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Abstract
This paper introduces a novel type of smart textile with electronically responsive flexibility. The
chainmail inspired fabric is modelled parametrically and simulated via a rigid body physics
framework with an embedded model of temperature controlled actuation. Our model assumes
that individual fabric linkages are rigid and deform only through their own actuation, thereby
decoupling flexibility from stiffness. A physical prototype of the active fabric is constructed and
it is shown that flexibility can be significantly controlled through actuator strains of �10%.
Applications of these materials to soft-robotics such as dynamically reconfigurable orthoses and
splints are discussed.

Supplementary material for this article is available online
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(Some figures may appear in colour only in the online journal)

1. Introduction

Recent years have seen a surge of interest in chainmail fabrics
by the design and fashion industries [1]. Additive manu-
facturing technologies allow for bespoke garments to be
printed in one piece from rigid thermoplastics incorporating
interlinked parts which yield the meta-properties of flexibility
and drape required for garment functionality. Over the same
timeframe there has been a corresponding growth in the field
of soft robotics. This has been driven by a renewed interest in

nature inspired engineering and the recognition that robots
based on soft materials have the potential to be more adap-
table, robust and safer for human interaction [2]. In this work
we bring these two applications together to show that actuated
chainmail fabrics have significant potential in soft robotics as
well as sectors such as wearable technology, medical devices,
aerodynamics, and acoustics [3–5].

1.1. Architectured fabrics

The concept of responsive fabrics is not new but progress has
been slow for a number of reasons, the first being the lack of
appropriate actuators, and the second being the formidable
challenges of manufacturing such an actively interdigitated
mechanical system. Engel and Liu [6] fabricated a micro-
scopic chainmail mesh using electroplating techniques,
resulting in a material with stretch dependent conductivity.
Whilst the mesh was capable of flexing out of plane, the
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researchers only quantified its ability to deform passively
through planar stretching and shearing, designing the mesh in
such a way that the limits of such deformations could be
calculated by inspection.

More recently Rudykh et al [7] used a multi-material 3D
printer to produce a composite intended for body armour
which combined imbricated stiff tiles within a flexible gel
matrix where the opposing properties of flexibility and
resistance to penetration are balanced optimally. Flexibility of
this structure can be programmed as a function of the
dimensions and angle of the tiles, however methods of
actively modulating this property were not considered.

Henry and McKnight [8] have experimented with lami-
nates containing a combination of constant and variable
stiffness elements. In the structural mode, the variable stiff-
ness elements rigidly connect the stiff elements together,
creating a stiff structure; in the morphing mode, the variable
stiffness material becomes soft leaving the stiff elements
effectively disconnected. Henry and McKnight used high
yield spring steel as the stiff elements, and shape memory
polymer as a variable stiffness actuator in the laminate, but
achieved only relatively low maximum strains of 10% with
this design, and found the composite had poor toughness,
durability and temperature sensitivity. They concluded that
this approach showed enormous promise but the current
available actuators were unsuitable for large strain structural
reconfigurations.

1.2. Concept

The material we have developed solves one of the problems
identified by Henry and McKnight [8]: we accommodate the
large deformations needed for flexible applications by moving
away from laminates and creating a flexible chainmail
structure of repeated interlocking links that have two states—
closed and open—but also a continuum of intermediate states.
The fully closed state when implemented across the fabric
renders the material inflexible, essentially creating a stiff
material. The open state allows the material to flex along a

single axis, as the individual linkages become less closely
interlocked. The key to the design is the control of the open
and closed states of the individual links, which enables spatial
and temporal dynamic control of the structure. Rigid body
physics simulations were used to explore the fabric’s
mechanics and the concept was validated through building a
working prototype using a shape memory alloy (SMA), which
was integrated into the rigid body framework to produce a
hybrid model.

1.3. Actuators

SMAs are biphasic materials exhibiting a transition between
the austenite and martensite phases occurring at a critical
temperature, Tc, which is accompanied by a shape change. It
is this shape change that is ulitised as an actuating force. The
most popular SMA, Nitinol (NiTi) is often described as
artificial muscle due to its ability deliver large actuating
strains and forces [9, 10]. Through annealing NiTi wires into
a helical coil the linear strain distance capability can be
amplified to arbitrary degrees, though this comes at the cost of
linear elasticity across both phases. SMAs generally suffer
from functional fatigue whereby the shape memory effect is
lost over time, however new alloy design has shown that this
can be substantially mitigated [11]. The greatest drawbacks of
SMA alloys for active fabrics remains their dependence on
temperature changes for actuation and the associated
hysteresis.

2. Methods

2.1. Design

The contributions of this paper—namely modulating the
fabric’s mechanics through embedded SMA actuators, and
predicting the mechanics using a rigid body physics frame-
work—are applicable to any fabric design comprising inter-
linked rigid elements, however in this short communication
we present only one example. In this design, each link has

Figure 1. Chainmail structure (a) a single link design showing geometric variables, (b) 8 × 2 chainmail fabric reaching drape equilibrium
under the rigid body framework.
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identical geometry and as shown in figure 1(a) its base form is
defined by three scalar variables, w, d and l. By aligning the
links in an interlocking cartesian array, they form a mesh as
shown in figure 1(b), topologically equivalent to the European
4-in-1 (E4-1) chainmail typically found in historic examples
[12]. When defining the resolution of an E4-1 mesh, only the
links sharing a common orientation are counted, thus the
mesh in figure 1(b) has 2 × 8 resolution, despite containing
24 linkages. The width of each link was set according to the
mathematical relation w d4 tol,= * + where tol is the tol-
erance between the links, held large enough to remove the
effects of friction yet sufficiently small as to constrain the
linkages’ rotation about y and translation across x thus
granting the mesh flexibility in the y/z plane only. Alternative
designs could be employed to extend the central tenets of this
work to control of flexibility across two and three dimensions.

We defined the fabric’s flexibility to be the maximum
curvature value, ,maxk obtained whilst bound at one end in a
cantilever configuration, where the other end was allowed to
flex freely to equilibrium under gravity (figure 1(b)). Curva-
ture in the plane of flexion is defined as

y z z y

y z
. 1

2 2 3 2
k =

¢  - ¢ 
¢ + ¢

∣ ∣
( )

( )

2.2. Fabrication

A physical prototype of the active mesh was realised from the
design given in figure 2(a), where a two part linear coupling
allowed for linkage deformations corresponding to changes in
l (figure 1(a)). Both arms of the linkage contained a paired
spring system comprising of a tensile NiTi coil nested within
a compressive coil of regular spring steel. The NiTi coils were

stretched along the length of the arms and secured in place via
steel pins at each end of the linkage chassis, while the com-
pressive coils were secured via cylindrical recesses in the
linear coupling. The pins at the top end were sufficiently long
as to connect in the centre, forming the circuit highlighted in
red in figure 2(a) and allowing for the NiTi spring constant
(and thus the linkage parameter l) to be physically modulated
via Joule heating. Recesses were calibrated so l 3.3 cm= in
the cooled state and l = 3.0 when heated, corresponding to a
10% strain in the actuators and providing a geometric trans-
formation that initial simulations indicated sufficient to shift
the fabric between flexible and rigid states.

The linkage chassis were fabricated in clear resin using a
Formlabs Form 2 stereolithography 3D printer, while the NiTi
springs were obtained from orthodontics supplier Azdent
Dental Corporation. Each linkage was weighed to have mass
7.3 g. A 2 × 6 mesh was assembled and connected to a 6 V
power supply, with the three linkages comprising each row
connected (36 coils in total) in serial each receiving 1 V. The
resistance of an individual coil was measured to be 2.2W with
each coil using 454 mA. The total current drawn was 2.72 A,
which is equivalent to 16.36 W power supplied to the system.

2.3. NiTi model

To understand the NiTi coil’s behaviour as an actuator, a
single coil was suspended vertically in a water bath whilst
supporting a 500 g mass from below. The water temperature
was gradually cycled between 30 C (fully martensite) and
70 C (fully austenite), and the coil extension measured at
intervals of 2 C to determine the effect of temperature, T, on
the coil’s effective spring constant, k. The data displayed the
hysteresis curve typical of NiTi actuation, which was then
modelled with a dual-Gompertz curve and fitted via

Figure 2. (a) Design of a shape-controlled chainmail linkage where the linear couplings on each side both contain a pair of nested springs, the
equilibrium point of which can be adjusted through heating the internal NiTi coils via Joule heating, with charge flowing along the path
shown in red. A 6 × 2 physical prototype was fabricated using an SLA 3D printer, and shown to be electronically reconfigurable between
flexible (b) and rigid (c) states.
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nonlinear-least-squares-regression to yield:

k T a de , 2be cT= +- -( ) ( )

where a b c d, , , 0.2305, 17443, 0.1669, 0.1571= { } for T
increasing and 0.1996, 696.0, 0.1549, 0.1579{ } for T
decreasing, with residual norm r 0.00582

2 =∣∣ ∣∣ .
To model the time (t) dependent effect of voltage (U) on

the NiTi coil’s temperature we used the method from Hol-
schuh et al [10]:

T t
U

hAR
T1 e , 3t

2

a
hA

Vcp= - +r
-

( ) ( ) ( )

where A is the coil’s surface area, V its volume, and R its
resistance, cp is the specific heat of NiTi, h its convective heat
transfer coefficient and ρ its density, and Ta the ambient
temperature. This model neglects the effects of heat transfer
via radiation and the 5% contraction in length that NiTi
wires exhibit during activation, and assumes R(t) is constant.
R was measured to be 2.2 W and we calculated
A 97.85 mm2= and V 7.328 mm3= , whilst
h 9 10 W mm C5 2 1= ´ - - - , 6.45 10 g mm3 3r = ´ - - and
c 0.837 J g Cp

1 1= - - were taken from Song et al [13].
Letting t  ¥ in (3) yields the maximum temperature

obtained for a given voltage:

T
U

hAR
T . 4

2

a= +¥ ( )

The heating model was validated by heating and then cooling
a single NiTi coil across a range of voltages while the
temperature was observed with a Jenoptik VarioCam HD
infra-red camera. Average pixel temperature within the coil
was computed for each time instance and can be seen to agree
with the model (data not shown). Assuming the coil was
heated to its terminal temperature as defined by equation (4)
then cooling upon deactivation of the power supply was
modelled as

T t
U

hAR
Te , 5t

2

a= +a-( ) ( )

where 0.14a = was found via regression and t = 0 repre-
sents the point at which the power was cut. From equation (4)
it follows that to obtain the NiTi’s fully austenite temperature
of 70 C would require application of 1 V over 12 s, and the
full prototype comprising 6 strings of 6 coils connected in
parallel would require 6 V; though in practice this value was
slightly lower due to the linkage chassis providing a degree of
thermal insulation to the coils, reducing the value of h.

2.4. Simulation

It is the forces between separate links that dominate the
mechanics and determine the final curvature of the fabric. To
model this we used a rigid multi-body physics engine, which
permits efficient calculations of the mechanical collisions and
rotations between mechanically separate links, allowing us to
scale up the simulations to model whole fabrics with hundreds
of links [14, 15]. Multi-body physics engines employ a sys-
tem of differential equations to relate the time derivative to
the positions and velocities of a many body system and to

balance the force equation that incorporates inertia, gravity
and constraints such as friction [15, 16]. The validity of using
this method assumes that the forces acting on the fabric are
low enough that each linkage itself is not plastically deformed
and that the elastic forces do not change the link geometries.
In common with many dynamic and actively controlled
robotic systems, these conditions are met in our material. The
Bullet physics engine [15, 17] was selected for running our
rigid body simulations due to its efficient collision detection
for large sets of objects, its ability to capture friction, its
capacity to constrain objects via a bespoke actuator model,
and its ability to capture hysteresis effects.

The linkage design shown in figure 2(a) was modelled as
a set of connected cuboid and cylinder primitives to improve
stability and performance of the engine, which is typically not
well suited for non-convex structures such as the topologi-
cally annular linkage. The two halves of the chassis were
connected with pairs of tensile and compressive spring con-
straints to simulate the physical prototype, where the tensile
spring constant k was set from equations (2)–(5). The number
of iterations for Bullet’s Projected Gauss Seidel [17]
sequential impulse constraint solver was set to 10 000 to
maximise the accuracy of the simulation over the large
number of constraints involved. The masses of the simulated
linkages were set to 7.3 g in accordance with the measured
values. Coefficient of restitution was set to 0 as the SLA resin
was found to exhibit negligible bounce, whilst coefficient of
dynamic friction was set to 0.73.

2.5. Validation

The assembled prototype was connected to a 320W power
supply and tethered to a flat surface by the first two rows of
linkages (figure 2(b)). 6 V was supplied, transforming the
structure to full rigidity, and maintained for 12 s after which
power was cut and the structure allowed to return to the
flexible state. The same scenario was simulated in Bullet
Physics, using equations (2)–(5) to set the effective spring
constant of the NiTi springs in accordance with the input
voltage profile. The simulation was then repeated without the
NiTi model, where the spring constants were instantaneously
set to their maximum and minimum values when the power
was activated and deactivated.

To compare the results of the model and experiment,
green circular markers were applied to the extremities of each
of the linkages along one side of the physical model, while a
video camera recorded activity in the y/z plane. The twelve
markers were then extracted from the resulting video clip
through colour thresholding and contour detection was
applied to obtain the location of each marker’s centroid.
Markers were then manually assigned to pairs representing
each of the six linkages being tracked, and the centres of each
linkage were then used to compute the fabric’s maxk across the
time domain.

An additional experiment was conducted to assess the
linear contraction of the fabric, in which the prototype was
suspended vertically through tethering the first row of lin-
kages. The sample was then activated through application of
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6 V and the total length of the fabric, measured from the base
cylinders of the outer and inner most rows sharing common
orientation, was recorded before, during and after activation.

3. Results and discussion

Upon application of the voltage, the individual links contract
under actuation, transforming continuously from a curved
drape profile to a rigid cantilever. In all cases the transfor-
mation was reversible, with the fabric regaining its flexibility
when the power was cut. Figure 3 shows the maximum
recorded curvature, as defined by equation (1), across the
experimental (green) and simulated (blue with NiTi model
and magenta without) fabrics over time. Noise in the exper-
imental data is due to the stochastic contour finding algorithm
used to track the markers, which was sensitive to changes in
lighting exposure. The fully flexible and fully rigid states of
the physical prototype are shown with the markers removed in
figures 2(b) and (c). A video of the experiments is included as
supplementary video 1 is available online at stacks.iop.org/
SMS/26/08LT02/mmedia, and a video of the simulations is
shown in supplementary video 2. The fabric was observed to
undergo a linear contraction upon actuation during the
experiment in which the sample was suspended vertically. At
0 V the prototype was measured to have total length 13.2 cm,
whilst at 6 V the sample contracted to 11.5 cm equivalent to a
linear strain of 12.9%. The change in length was reversible.

The good correspondence between the physical and
computational results demonstrates that our method of using a
rigid body physics engine coupled with analytical models of
actuator performance proves to be a suitable way to explore
the properties and devise control systems for active chainmail
fabrics. The reduction in maxk upon actuation, and its sub-
sequent restoration as the NiTi coils cooled, indicates that this
is a useful metric for quantifying flexibility in this particular
case. Within the experimental data (green), delays can be
observed between the power being applied and cut, and the
resulting changes to the fabric’s flexibility. These occurred

due to the NiTi coils requiring time to heat and cool to within
their critical temperature range (30 °C–70 °C), and were not
captured by the purely rigid-body model (magenta). Hence
we conclude that while the rigid-body system employed here
is suitable for approximating the mechanical behaviour of
chainmail fabrics in general, the dynamics of the active fabric
could only be fully captured by our hybrid model (blue).

The use of SMAs means that the fabric’s transition is a
highly hysteretic process, largely due to the hysteresis
inherent to NiTi actuators, and that even after several minutes
(not shown) the prototype maintained a small residual maxk
following curtailment of actuation. We believe this is due to
frictional forces occurring at the interface between linkages,
and we found that once the restitution had plateaued the fabric
could be manually manipulated back to its initial state with
little resistance. It is possible that the wires connecting each of
the linkages to the power source imposed an additional
rigidity upon the fabric.

SMAs were used due to their availability in a miniature
form that could be incorporated within the link geometry to
control design parameters. Potential applications for our
actuating fabrics could be found in morphing aerofoils as
described in [5] and as a mechanism underlying active
vibration absorbing systems. NiTi is currently used for many
medical and orthodontic devices such as orthodontic wires,
footwear and cardiac stents. It is an unsuitable actuator for
many other applications due to issues of temperature control,
hysteresis and thermal fatigue. However if the system were
able to be miniaturised and the NiTi replaced with alternative
actuators (see Hines et al [18] for an extensive review of the
current state-of-the-art here) the approach could be used for
many soft-robotic applications: potential uses include elec-
troactive fabrics for load-bearing activities, dynamically
reconfigurable orthoses and splints, and stiffening garments
for preventing injury.

Both the physical and computational models show that
the possibilities for actuated chainmail fabrics are mechani-
cally rich. Whilst the structure investigated here was designed
to have flexibility in only one axis, the methodology is gen-
eral and can be applied to designs with parametric flexibility
across three dimensions, although a different metric to our

maxk would be preferable in some such scenarios. Our use of
the chainmail architecture allows for greater variation in
flexibility than the laminate approach of Henry and McKnight
[8], whilst keeping actuator strains comparably small.

4. Conclusions

We have developed a method for producing and analysing
active chainmail fabrics with programmable flexibility.
Through use of a rigid body physics simulation combined
with an analytical model the dynamics of such an active fabric
were captured, producing a design tool that can be used to
generate active fabrics with bespoke properties. Simulations
of dynamic modulation of the linkage geometry showed that
flexibility could be manipulated in real time through actuating
elements, and a physical prototype was constructed using

Figure 3. Flexibility of the active fabric over time in the observed
(green) and simulated scenarios with (blue) and without (magenta)
the NiTi heating model. Voltage was applied at 0.37 s and removed
at 12.6 s indicated on figure by red vertical lines.
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NiTi to validate this. NiTi is an unsuitable actuator for many
applications, however we believe our methodology for
designing actuated fabrics transcends this practical issue.
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