1 electrode montage. The main findings

were that O2Hb integral (O2Hbint) values of the fNIRS channels located within the spatial

boundary of the 4x1 electrodes in the real HD-tDCS sessions (HD-tDCS-1 and HD-tDCS-2) in

the left hemisphere ROIs (Lin) were significantly larger than the ROI located outside this
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boundary (Lout) as well the non-stimulated right hemisphere ROIs (Rin and Rout). Since these

focal hemodynamic effects were only seen in the two real HD-tDCS sessions, we consider that

this differential distribution of O2Hbint between the Lin and Lout ROIs represents a hemodynamic

correlate of the greater direct tissue effects of this 4x1 HD-tDCS montage electric field within

the spatial extent of the 4x1 electrode montage, which confirm modeling (11) and

neurophysiological (14) studies. Moreover, since the contralateral (unstimulated) right

hemisphere ROIs (Rin and Rout) showed an overall decreased O2Hbint value for the sham and

real HD-tDCS sessions, the greater O2Hbint findings in the left (stimulated) hemisphere provide

an indirect indication for the spatial specificity of the anodal HD-tDCS electric field on the

stimulated region of the left hemisphere. One added strength of the present study findings were

that we included a second identical anodal HD-tDCS session to afford a within-subjects

replication using ICCs, and the left hemisphere ROIs (Lin and Lout) showed fair-to-good

repeatability.

It has been previously demonstrated that anodal tDCS-scalp applied electrical currents

induce skin blood flow/erythema effects under the stimulating electrodes (36) through sensory

axon reflex mechanisms (37). Since the strength of the electric field diminishes exponentially

with distance from the electrode (24), the larger fNIRS O2Hbint values we found within the

spatial extent of the 4x1 HD-tDCS electrodes (Lin) compared to outside (Lout) would suggest

that there was a stronger electric field distribution in the Lin than Lout ROIs. From this argument,

we can assume that connected network physiological effects were not the primary reason for

the specific spatial distribution of O2Hbint within and outside the 4x1 HD-tDCS montage

boundary of the stimulated left hemisphere. Using the reverse logic, if the specific spatial

distribution of the fNIRS O2Hb changes were due mainly to the direct 4x1 HD-tDCS electric

field, then we can assume that this electric field was mainly concentrated within the boundaries

of the 4x1 HD-tDCS electrode configuration as modeling studies predict (11, 14), and hence
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has a greater chance of influencing the underlying cerebral tissue than regions outside this

boundary.

Although there was a significantly greater O2Hbint for Lin vs Lout ROIs in the left

stimulated hemisphere for the real HD-tDCS sessions compared to sham, the greater O2Hbint in

the Lout ROI for real HD-tDCS compared to sham shows that the spatial focality is not so

distinctive as reported by computational studies which show minimal current distributions

outside the boundary of the 4x1 HD-tDCS montage (11). However, Edwards et al. (14) reported

that 4x1 HD-tDCS montage using high voltage electrical currents evoke motor evoked

potentials at locations both anterior and posterior to the M1 location although with a smaller

amplitude, which indicates that current distributions of this 4x1 HD-tDCS montage can spread

outside the 4x1 electrode boundary. Another reason for the spread of O2Hb increases outside

the boundary of the 4x1 HD-tDCS montage could be due to the specific way the fNIRS

determine the spatial volume of O2Hb concentrations. Since the locations of the fNIRS detector

probes used for the channels of the Lout ROI were also the same ones used for the channels in

the Lin ROI that were located at the boundary of the 4x1 electrodes (see Figure1), it is most

likely that the primary cause for the greater O2Hbint values of the Lout ROI in the real HD-tDCS

session compared to sham was the contribution of the increased hemodynamics at these

boundary regions to the combined volume of tissue interrogated by the fNIRS light between

the transmitters located further away.

It is important to indicate that the sham session also induced a numerically larger

increase in O2Hbint values in the Lin compared to the Lout ROIs of the stimulated left hemisphere

(see Figure 3), which were statistically larger compared to the right hemisphere ROIs (Rin, Rout).

However, it should be noted that the sham session included active stimulation for 90s to mimic

the sensations of the real HD-tDCS sessions. Therefore, in this active sham session we included

a 30s ramp up from 0mA to 2mA current intensity, which was held for 30s at 2mA, and then
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ramped down over 30s to 0mA, so there was 90s of active HD-tDCS applied to scalp during

sham, which was sufficient to induce hemodymanic effects on the underlying tissues (See

Figure 2a and figure 3). As shown in in Figure 2a for a representative subject’s sham session,

O2Hb in Lin ROI increased from baseline over the 90s active stimulation period and soon after

the stimulation was discontinued gradually returned to baseline levels over the remaining 510s

measurement period. Since the O2Hb changes returned to baseline after the stimulation was

discontinued, while for the real HD-tDCS sessions the O2Hb continued to increase and then

plateau, we are confident that the O2Hb changes in the stimulated left hemisphere ROIs (Lin

and Lout) were due to the continued stimulation of the real HD-tDCS session, which the O2Hb

integral (O2Hbint) values appropriately classified as shown in the Figure 3. Nevertheless, the

active sham session (active current applied for 1.5min duration) induces hemodynamic

increases that are spatially bound to the 4x1 HD-tDCS montage and outlast the period of

stimulation. These sham session findings corroborate with a recent study (36) that showed

increased skin blood flow changes (erythema) within the boundaries of the scalp attached

conventional (25cm2) rubber/sponge electrodes after both real anodal tDCS (2mA for 30min

duration) and active sham tDCS (2mA current applied for 1.5min duration), but the extent of

the erythema with sham was significantly lower than the real anodal tDCS session.

Caveats and future directions

In our previous pilot study using a 2 channel time resolved fNIRS device (21) and modelling

methods to disentangle scalp from cerebral hemodynamic changes (21, 34), we showed that

during anodal HD-tDCS a greater portion of the fNIRS O2Hb signals were derived from the

scalp level skin blood flow changes in close proximity to the anode of the 4x1 electrode

montage with a smaller proportion from the intracranial (cerebral) layer. In the present study,

our findings of the grater spatial distribution of O2Hbint values within than outside the boundary
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of the 4x1 electrodes (Lin > Lout ROI) were representing a direct tissue effect of the scalp applied

HD-tDCS electric field stimulating scalp afferents and skin blood flow changes with a smaller

proportion from the intracranial (cerebral) layer. These findings corroborate with experimental

and theoretical data that approximately 50% of the total current applied to the scalp passes

through to the cerebral layers and that the maximum current density is found in the cortices

directly under the stimulating electrodes (24, 38). Future studies using time resolved fNIRS are

necessary to disentangle the relative contribution of skin and cerebral hemodynamics during

HD-tDCS.

Although our group level O2Hbint results showed a significant influence of the spatial

distribution of anodal 4x1 HD-tDCS effects on the stimulated left hemisphere (Lin > Lout), at a

single subject level there were differences in the time course of O2Hb and corresponding

O2Hbint values in the left stimulated hemisphere ROIs between the subjects. However, within-

subjects the O2Hbint values in the Lin and Lout ROIs were moderately repeatable between the

real HD-tDCS sessions (HD-tDCS-1 and HD-tDCS-2). These differences are most likely due

to anatomical and physiological differences between subjects, which are known to be a

contributor to variability in tDCS effects (7). Future studies are planned to determine the cause

of the variability of the individual O2Hb changes.

Overall, the present study findings provide a strong case that fNIRS neuroimaging can

be used to determine an indirect hemodynamic measure of the spatial extent of the 4x1 HD-

tDCS electric field in the stimulated hemisphere, which is reliable within subjects. The benefits

of a neurophysiological (fNIRS) correlate of the HD-tDCS electric field compared to modelling

its effects are that different HD-tDCS parameters and montages can be compared on the same

subject and between subjects for their effects on a target cortical region, which allows for

optimizing HD-tDCS parameters individually. This is based on the assumption that the spatial
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distribution of the fNIRS O2Hb changes overlying the target cortical region provides a surrogate

marker of the spatial distribution of the scalp applied electric field.

In conclusion, our proof of concept study has provided evidence to confirm that fNIRS

neuroimaging can be used to provide a hemodynamic correlate of the anodal 4x1 HD-tDCS

electric field. We were able to show that anodal HD-tDCS with a 4x1 electrode montage can

constrain the spatial distribution of O2Hbint to within the spatial extent of the 4x1 electrode

configuration, which confirms modelling based predictions of the spatial distribution of the

currents between electrodes. Future studies using different anodal HD-tDCS current intensities

are necessary to determine the relationship between changes in O2Hbint and induced current

density, such that it is envisaged that fNIRS will be able to inform of the HD-tDCS dosage that

can be individually tailored to optimize HD-tDCS applications in natural settings to enhance

motor and cognitive performance.
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Figure Captions

Figure 1. Locations of the 16 fNIRS channels placed on the scalp of the left (Ch1-8) and right

(Ch9-16) hemispheres (left panel). Each fNIRS channel was located midway between the

transmitter (in yellow) and detector (in blue) probe. The anodal HD-tDCS 4x1 electrode

montage are shown on the left hemisphere (anode electrode in red, 4 return electrodes in black).

MNI coordinates (x,y,z) and Brodmann areas (BA) of the 16 fNIRS channels are reported on

the right panel. In the stimulated left hemisphere, two regions of interest (ROIs) corresponded

to the 4 channels within (Lin: Ch3,4,5,6 red shaded area) and outside (Lout: Ch1,2,7,8, blue

shaded area) the spatial extent of the HD-tDCS 4x1 electrode montage, as well two ROIs in the

corresponding channels on the right hemisphere (Rin: Ch11,12,13,14; Rout: Ch9,10,15,16).

Figure 2. Time course of oxygenated hemoglobin (O2Hb) changes in a representative subject

for the sham and real anodal HD-tDCS session determined from two regions of interest (ROIs)

within (Lin) and outside (Lout) the spatial boundaries of the 4x1 electrode montage in the

stimulated left hemisphere (panel a), as well as the two corresponding ROIs (Rin, Rout) in the

right hemisphere (panel b). See Figure 1 for the fNIRS channels corresponding to the 4 ROIs.

Figure 3. Group mean (±SD) oxygenated hemoglobin integral (O2Hbint) values for the sham

and two real (HD-tDCS-1, HD-tDCS-2) anodal HD-tDCS sessions determined from two

regions of interest (ROIs) within (Lin) and outside (Lout) the spatial boundaries of the 4x1

electrode montage in the stimulated left hemisphere, as well as the two corresponding ROIs

(Rin, Rout) in the right hemisphere. See Figure 1 for the fNIRS channels corresponding to the 4

ROIs. *: HD-tDCS-1 > sham, p<0.001; +: HD-tDCS-2 > sham, p<0.001; #: HD-tDCS-1 Lin >
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Lout, Rin, Rout, p<0.001; ^: HD-tDCS-2 Lin > Lout, Rin, Rout, p<0.001; ~: sham Lin > Rin, Rout,

p<0.05; >: HD-tDCS-1 Lout > Rin, Rout, p<0.01; <: HD-tDCS-2 Lout > Rin, Rout, p<0.001.
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